Physics and Chemistry

- 1. A simple pendulum has a period T inside a lift when it is stationary. The lift is accelerated upwards with constant acceleration 'a'. The period
 - a) decreases
 - ,b) increases
 - c) remains same
 - d) becomes infinite

2. 90dB sound is 'x' times more intense than 40dB sound, then x is

- a) 5
- b) 50
- c) 10⁵
- d) 500

3. A star is moving away from the Earth with speed V. Change in wavelength $(d\lambda)$ observed on Earth is

- a) $\lambda V/C$
 - b) $\lambda V/(C+V)$
 - c) $\lambda C/(C+V)$
- d) λC/V

4. An open pipe emits a fundamental frequency n_o when it emits the 3rd harmonic, the pipe can accommodate

- a) 2 nodes 2 antinodes
- b) 3 nodes 4 antinodes
- c) 3 nodes 3 antinodes
- , d) 1 node 2 antinodes
- 5. In an adiabatic process
 - a) temperature remains constant
 - b) pressure remains constant
 - c) volume remains constant
 - ,d) there is no transfer of heat.
- 6. Carnot's heat engine takes 300J of heat from a source at 627°C and gives some part of it to sink at 27°C. Work done by engine in one cycle is
 - a) 200J
 - b) 300J
 - .c) 150J
 - d) 120J مراج
- 7. 15/16th of a radioactive sample disintegrates in 2 hrs. Mean life of radioactive sample is approximately,
 - a) 30 min
 - b) 43 min
 - c) 21 min
 - d) I5min

Space for calculation / rough work

15 x 45 COV MOTO

Physics and Chemistry		Veihysics a
 Clear images of soft tissues can be well sture a) MRI 	idied using	A protor
b) X-rays		5. A proton λ_a will b
		a) $2:1$
		by $2\sqrt{2}$
d) I.R rays	N	
9 Particles which are not composite and		c) 4:1 d) 1:2
 Particles which are not composite and hence a) mesons 	ce truly elementary are	u) 1.2
b) protons	*	6. 'Raman
c) neutrons		a) inci
dy leptons		b) inci
· .	r -	c) reso
10. A logic gate whose output will be in logic 0.a) AND	state only when all inputs are in logic 1 state is c	alled d) mo
US OR		7. C ¹⁴ and
c) NOR	58	a) (s();
d) NAND	x	b) iso
		d) min
1. n type and p type semiconductors can be obta	ained by doping pure silicon respectively with	
a) Arsenic Phosphorous		8. In an int
b) IndiumAluminium		the ratio
 c) Phosphorous Indium d) Aluminium Boron 		ar 3:1
dr Aluminium Boron		ъ) 9:1
2. In a CE amplifier β =50, R _L =4K Ω , R _i =500 Ω . a) 2 x 10 ⁴	. Power gain of the amplifier is	c) 2:1 .d) 4:1
(b) 2 x 10 ²		. 19. In Your
c) $2 \ge 10^3$		a) d ²
d) 2×10^{10}		b) d
11		c) D
5. Electrons are excited from n 1 to n 4 state. E	Juring downward transitions, possible number	of spectral lines d) 2d
observed in Balmer series is a) 4	38 (1	
b) 3		20. Newto
c) 2		a) eq
d) 1		b) c(
3) 1		c) a
. IR region lies between		d) a
		21. It is di
b) microwaves and visible		a) li
c) visible and UV region		by s
d) UV rays and X-ray region.		c) li
	19	d) v.
 IR region lies between a) radio waves and microwave regions b) microwaves and visible c) visible and UVregion d) UV rays and X-ray region. 	for calculation / rough work	d 21. 1 بر م

