
CHEMICAL BONDING

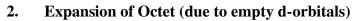
FLOWCHART TO CHEMICAL BONDING

KEY CONCEPT

CHEMICAL BOND

- (a) The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond.
- (b) It is the combination of two or more chemical species involving redistribution of e^- among them.
- (c) This process is accompanied with decrease in energy.
- (d) Decrease in energy strengthens the bond.
- (e) Therefore, molecules are more stable than atoms.

CAUSE OF CHEMICAL COMBINATION


- **Tendency to acquire minimum energy :** 1.
- 2. Tendency to acquire noble gas configuration (Octet rule) :

Atoms combine to complete an octet of electrons in their outer most shell. Hence all atoms have a tendency to acquire octet (ns²np⁶) configuration or to attain nearest noble gas configuration in their outermost orbit. This can be achieved by combining with other atom or ion.

LIMITIATION OF OCTET RULE

1. **Contraction of octet (incomplete octet)**

These compounds are hypovalent.

$\underline{\mathbf{DC}}_{2}$	$\underline{\mathbf{D}}\mathbf{\Gamma}_3 \underline{\mathbf{F}}_3$	$\underline{\mathbf{M}} \underline{\mathbf{C}}_{1_3} \underline{\mathbf{D}} \underline{\mathbf{C}}_{1_3}$	3		F
(4e ⁻)	(6e ⁻) (6e ⁻) (6e ⁻)			$F \rightarrow B \begin{array}{c} & (6 e^{-}) \\ F \end{array}$
ese compoun	ds are hypo	ovalent.			Ĩ
pansion of C	Octet (due	to empty d-	orbitals)		F F
PCl ₅	SF_6	ClF ₃	BrF ₅	IF ₇	
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
(10e ⁻)	(12e ⁻)	(10e ⁻)	(12e ⁻)	(14e ⁻)	F (12 e)

These compounds are hypervalent.

3. **Odd electron species**

Ex. NO, NO₂, ClO_2 etc.

OTHER EXCEPTIONS OF OCTET RULE

1. **Compounds of Noble gases**

Noble gases which have already completed their octets (or duplet in case of He.) should not form compounds. However, their compounds like XeF₂, XeF₆ & KrF₂ etc., have been actually prepared.

2. **Transition metal ions**

3.

Cr ³⁺	Mn ²⁺	Fe ²⁺
$[Ar]3d^3$	[Ar]3d ⁵	$[Ar]3d^6$
[2, 8, 11]	[2, 8, 13]	[2, 8, 14]
Pseudo inert gas o	configuration [(ns ² ng	0 ⁶ nd ¹⁰)]
Zn ²⁺	Cd^{2+}	
$[Ar]3d^{10}$	[Kr]4d ¹⁰	

CLASSIFICATION OF BONDS

ELECTROVALENT OR IONIC BOND

(a) The chemical bond formed between two or more atoms as a result of the complete transfer of one or more electons from one atom to another is called as Ionic or electrovalent bond.

Example

(i) Mg + O
$$\longrightarrow$$
 Mg⁺² + O⁻² = MgO
2, 8, 2 2, 6
2e⁻ 1

electrovalency of Mg = 2

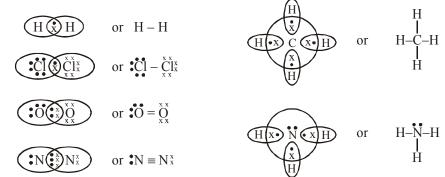
electrovalency of O = 2

Note : Ionic bond is non-directional.

FACTORS FAVOURING IONIC BONDING

- (a) Less Ionization energy of atom forming cation
- (b) Higher electron affinity of atom forming anion
- (c) Greater Lattice energy of formed product.

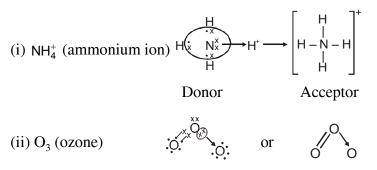
(d) Greater Electronegativity difference between atoms forming cation & anion.


COVALENT BOND

(a) A covalent bond is formed by the mutual sharing of electrons between two atoms.

- (b) The shared pair of electrons must have opposite spins, and are localised between two atoms concerned.
- (c) On the basis of electrons being shared between two atoms the bonds are of three types –

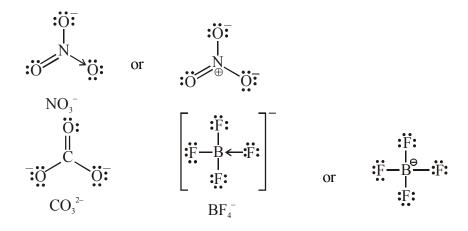
Covalency : Capacity to form covalent bond is known as covalency


It is represented by (-) small line. - means single bond; = means double bond; = means triple bond.

Covalent bonds are directional in nature

COORDINATE BOND (DATIVE BOND)

The bond formed between two atom in which contribution of an electron pair is made by one of them while the sharing is done by both.



Lewis Dot structures:

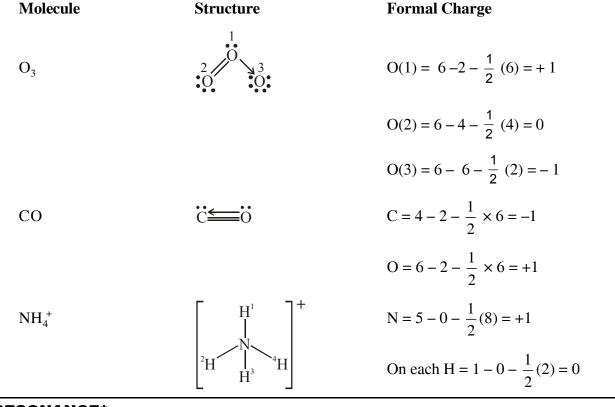
- Arrangement of various atoms in a molecule & types of bonding present in it but no idea of geometry of the molecule.
- + In most cases we can construct a Lewis structure in three steps :
 - (1) Decide on the number of electrons that are included in the structure by adding together the number of all the valence electrons provided by the atoms.
 - (2) Write the chemical symbols of the atoms in the arrangement that shows which atoms are bonded together.
 - (3) Distribute the electrons in pairs so that there is one pair of electrons forming a single bond between each pair of atom bonded together and then supply electron pairs (to form lone pairs or multiple bonds) until each atom has an octet.
- + In oxy acids all 'H' atoms are attached to oxygen as -OH groups except in H_3PO_3 (dibasic), H_3PO_2 (monobasic) & $H_4P_2O_5$ (dibasic). Which are directly bonded to central atom.

