

Singular and Non-Singular Matrices

A square matrix A is said to be singular if |A| = 0, otherwise it is called non-singular matrix. If A & B are non-singular matrix of same order, then AB & BA are also non-singular matrices of same order.

Inverse of a Matrix

If A and B are two matrices such that

then B is called the inverse of A and it is denoted by A^{-1}

Properties of Inverse Matrix

Let A and B are two invertible matrices of the same

$$= B^{-1}A^{-1}$$

= (A⁻¹)^T
⁻¹) = (adj A)⁻¹

• Unique solution of the equation AX = B is given by $X = A^{-1} B$, when $|A| \neq 0$

• A system of equations is said to be consistent or inconsistent according as its solution exists or not. • For a square matrix A in the matrix equation AX = B

(i) If $|A| \neq 0$, there exists a unique solution and the system of equations is consistent.

(ii) If |A| = 0, and (adj A) $B \neq 0$, then there exists no solution and the system of equations is inconsistent

(iii) If |A| = 0 and (adj A) B = 0, then the system may or may not be consistent according as the system has either infinitely many solutions or no solution.