	the second s	1.01
· ward a ca	Vellivsics and Chemistry	Ver D
		21. A set in such a set of a star of a set
	5. A proton and an alpha particle are subjected to same potential difference λ_{a} will be in the ratio	ence V. Their de-Broglie wavelengths λ_{ρ}
	a) 2:1	the off and the second se
	br 21/2:1	
	0 41	
	d) 1:2	
	6. "Raman Shift" depends on	
	at incident wavelength	
	b) incident intensity	
	c) resolving power of the spectrograph used	
	d) molecular energy levels of the scatterer.	
	7. $_{0}C^{14}$ and $_{1}N^{15}$ are the examples of	800 UF
	a) isotopes	
	b) isobars	ĩ
	cr isotones	. · · · · · · · · · · · · · · · · · · ·
	d) mirror nuclei	
	8. In an interference experiment, intensity ratio at the bright to dark fringe	o is 0.1 Amplitudos of interfering waves are in
		e is 9.1. Amplitudes of interfering waves are in
	the ratio	e is 9.1. Amplitudes of interfering waves are m
	the ratio a) $\sim 3:1$	e is 9.1. Amplitudes of interfering waves are in
	the ratio a) $\sim 3:1$ b) $= 9:1$	e is 9.1. Amplitudes of interfering waves are in
	the ratio $a \neq 3:1$ b = 9:1 c = 2:1	e is 9.1. Ampinudes of interfering waves are in
	the ratio a) $\sim 3:1$ b) $= 9:1$	e is 9.1. Amplitudes of interfering waves are in
	the ratio a) ≤ 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit	
	the ratio (a) ≤ 3:1 (b) 9:1 (c) 2:1 (d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit (a) d ² /D	
	the ratio (a) 3:1 (b) 9:1 (c) 2:1 (d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit (a) d ² /D (b) d/D	
5	the ratio (a) ≤ 3:1 (b) 9:1 (c) 2:1 (d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit (a) d ² /D	
	the ratio a) \sim 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d^2/D b) d/D c) D^2/d d) $2d^2/D$	te to a slit. Wavelength of light used is
8	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot 	te to a slit. Wavelength of light used is
3	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D³/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot 	te to a slit. Wavelength of light used is
5	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot c) a few coloured rings with central dark spot 	te to a slit. Wavelength of light used is
5	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D³/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot 	te to a slit. Wavelength of light used is
3	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot c) a few coloured rings with central dark spot d) a few coloured rings with central white spot 21. It is difficult to observe diffraction in case of light waves, because 	te to a slit. Wavelength of light used is
5	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot c) a few coloured rings with central dark spot d) a few coloured rings with central white spot 21. It is difficult to observe diffraction in case of light waves, because a) light waves can travel through vacuum 	te to a slit. Wavelength of light used is
5	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot c) a few coloured rings with central dark spot d) a few coloured rings with central white spot 21. It is difficult to observe diffraction in case of light waves, because a) light waves can travel through vacuum b) speed of light is more 	te to a slit. Wavelength of light used is
S	 the ratio a) 3:1 b) 9:1 c) 2:1 d) 4:1 19. In Young's double slit experiment. Ist dark fringe occurs directly opposit a) d²/D b) d/D c) D²/d d) 2d²/D 20. Newton's ring pattern in reflected system, viewed under white light con a) equally spaced bright and dark bands with central dark spot b) equally spaced bright and dark bands with central white spot c) a few coloured rings with central dark spot d) a few coloured rings with central white spot 21. It is difficult to observe diffraction in case of light waves, because a) light waves can travel through vacuum 	te to a slit. Wavelength of light used is

J-particles JP

P.

5

FM

10

	Physics and Chemistry	Physics
	22. A calcite crystal is placed over a dot on a paper sheet and the crystal is rotated. On viewing through the calcite	Ver9. An in $a) = 0$
	sees	D) (
	a) A single stationary dotb) two stationary dots.	c) 1 d) 1
	c) two dots rotating about one another	
	d) one dot rotating about the other stationary dot-sometimes coinciding with it	o Planc
	23. Critical angle of the medium is 45°. Polarising angle of incidence at the surface of the medium is	vibrat
	a) 45°	b) 4
	b) 38°	c)
	c) 22.5° d) 54.7°	. d) 👌
	u) 54.7	11. A ch.
8740 	24. If only 2% of the main current is to be passed through a Galvanometer of resistance G, the resistance of shunt	().1 n a)
1	should be a) G/50	b) 9
	b) G/49	c) ''
	c) 50G	d)
	d) 49G	32. Dielo
	25. A small current carrying loop of area A behaves like a tiny magnet of magnetic moment M. Current in the loop is	a) b)
	a) MA	c) 1
	b) A/M	d)
	c) A^2M d) M/A	33. Dist
	26. Two concentric circular coils, each having 10 turns with radii 0.2m and 0.4m carry currents 0.2A and 0.3A restively in opposite direction. Magnetic field at the centre is	b)
	Hvery in opposite direction. Wagned o hold at the control μ	c) d)
6	b) $(5/4) \mu_0$	
	c) $(1/4) \mu_0$	34. Pol
	d) $(1/6) \mu_0$	a) b)
	- 27. Material of permanent magnet has	c)
	 a) high retentivity and high coercivity b) low retentivity and high coercivity 	d)
	c) low retentivity and low coercivity	
	d) high retentivity and low coercivity.	35. A:
52	28. Power factor of a series LCR circuit is	tio
	a) R	a) b)
	b) Z/R	c) d)
	c) R/Z d) RZ	d)
35	d) RZ	
	Space for calculation / rough work	Ø
		Ŷ
	G. T. (2) (2)	
	Non Van Van Van Van Van Van Van Van Van Va	
	SC. Cil	
C	A. Lott mag	
-	and the cost	
- 440	The way the second seco	Alexand Street
	•	