Applications :

- ✤ To know various linkages present
- ✤ To calculate formal charge of various elements.

FORMAL CHARGE

Lewis dot structures, in general, do not represent the actual shapes of the molecules. In case of polyatomic ions, the net charge is possessed by the ion as a whole and not by a particular atom. It is, however, feasible to assign a formal charge on each atom.


Formal Charge :
$$Q_F = N_A - N_{L.P.} - \frac{1}{2} N_{B.P.}$$

Where :

 N_A = Total number of valence electron in the free atom

 $N_{L,P}$ = Total number of non bonding (lone pair) electrons

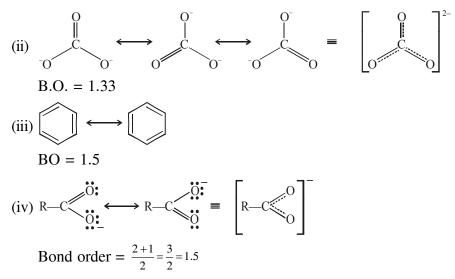
 N_{BP} = Total number of bonding(shared) electrons

RESONANCE*

When a molecule cannot be completely represented by a single Lewis structure but it's characteristic properties can be described by two or more different structures, with similar energy position of nuclei, bonding and non-bonding pairs of electrons, then the true structure is said to be resonance hybrid of these structures. The phenomenon is called resonance and different contributing structures are called resonating structures or canonical structures.

- Resonance stabilizes the molecule as the energy of the resonance hybrid is less than the energy of any single canonical structure.
- Resonance averages the bond characteristics as a whole.
- The canonical forms have no real existence.

Resonance Structure of Some Molecules/Ions :


(i) Azide ion, N_3^- :

The azide ion may be represented as -

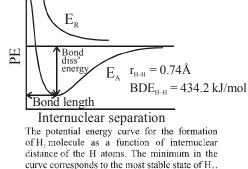
$$\vec{N} = \overset{^{2}}{N} = \overset{^{2}}{N} : \longleftrightarrow \overset{^{2}}{N} = \overset{^{+}}{N} = N : \longleftrightarrow N = \overset{^{2}}{N} - \overset{^{2}}{N} :$$

$$I \qquad II \qquad III$$

The structures II and III contribute equally and the molecule has almost double bond character in each N–N bond.

*Descriptive discussion of concept of resonance will be done in Organic Chemistry.

VALENCE BOND THEORY


Valence bond theory was introduced by Heitler and London (1927) and developed further by Pauling and others. A discussion of the valence bond theory is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals and the hybridization of atomic orbitals.

Formation of H₂ molecule :

When two 'H'-atoms approaches towards each other for the formation of H_2 molecule. The following interactions takes place.

- (i) e-e repulsion
- (ii) e-p attraction
- (iii) p-p repulsion

Experimentally, it has been found that the magnitude of attractive forces is more than the repulsive forces. As a result, when two atoms approach each other then potential energy decreases. Ultimately a stage is reached where the net force of attraction balances the force of repulsion and system acquires minimum energy.

At this stage two hydrogen atoms are said to be bonded together to form a stable molecule having the bond length of 74 pm. Since the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is more stable than that of isolated hydrogen atoms.

Bond Length : Internuclear distance at minimum potential energy is called bond length.

Bond Dissociation Energy : The amount of energy released when one mole of same type of bonds are formed is called B.D.E.

434.2 kJ/mol of energy is required to dissociate one mole of H_2 molecule.

 $H_2(g) + 434.2 \text{ kJ mol}^- \rightarrow H(g) + H(g)$

ORBITAL OVERLAP CONCEPT

In the formation of hydrogen molecule, there is a minimum energy state when two hydrogen atoms are so near that their atomic orbitals undergo partial interpenetration. This partial merging of atomic orbitals is called overlapping of atomic orbitals which results in the pairing of electrons. The extent of overlap decides the strength of a covalent bond. In general, greater the overlap the stronger is the bond formed between two atoms. Therefore, according to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons, present in the valence shell having opposite spins.

Directional Properties of Bonds :

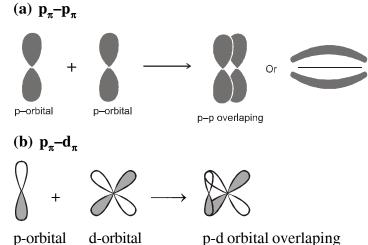
The valence bond theory explains the formation and directional properties of bonds in polyatomic molecules like CH_4 , NH_3 and H_2O , etc. in terms of overlap and hybridisation of atomic orbitals.

Types of Overlapping and Nature of Covalent Bonds

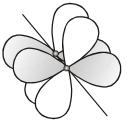
The covalent bond may be classified into following types depending upon the types of overlapping :-(i) sigma(σ) bond (ii) pi (π) bond (iii) delta(δ) bond

- (i) Sigma (σ) bond : This type of covalent bond is formed by the end to end (head on or axial) overlap of bonding orbitals along the internuclear axis. This can be formed by any one of the following types of combinations of atomic orbitals.
 - s-s overlapping : In this case, there is overlap of two half filled s-orbitals along the internuclear axis as shown below :

• s-p overlapping: This type of overlap occurs between half filled s-orbital of one atom and half filled p-orbital of another atom.



• p-p overlapping : This type of overlap takes place between half filled similar p-orbitals of the two approaching atoms.


76 JEE-Chemistry

(ii) $pi(\pi)$ bond : In the formation of π bond the atomic orbitals overlap in such a way that their axis remain parallel to each other and perpendicular to the internuclear axis. The orbitals formed due to sidewise overlapping consists of two saucer type charged clouds above and below the plane of the participating atoms.

d-orbital p-d orbital overlaping

delta (δ) bond : are the covalent bonds where four lobes of d-orbital of one atom overlap with four (iii) lobes of the similar d-orbital of other atom. Except d_{r^2} all d orbitals form δ bond.

Strength of sigma and pi Bonds :

Basically the strength of a bond depends upon the extent of overlapping- In case of sigma bond, the overlapping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent. Further, it is important to note that pi bond between two atoms is formed in addition to a sigma bond. It is always present in the molecules containing multiple bond (double or triple bonds)

Advantages of VBT :

- * It explain various bond characteristics e.g., bond length, bond strength.
- * It explains the quantitative relationship between the extent of overlapping and bond dissociation energy.
- * This theory accounts for shape and nature of bonding of the molecule whose covalency is not according to the number of half-filled orbitals present in the ground state.
- * This theory redefined the stability of molecules e.g. BF₃, AlCl₃, PCl₅, SF₆ etc which are exception to octet rule.

Disadvantages of VBT :

- * According to this theory three bond angle in CH_4 should be 90°, as these are formed by p–p overlapping, but actually it has four 109°28 angles. In NH₃ & H₂O, angle should be 90°. This is in disagreement with the actual bond angles of 107° & 104.5° in NH₃ & H₂O molecules respectively.
- * In order to explain the characteristic geometrical shapes of polyatomic molecules like CH₄, NH₃, H₂O etc. Pauling introduced the concept of hybridisation.

HYBRIDISATION

The phenomenon of intermixing of the orbitals of slightly different energies so as to redistribute their energies, resulting in the formation of new set of orbitals of equivalent energies and shape. For example when one 2s and three 2p-orbitals of carbon hybridise, there is the formation of four new sp³ hybrid orbitals.

Salient features of hybridisation: The main features of hybridisation are as under :

- 1. The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- 2. The hybridised orbitals are always equivalent in energy and shape.
- 3. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- 4. These hybrid orbitals are directed in space in some preferred direction to have minimum repulsion between electron pairs and thus a stable arrangement. Therefore, the type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation

(i) The orbitals present in the valence shell of the atom are hybridised.

(ii) The orbitals undergoing hybridisation should have almost equal energy.

(iii) Promotion of electron is not essential condition prior to hybridisation.

(iv) It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.

Types of Hybridisation

There are various types of hybridisation involving s, p and d orbitals. The different types of hybridisation are as under :

(i) *sp* hybridisation (ii) sp^2 hybridisation (iii) sp^3 hybridisation (iv) sp^3d hybridisation: (v) sp^3d^2 hybridisation: (vi) sp^3d^3 hybridisation:

Determination of hybridisation state -

To predict hybridisation following formula may be used :

Number of hybrid orbital = Steric Number (S.N.) = Number of σ -bond arround that atom + Number of lone pair on that atom.

Molecule Method Hybridisation S.N. = 4 + 0 = 4sp³ hybridisation.

 NH_4^+

Number of hybrid orbitals	Hybridisation
two	sp
three	sp^2
four	sp ³
five	sp ³ d
six	$sp^{3}d^{2}$
seven	sp ³ d ³

Hybridisation	in	Ionic	solid	species	:
---------------	----	-------	-------	---------	---

Species	Cationic part	Anionic part
PCl ₅	$PCl_{4}^{+}(sp^{3})$	$PCl_6^{-}(sp^3d^2)$
PBr ₅	$PBr_{4}^{+}(sp^{3})$	Br⁻
XeF ₆	$XeF_{5}^{+}(sp^{3}d^{2})$	F [−]
N ₂ O ₅	NO_2^+ (sp)	NO_3^- (sp ²)
N ₂ O ₃ (s)	NO^+	NO_2^- (sp ²)
$N_2O_4(s)$	NO^+	NO_3^- (sp ²)
I ₂ Cl ₆ (liquid)	$ICl_2^+(sp^3)$	$ICl_4^{-}(sp^3d^2)$
I ₂ (liquid)	$I_{3}^{+}(sp^{3})$	$I_3^{-}(sp^3d)$
Cl ₂ O ₆	$\text{ClO}_2^+(\text{sp}^2)$	$\text{ClO}_4^-(\text{sp}^3)$

 $PF_5(s)$ exist in form of trigonal bipyramidal geometry.

VALENCE SHELL ELECTRON PAIR REPULSION THEORY (VSEPR)

- (a) Molecules having covalent bond have definite geometry as covalent bonding has directional characteristics. A simple theory was given for the molecular shape of the covalent molecules by Gillespie and Nyholm in 1957.
- (b) This theory predicts the shape of the molecule by considering the most stable configuration of the bond angles in the molecule. This theory states
 - (i) Electron pairs in the valence shell of the central atom of a molecule, whether bonding or lone pairs are regarded as occupying localised orbitals. These orbitals arange themselves in so as to minimize the mutual electronic repulsions.
 - (ii) The magnitude of the different types of electronic repulsions follows the order given below:

lone pair-lone pair > lone pair - bonded pair > bonded pair - bonded pair

- (iii) The electronic repulsion between two pairs of electrons will be minimum if they are as far apart as possible.
- (iv) The actual shape of the molecules containing lone pairs is a little distorted from the basic shape as in the NH_3 and H_2O molecules, the bond angles are not 109°28' but 107° and 104.5° respectively due to presence of one lone pair in NH_3 and two lone pairs in H_2O .

Chemical Bonding 79

	SHAPES OF MOLECULES BASED ON VSEPR THEORY						
Total no. of hybrid orbitals	No. of b.p. (bond pairs)	No. of unshared pair i.e. <i>l</i> _p	General formula	Type of hybridisation	Stereo chemical formula/str.	Shape	Exam.
2	2	0	AB ₂	sp	B-A-B	linear	BeCl ₂
3	3	0	AB ₃	sp ²	B 120° B A B	Trigonal planar	BCl ₃ , NO ₃ ⁻ GaF ₃ , CO ₃
3	2	1	AB ₂	sp ²	B <120° B	V or Bent or angular	SnCl ₂ , O ₃ ,SO ₂
4	4	0	AB_4	sp ³	B B B B	Tetrahedron	CH ₄ , SiF ₄ , ⁺ NH ₄
4	3	1	AB ₃	sp ³	B B <109°	Trigonal pyramidal	NH ₃ , CH ₃ ⁻
4	2	2	AB ₂	sp ³	A B <109° B	V or Bent or angular	H ₂ O, SF ₂
4	1	3	AB	sp ³	B bond I angle A N.A.	linear	C10-
5	5	0	AB ₅	sp ³ d	$B \xrightarrow{90^{\circ}A} A \xrightarrow{B} B$	Trigonal bipyramidal	$PF_{5}, SF_{5}^{+}, SbBr_{5}, SbBr_{5}, XeO_{3}F_{2}$
5	4	1	AB ₄	sp ³ d	$:-A \stackrel{B}{}_{A} \stackrel{B}{}_{B} \stackrel{B}{}_{B}$	Seesaw	SF_4
5	3	2	AB ₃	sp ³ d	$B \xrightarrow{<90^{\circ}} A$	T-shaped	ClF _{3,} BrF ₃
5	2	3	AB ₂	sp ³ d	B ⊢A B	Linear	$ICl_{2}^{-},$ $XeF_{2},$ I_{3}^{-}
6	6	0	AB ₆	sp ³ d ²	$B B B B B B All bond \angle = 90^{\circ}$	Octahedral or Square bipyramidal	$SF_6,$ IF_6^+
6	5	1	AB ₅	sp ³ d ²	B B B All less than 90°	Square pyramidal	IF ₅ , XeOF ₄ , BrF ₅