Physics and Chemistry			A Break St.	Ver D
Verp. An inductor 111 is connected across	220V 50Hz supply. I	eak value of current is ap	proximately,	
alcite or a) 0.5A b) 0.7A	21			
c) 1A				
d) 1.4A				
90. Plane polarised light is passed throug vibrations make an angle θ with the a	h an analyser and the xis of analyser. Then	intensity of emerging light θ is	nt is reduced by 75	5%. Optical
.at 60°				
b) 45° c) 30°				
d) 58°				
		-		
\$1. A charge 10 nC is situated in a mediu	m of relative permitt	ivity 10. The potential du	e to this charge at	a distance of
nt 0.1 m is a) 900V				. * [*]
b) 90V		2.		Ŧ
c) 9V				
d) ~ 0.09V		2		
32. Dielectric constant of a metal is				
a) zero				
b) infinite				
c) finite				
d) unpredictable				
33. Distance between the two point cha	ges is increased by 2	0% Force of interaction	between the char	ges
respec- (a) increases by 10%				
b) decreases by 20%	-24			<i>B</i>
c) decreases by 17%d) decreases by 31%				
3				
34. Potential energy of 2 charges 10 nC	each separated by a c	listance of 0.09m in air is		
a) 10 µJ				
b) 1 mJ روی 10 mJ				
d) 10 J				
35. A metal plate of thickness d/2 is intro	duced in between the	plates of a parallel plate s	ur canacitor with	plate separa-
tion of d. Capacity		Partice of a partition plate i	in expansion man	France Septendi
a) decreases 2 times				
b) Increases times c) remains same				
d) becomes zero.				
)	Space for calculatio	n / rough work		
		n rougn work		
100C 0.09m	in air is			
	N. O	$\backslash \land \land$		
T-la.	MACT?	$\setminus \setminus //$		
J-B (h)	ND	1010/		ld at i
Ť		- Ar	<u> </u>	H2 XA
		- · · ·		
e	10nc	2		
10nc	7	a. a		

Physics and Chemistry	Thysics a
 36. Specific resistance of a conductor material increases with a) increase with area of cross section b) decrease in length c) decrease in area of cross section d) increases with temperature 	. 0.04 m them no a) 5/3 b) 5/4 c) 5/7
 37. The resistance of mercury at 4.2K is- a) infinity b) greater than at lab temperature c) same as that of lab temperature d) atmost zero. 38. Temperature coefficient of resistance of platinum is 4 x 10⁻³/K at 20°C. Temperature at which increase in resis- 	 d) 4/: 2. Critical a) Gl b) Gl (c) W. d) Di
t unce of platinum is 10% its value at 20°C is a) 25° C b) 70° C c) 45° C rd) 100° C	 3. A ray of index of a) 1. b) 1.6 c) 1. d) 1.8
39. Ideal voltmeter connected as shown reads	4. In the (a) U b) M c) M d) M
a) 16V b) 12V	5. Conve Focal a) f b) g: c) le d) -1
 e) 4V d) 8V 40. When a charged particle moves perpendicular to a uniform magnetic field, then a) its momentum changes total energy is same. b) both momentum and total energy remain the same. c) both momentum and its total energy will change 	6. Two co a) () b) () c) () d) -(
 d) total energy changes. Momentum remains same. 	17. Eddy a) h b) p c) r -d) r
Space for calculation / rough work	