6	4	2	AB_4	sp ³ d ²	B A 90° B B B	Square planar	$IF_{4}, \\ XeF_{4}, \\ ICl_{4}^{-}$
7	7	0	AB ₇	sp ³ d ³	$B B B$ $B 00^{\circ} 72^{\circ} B$ $B B B B$	Pentagonal bipyramidal	IF ₇
7	6	1	AB ₆	sp ³ d ³	$ \begin{array}{c} B \\ $	Distorted octahedral	XeF ₆ , IF ₆ ⁻
7	5	2	AB ₅	sp ³ d ³	$ \begin{array}{c} B \\ 72^{\circ} \\ B \\ \end{array} \begin{array}{c} B \\ B \\ B \\ \end{array} \begin{array}{c} B \\ B \\$	Pentagonal planar	XeF ₅ ⁻

BOND PARAMETERS

(I) Bond order

(III) Bond Angle

(II) Bond Length (Bond distance)(IV) Bond Enthalpy

(I) Bond order :

The Bond Order is given by the number of bonds between the two atoms in a molecule.

The bond order, for example in H_2 (with a single shared electron pair), in O_2 (with two shared electron pairs) and in N_2 (with three shared electron pairs) is 1,2,3 respectively.

Note : Isoelectronic molecules and ions have identical bond orders; for example, F_2 and O_2^{2-} have bond order 1. N_2 , CO and NO⁺ have bond order 3.

Note : A general correlation useful for understanding the stabilities of molecules is that: with increase in bond order, bond enthalpy increases and bond length decreases.

(II) Bond Length :-

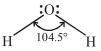
Bond length is defined as the equilibrium distance between the nuclei of two bonded atoms in a molecule. Bond lengths are measured by spectroscopic, X-ray diffraction and electron-diffraction techniques about which you will learn in higher classes.

Factors affecting bond length

(a) Size of atoms

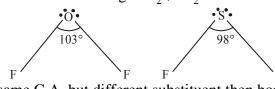
(b) Effect of bond order or number of bonds

(c) Effect of Resonance


(d) Effect of Electronegativity difference

(e) Effect of Hybridisation

(III) Bond angle :


It is defined as the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. Bond angle is expressed in degree which can be experimentally

determined by spectroscopic methods. For example $H-\hat{O}-H$ bond angle in water can be represented as under :

Comparison of bond angles.

- (a) If central atoms are in different hybridisations then it can be compared.
- (b) If same hybridisation but different central atoms then bond angle would be more of the molecule in which central atom is more E.N. eg. OF_2 , SF_2

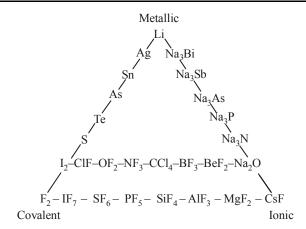
(c) Molecules having same C.A. but different substituent then bond angle increases as the size of attached atom increases except in symmetrical molecules and H₂O / F₂O , NH₃ / NF₃

Factors affecting bond angle

- (a) State of Hybridisation
- (b) Presence of lone pair
- (c) Electronegativity of central atom
- (d) Electronegativity of surrounding atom
- (e) Size of surrounding atom
- (f) Lone pairs may sometimes be transferred from a filled shell of one atom to an unfilled shell of another bonded atom, causing less repulsion.
- (g) Multiple bond orbital repel other orbitals more strongly than single bond orbitals.

(IV) Bond Enthalpy

It is defined as the amount of energy required to break one mole of bonds of a particular type between two atoms in a gaseous state. The unit of bond enthalpy is kJ mol⁻¹. For example, the H – H bond enthalpy in hydrogen molecule is 435.8 kJ mol⁻¹.

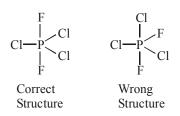

 $H_2(g) \longrightarrow H(g) + H(g); \Delta_a H^{\circ} = 435.8 \text{ kJ mol}^{-1}$

⇒ In polyatomic molecules the term mean or average bond enthalpy is used. It is obtained by dividing total bond dissociation enthalpy by the number of bonds broken as explained below in case of water molecule,

$$\begin{split} H_2O(g) &\longrightarrow H(g) + OH(g); \Delta_a H_1^{\circ} = 502 \text{ kJ mol}^{-1} \\ OH(g) &\longrightarrow H(g) + O(g); \Delta_a H_2^{\circ} = 427 \text{ kJ mol}^{-1} \end{split}$$

Average bond enthalpy = $\frac{502 + 427}{2}$ = 464.5 kJ mol⁻¹

SUMMARY OF THE THREE MAIN TYPES OF BONDS


82 JEE-Chemistry

BENT'S RULE

- (i) A lone pair of electron prefers to occupy that hybrid orbitals which has greater percentage of s-character.
- (ii) A more electronegative atom/group prefers to occupy that hybrid orbital which has smaller percentage of s-character.

Ex. Draw the geometry of PCl_3F_2

Sol.

Because highly electronegative atom occupy axial position (axial position has smaller percentage of s-character).

DRAGO'S RULE

On the basis of experimental bond angles of certain molecules fulfilling the following three conditions,

- (i) Central atom belongs to third or lower period in periodic table
- (ii) Central atom must contain atleast one lone pair of electron, and
- (iii) Electronegativity of surrounding atom is ≤ 2.5

Drago generalised that in such molecules justification of experimental bond angle can be made satisfactorily if one considers no hybridisation, i.e., overlapping of almost pure atomic orbitals from central atom.

In such molecules bond angle is approximately 90°.

Group 15	Bond angle	Group 16	Bond angle
NH ₃	107°48'	H ₂ O	104°28'
PH ₃	93°36'	H ₂ S	92°
AsH ₃	91°48'	H ₂ Se	91°
SbH ₃	91°18'	H ₂ Te	90.5°
Right orde	r of bond angle		

• Right order of bond angle. (a) $H_2O > H_2S > H_2Se > H_2Te$

(b) $NH_3 > PH_3 > AsH_3 > SbH_3$

MOLECULES THAT DO NOT EXIST

- (1) SF_4 , SF_6 & PF_5 exist while. OF_4 , OF_6 , NF_5 do not exist
- (2) (a) $PI_5(vap) \& SCl_6 do not exist$
 - (b) SCl_6 does not exist while $TeCl_6$ exist
 - (c) PI₅ (Solid) exist
- (3) SF₆, PF₅, XeF₆, XeF₄ & XeF₂ exist while SH₆, PH₅, XeH₆, XeH₄, XeH₂ do not exist

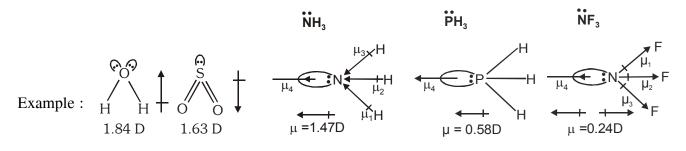
DIPOLE MOMENT

- The degree of polarity of covalent bond is given by the dipole moment (μ)
- It is the product of the either charge and the distance between them.

$$\mathbf{A} \xrightarrow{\delta_{+}} \mathbf{A} \xrightarrow{\delta_{-}} \mathbf{B}$$

Electronegativity of A < Electronegativity of B

$$\mu = \delta \times d$$


- Dipole moment is a vector quantity.
 The direction of dipole moment is represented by →
- Units = Cm (S.I.) or esu cm(CGS) or Debye (common unit)
- 1 D = 10^{-18} esu cm = 3.33×10^{-30} coulomb m

Dipole moment depends on

- Electronegativity difference between bonded atoms
- + Direction of bond dipole moment
- + Angle between various bonds
- ✦ Influence of unshared e⁻ pairs
- ✦ Magnitude of polarity of the molecule
- ✦ Symmetrical / Unsymmetrical shape.

Application of dipole moment

• To determine the polarity and geometry of molecules

• To the calculate the percentage of ionic character

% ionic character = $\frac{\text{observed }\mu}{\text{calculated }\mu \text{ (for }100 \% \text{ ionic)}} \times 100 \%$

HYDROGEN BONDING

Hydrogen bonding: When a hydrogen atom is bonded to a highly electronegative atom (like F, O or N) comes under the influence of another strongly electronegative atom, then a weak electrostatic force of attraction is developed between them, which is called as hydrogen bond.
 Types of H-bonding:

Intermolecular H-bond

(i) This type of H-bonding takes place between two moleules. Ex. ROH, H₂O, R - OH & H₂O

R	R	н	Н	R	Н	R
	I		Ι	I		I
0 – H	I O – H,	0 – H	I O – H,	0 – H	O – H	I O – H

- (ii) In such compounds molecular wt., M.P, & B.P. are high.
- (iii) Extent of Inter molecular H-bonding \uparrow viscosity & density \uparrow .

✦ Intramolecular H-bond

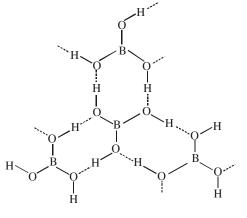
Normally when 2 hydroxyl groups are present on the same carbon atom i.e. gem diols are unstable, but "chloralhydrate" is a stable molecule due to formation of H-bond.

Properties influenced by hydrogen bonding

- (a) Abnormal behaviour of water.
- (b) Association of molecules eg. dimensiation of CH₃COOH, HCOOH
- (c) Dissociation of a polar species.
- (d) Abnormal melting point & boiling point.
- (e) Enhanced solubility in water.

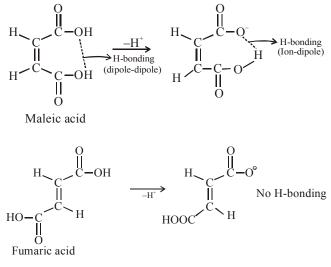
+ Metallic bonds :

Electron gas model or sea model, with metal atom existing as kernels along with less firmly held valence electrons & bonds between various kernels (at the lattice site) & valence electrons are known as metallic bonds.

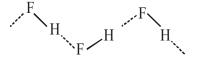

QUESTION OF HYDROGEN BONDING

- Q.1 Explain the structure of Boric acid in solid state.
- Q.2 Boiling point of o-Nitrophenol is less than meta and para nitrophenol. Why?
- Q.3 Maleic acid is more acidic than fumaric acid. Why?
- Q.4 H F is only liquid among halogen acid. Why?
- Q.5 Ammonia is more easily liquefied than HCl, explain.
- Q.6 Why ice floats on water?
- Q.7 Water shows maximum density at 4°C. Why?
- Q.8 HI is the strongest halogen acid, whereas H–F is the weakest. Why?
- Q.9 Wood pieces are used to hold ice-cream. Why?
- Q.10 KHF₂ is possible but not KHBr₂ or KHI₂. Why?
- Q.11 O Nitrophenol is less soluble in H_2O than p Nitrophenol. Why?
- Q.12 o-Hydroxy benzaldehyde is a liquid at room temperature while p-hydroxy benzaldehyde is a high melting solid.
- Q.13 Glycerol is more viscous than ethanol. Explain.
- Q.14 CH_4 and H_2O have nearly same molecular weight. Yet CH_4 has a boiling point 112 K and water 373 K. Explain.

- Q.15 The experimental molecular weight of acetic acid in just double than theoretical molecular weight of acetic acid. Why?
- Q.16 Although chlorine has same electronegativity as nitrogen but the former does not form effective H-bonding. Explain.
- Q.17 Molar entropy change of vapourization of acetic acid is less than that of water. Explain
- Q.18 Heat of vapourization of water is higher than HF, however strength of H-bond in HF is higher than water. Explain


ANSWER OF HYDROGEN BONDING

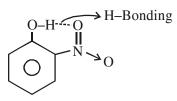
1.