DPhysics and Chemistry Ver D 41. 0.04 m of glass contains the same number of waves as 0.05m of water, when monochromatic light passes through them normally. Refractive index of water is 4/3. Refractive index of glass is a) 5/3 b) 5/4 c) 5/2 d) 4/5 42. Critical angle will be maximum, when light travels from a) Glass to air Glass to water b) Water to air c) d) Diamond to air 43. A ray of light incident on one face of an equilateral prism at 60° enters and leaves the prism symmetrically Refractive index of the prism material is 1.5 a) b) 1.62 c) 1.73 d) 1.8 44. In the spectrum of visible light produced by a prism dispersion is a) Uniform throughout the spectrum b) Maximum in the middle decreases on either sides. c) Maximum towards yellow Maximum towards violet. 45. Convex lens of focal length f made of glass of Refractive index 1.5 is immersed in water of Refractive index 4/3. Focal length is a) f m=1.5 = 3/2 b) greater than f c) less than f 4 = 4/3 d) -f 46. Two co-axial lenses of power +4D and -2D are placed in contact. The focal length of combination is a) 0.5m b) 0.25m 20 fr 1/2 c) 0.16m 0,5d) -0.5m 1/4 1/2 47. Eddy currents are produced in a material when it is 4 -2/4 5 a) heated b) placed in a time varying magnetic field. =5 c) placed in an electric field d) placed in a uniform magnetic field. Space for calculation / rough work 7

Physics and Chemistry

- 48. Transformer works on 220V. Its efficiency is 80%. Out put power is 8KW. Primary current is approximately, 35A a) 01 T
 - b) 18A
 - 22A e)
 - 45A d)

49. Quality factor of a series LCR circuit decreases from 3 to 2. Resonant frequency is 600Hz. Change in band width is

- zero a)
- b) 100Hz increase
- c) 100Hz decrease
- 300Hz increase d)

50. A stone dropped from the top of the tower reaches ground in 4 sec. Height of the tower is $(g=10m/s^2)$

5:4

V= w + at

- 20m a).
- _b) 40m
- 60m c)
- d) 80m

51. Liquid crystal phase which are more close to the solid than to liquid is

10

- a) Nematic
- b) Smectic
- c) Lyotropic
- d) Cholesteric

52. If the Earth shrinks in its size (radius) mass remaining the same, the value of g on its surface will

- a) increase
- b) decrease
- د) remains same
- d) is reduced to zero.
- 53. Two rods of same area of cross section and lengths, and conductivities K, and K, are connected in series. Then in steady state conductivity of the combination is
 - a) $(K_1 + K_2)/(K_1 K_2)$
 - $\frac{(K_1 K_2)}{2K_1K_2/(K_1 + K_2)}$ $\frac{(K_1 + K_2)}{(K_1 + K_2)/2}$ $\frac{K_1K_2}{(K_1 + K_2)}$ b)
 - c)
 - d)
- 54. The square of the resultant of two equal forces acting at a point is equal to three times their product. Angle between them is
- a) 30° 5: b) 45° £ $(F_1 + F_2)^2 = 3F_1F_2$ P.t c) 60° A) 90° Space for calculation / rough work vt

Ver

D

Physics and Chemistry

- 55. With the addition of impurities surface tension of a liquid
 - a) increases
 - b) decreases
 - c) remains constant.
 - d) may increase or decrease depending on impurities
- 56. Viscosity decreases with increase in temperature is the reason for (i) hot water moving faster than cold water
 - (ii) more viscous oils are used in motor cars during summer than in winter
 - only (i) is correct a)
 - b)only (ii) correct
 - c) both (i) and (ii) are correct
 - d). both are wrong.

57. Moment of momentum of an electron revolving in second Bohr orbit of hydrogen is

- a) $2\pi h$
- b) $h/2\pi$
- /10) h/m
- d) 2h/3π

58. The existence of excitation and ionisation energies in an atom is an evidence for

NH1

- a) stability of an atom
- , b) electrical neutrality of an atom
 - c) small size of the atom
 - d) stationary orbits in an atom.
- 59. Work function of a photosensitive metal is 3eV. The wavelength of incident radiations which can just eject photoelectrons from the metal is
 - a) 600nm
 - b) 510nm
 - c) 414nm
 - d) 378nm

60. Three identical capacitors are first connected in series and then in parallel. The ratio of effective capacitances in the two cases is -+1 +1 c c

- >

(s

CP

C.4

1

-

30

3/0

a)	9:1

in

- b) 3:1 c) 1:3
- →d) 1:9
- 61. To dry ammonia gas the drying agent used is
 - a) Con. H,SO b) P2O5
 - soda lime
 - d) anhydrous CaCl,

Space for calculation / rough work

Ver D