Structure of boric acid; the dotted lines represent hydrogen bonds

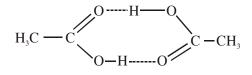
- 2. Inter molecular H-Bonding in case of para nitro phenol is strong enough to increase boiling point which is not favoured in o-Nitro phenol.
- **3.** Maleic acid anion gets stabilize due to intra molecular H-bonding which is not possible in anion of Fumaric acid. So H⁺ releasing tendency is more in case of maleic acid

4. Due to strong H-Bonding in H–F



86 JEE-Chemistry

- 5. Due to H-Bonding in NH_3 .
- 6. Density of ice is higher than that of water due to cage like structure of ice volume of ice increases and density decreases.
- 7. On heating ice in temperature range $0-4^{\circ}$ C H-bonds of ice break down, which decreases volume, hence density of H₂O increases. On heating ice after 4°C thermal vibrations of H₂O molecules increases which increases effective volume of ice, so density of ice again decreases.
- 8. H-I bond is weak as compare to H-F so it can be dissociated easily and can give H⁺ easily.
- 9. The organic matter in wood participate in H-bonding with water molecules in ice-cream.
- **10.** $K^{+}[F-H\cdots F^{-}]$ But $KHBr_{2} \& KHI_{2}$ can't form H-Bond.


H-bonding

11. In o-Nitrophenol intra molecular H-bond is present which decreases it's solubility in water.

Ortho Nitro-phenol

- **12.** In o-hydroxy benzeldehyde intramolecular H-bond is present which is less stronger than intermolecular H-bond in p-hydroxy benzeldehyde.
- 13. Extent of H-bonding in glycerol is more as compare to ethanol so it is more viscous.
- **14.** Due to H-bonding in H_2O
- 15. Due to H-bonding in acetic acid it forms dimer so overall molecular weight is just double of original

Dimer of CH₃COOH

16. Due to bigger size of 'Cl' atom it's interaction is not enough to evolve the aomount of energy which lies in the range of H-bond.

17.
$$(AcOH)_n \xrightarrow{\text{on vapour}} \frac{n}{2} (AcOH)_2$$

} Not completely converted

But in $(H_2O)_n \xrightarrow{on vapour} n(H_2O)$

Here all H₂O molecule gets vapourised. So entropy change is more

18. As extent of H-bond is more in H_2O as compare to HF, heat of vaporisation of water is higher than HF.

VANDER WAAL'S FORCES

- ⇒ These are the weakest type of inter molecular forces that exist among the chemical species which being significant change in physical properties.
- ⇒ These are non-directional, non-valence cohesive forces. These attractive forces being played between the two molecules are independent of the presence of other molecules.
- ⇒ Solid, liquid or gaseous states of many molecules are explained on the basis of inter molecular forces other than covalent, ionic or metallic bonds. Although inert gases do not form any type of bond but may exist in liquid and solid states. This shows that the atoms of inert gases are attracted by each other through some type of inter molecular forces. These intermolecular forces are called Vander Waals forces.

Types of Vander Waal's Forces

- (1) *Dipole-dipole interaction (Keesom forces) :* The force of attraction between the oppositely charged poles of two polar molecules (for example : H_2S , HCl, PH_3 etc.) is called dipole-dipole attraction.
- (2) **Dipole-induced dipole interaction (Debye forces)**: This type of cohesive forces occurs in a mixture of polar and non polar molecules. The former induce polarity in non polar molecules by disturbing their electron system. for example force of attraction between Cl_2 and H_2O .
- (3) *Instantaneous dipole-Induced dipole interaction (Dispersion forces/London forces) :* The weak intermolecular forces operating in similar non polar gaseous molecules are called London forces. These forces are very weak in nature and exists only at low temperature. For example weak intermolecular forces in F₂, Cl₂, N₂, molecules and in noble gasses.

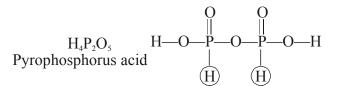
(Note :- London forces present in both polar and non polar species)

Other Weak Interactions

- (1) *Ion-dipole interaction :* Polar molecules are attracted by ions. The negative pole is attracted by cation and positive pole attracted by the anion. This type of attraction is called ion dipole attraction, ion-dipole attraction is observed generally in the process of solvation when sodium chloride (Na⁺ Cl⁻) is dissolved in water because negative poles of water aggregate around Na⁺ ions and positive poles around Cl⁻ ions.
- (2) *Ion-induced dipole interaction :* When non polar molecules come in contact with ions, its electron cloud gets polarised and the oppositely charged end of it is attracted by the ion. For example attraction between I^- and I_2 molecule.

OXY-ACIDS

7


Those compounds which contain X–O–H bond are called oxy-acids. Where X is usually a nonmetal. But sometimes X may also be a metal.

$$\begin{array}{c} H_{2}SO_{4}\\Sulfuric acid \begin{pmatrix} H - O - S - O - H \\ O \end{pmatrix} \\ H_{2}SO_{3}\\Sulphurous acid \begin{pmatrix} H - O - Cl = O \\ H - O - S - O - H \end{pmatrix} \\ \begin{array}{c} HClO_{3}\\Chloric acid \begin{pmatrix} H - O - Cl = O \\ O \end{pmatrix} \end{pmatrix} \end{array}$$

In oxy acids, all the hydrogens are attached with oxygen. Although there are a very few exceptions (as given below), in which all hydrogens are not attached with oxygen.

$$H_3PO_3$$
 H—O—P—O—H
Phosphorus acid (H)

~

In these three oxyacids circled hydrogens are not attached with oxygen. In oxyacids, those hydrogens which are attached with oxygen are acidic in nature, i.e., they ionise in solution.

No. of hydrogens attached with oxygen is known as basicity of the acid. One notable exception is H_3BO_3 in which all the three hydrogens are attached with oxygen yet, they do not ionise in soluion. In fact, H_3BO_3 when dissolved in water, it behaves as a monobasic acid.

HO—B—OH + 2H₂O
$$\rightarrow$$
 HO—B $\stackrel{\Theta}{\rightarrow}$ OH + H₃O⁺
OH OH

Oxyacids are actually aqueous solutions of acidic oxides.

$$\underset{\text{acidic oxide}}{\text{SO}_2} + H_2O \longrightarrow H_2SO_3 \begin{pmatrix} O \\ \parallel \\ H \longrightarrow O \longrightarrow S \longrightarrow O \longrightarrow H \end{pmatrix}$$

$$SO_{3} + H_{2}O \longrightarrow H_{2}SO_{4} \left(\begin{array}{c} O \\ H \longrightarrow O \\ (acid) \\ O \end{array} \right)$$

$$N_{2}O_{5} + H_{2}O \longrightarrow 2HNO_{3} \left(\begin{array}{c} H \longrightarrow O \\ (acid) \\ O \end{array} \right)$$

 Some acids have suffix-ic acid and some has-ous acid. Usually, when the central atom in oxy acid is in higher oxidation state the name of the acid ends with –ic acid and when the central atom is in lower oxidation state, it's name ends with –ous acid.

Oxyacids can be classified as

PYRO ACIDS :

When one mole of water is removed from two moles of an oxyacid, the resultant oxy acid is known as pyro acid. In general pyro acids contain X—O—X bonds.

Oxy acid (2 moles) $\xrightarrow{-H_2O}$ Oxy acid [Pyro acid]

• H_2SO_4 (2 moles) = $H_4S_2O_8 \xrightarrow{-H_2O} H_2S_2O_7$ [Pyrosulphuric acid] [Sulphuric acid]

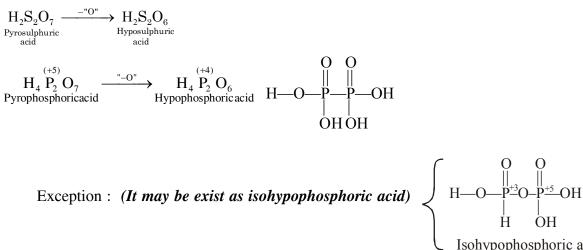
In general Pyro acids contain X–O–X bond.

$$H_2S_2O_7 \qquad HO - \underbrace{\begin{array}{c} O & O \\ \parallel & \parallel \\ S = O - S \\ \parallel & \parallel \\ O & O \end{array}}_{O = O} HO \qquad (S - O - S bond)$$

• H_3PO_4 (2 moles) = $H_6P_2O_8 \xrightarrow{-H_2O} H_4P_2O_7$ [Pyrophosphoric acid] [Orthophosphoric acid]

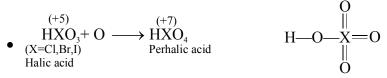
- $2H_3PO_3$ (phosphorus acid) $\xrightarrow{-H_2O}$ $H_4P_2O_5$ (pyrophosphorus acid) HO \xrightarrow{P} OH H H H
- $2H_2SO_3 \longrightarrow H_2S_2O_5$ (Pyrosulfurous acid) Exception : $H_2S_2O_5$ [Pyrosulfurous acid] does not contain S–O–S linkage.

Pyrosulfurous acid

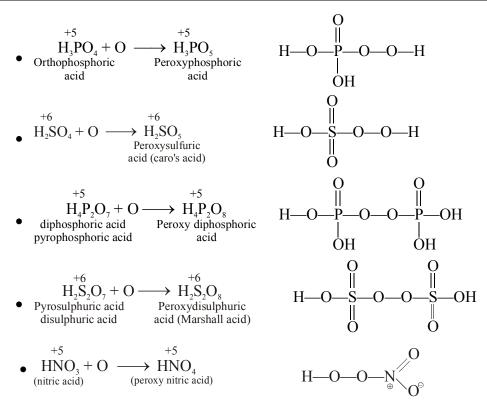

□ HYPO ACID :

Hypo prefix is added to those oxy acids which is obtained when one oxygen atom is removed from ous form of (usually) acids.

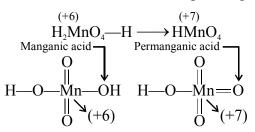
Oxy acid(-ous form) $\xrightarrow{-0}$ Oxy acid (Hypo -ous acid)


- H_3PO_3 [Phosphorous acid] O $\longrightarrow H_3PO_2$ [Hypophosphorous acid] monobasic acid
- $\frac{^{+3}}{^{HXO_2} -[O]} \longrightarrow \frac{^{+1}}{^{HOX}}$ $\frac{^{+3}}{^{Halousacid}} (x=Cl,Br,I)$ HOCl - Hypochlorous acid HOBr - Hypobromous acid HOI - Hypoiodous acid • $\frac{^{+3}}{^{HNO_2} -[O]} \longrightarrow \frac{^{+1}}{^{HNO}}$ Nitrous acid HNO exist in dimeric from i.e. as $(HNO)_2 = H_2N_2O_2$ OH (+1)N (+1)NHyponitrous acid

If one O is removed from pyro 'ic' acid it produce hypo 'ic' acid


D PER ACID AND PEROXY ACID :

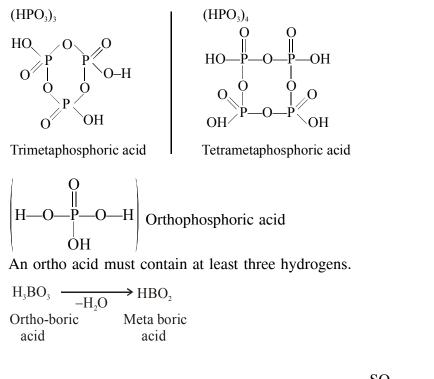
When one oxygen in added to –ic form of acid and if the oxidation number of central atom in resulting oxy acid is more than the –ic form of acid, then it is per acid.


 $HClO_4$ perchloric acid $HBrO_4$ - Perbromic acid.

Peroxy prefix is added to those oxy acids which are obtained when one oxygen is added to –ic from of acid and the oxidation number of central atom remains the same. Peroxy acids contain peroxy linkage (—O—O—).

Note : Peroxynitric acid does not contain N-O-H bond, yet it is considered to be oxy acid.

Exception : $H_2 Mn O_4$ is manganic acid when one hydrogen is removed from H_2MnO_4 , $HMnO_4$ is formed which is named as permanganic acid.

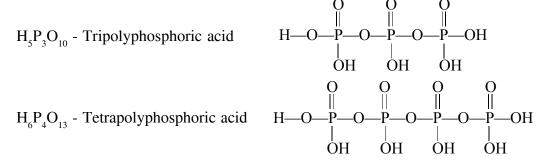

□ ORTHO ACIDS AND META ACIDS :-

When one mole of H_2O is removed from one mole of an oxy acid, the resulting compound, if an oxy acid (i.e. it contains at least one X–OH bond) then the oxy acid from which H_2O is removed is named as ortho acid and the product oxyacid is known as META ACID.

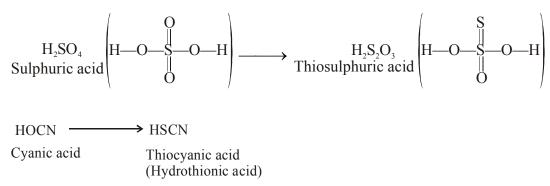
 $\begin{array}{c} Oxy acid(1 \text{ mol}) \xrightarrow{-H_2O} Oxy acid \\ \text{(ortho)} & \text{meta} \end{array}$

- $H_3PO_4 \xrightarrow{-H_2O} HPO_3$ Meta phosphoric acid (*It forms Cyclic polymetaphosphoric acids*) (ortho – phosphoric acid)
- **Cyclic polymetaphosphoric acids :** (HPO₃)₂ - Dimetaphosphorsphoric acid

$$(H_2P_2O_6) \xrightarrow{H=O} P \xrightarrow{O} P \xrightarrow{O} O P \xrightarrow{O} O-H$$
 (expected)

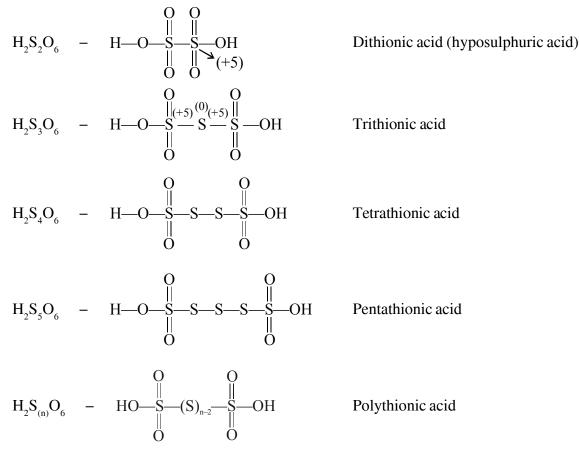

• $H_2SO_4($ sulphuric acid) $\xrightarrow{-H_2O}$ sulfur trioxide(anhydride of H_2SO_4)

As SO₃ does not contain any hydrogen (i.e., X–OH/S–OH bond), so SO₃ is not an oxy acid rather it is anhydride of sulphuric acid (H_2SO_4) so, H_2SO_4 can't be prefixed with ortho, and its name does not contain any prefix and it is named as sulphuric acid.


D POLYPHOSPHORIC ACID :

Oxy acids having general formula $H_{(n+2)} P_n O_{(3n+1)}$ are known as polyphosphoric acids. These contain (n–1) P–O–P bonds.

$\Box \quad \text{THIO ACID}:$


 1. Oxy acids in which one oxygen atom are replaced by sulphur are considered as thio acid. For example :-

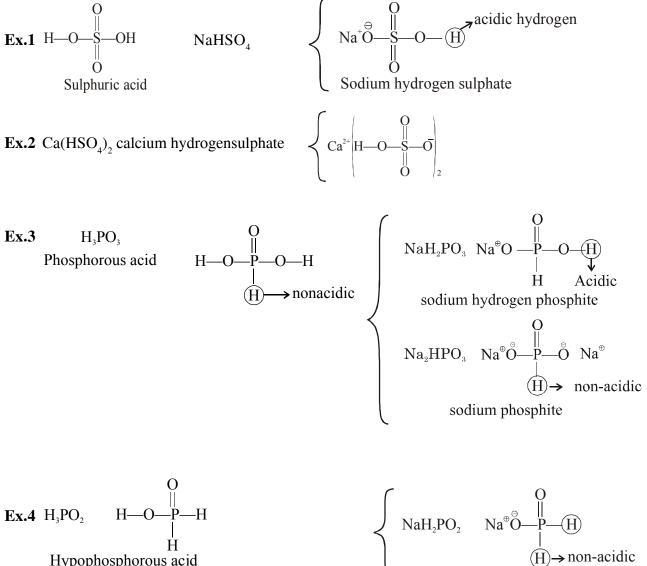
• 2. Oxy acids of sulphur containing S—S bonds are known as thio acids.

$$H_2S_2O_4$$
 $H - O - S - S - OH dithionous acid.$

Thionic acids : Oxy acids of sulphur containing S—S bond and having general formula $H_2S_{(n+2)}O_6$ are known as thionic acids

94 JEE-Chemistry

	TABLE OF	OXIDATION	STATE OF	OXY-ACIDS :
--	----------	-----------	----------	--------------------

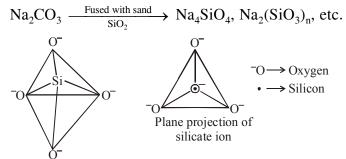

Element	–Ous acid	–ic acid
Р	$(+3, H_3PO_3, H_4P_2O_5)$	(+4) $H_4P_2O_6$ (Hypophosphoric acid)
	(+2 , H ₃ PO ₂)	+5 $H_{n+2}P_nO_{3n+1}$ - polyphosphoric acid +5 H_3PO_4 , $H_4P_2O_7$, $H_4P_2O_8$ H_3PO_5 - peroxymonophosphoric acid
S	(+4) H_2SO_3 Sulfurous acid H = O = S = S = OH (+3) $H = O = OH$ (+5) Pyrosulfurous acid	(+6) Sulphuric acid (H_2SO_4) $H_2S_2O_7$ - Pyrosulphuric acid $H_2S_{(n+2)}O_6$ - Thionic acids e.g : H-O-S-S-OH Dithionic acid
	$H_2S_2O_4$ H—O—S—S—OH (+3)(+3) dithionous acid	H-O-S-S-S-S-OH 0 (+5) (+5) 0 (+5) 0 (+5) 0 (0) (0) 0 Tetrathionic acid (+6) H_2SO_5 - Peroxymonosulfuric acid (+6) $H_2S_2O_8$ - Peroxydisulfuric acid
Х	(+1) H–O–X Hypohalous acid	(+5) Halic acid (HXO ₃)
(X=Cl,Br,I)	e.g. H–O–Cl - Hypochlorous acid	H - O - X = O $(+5)$
	H–O–I - Hypoiodous acid (+3) HXO ₂ ; H–O–X=O Halous acid H–O–I=O - Iodous acid	H-O-Cl=O [Chloric acid] (+7) Perhalic acid (HXO ₄) e.g. H-O-Br=O [Perbromic acid]
Others		(+3) H_3BO_3 Orthoboric acid (+3) HBO_2 - Metaboric acid (+4) Orthosilicic acid H_4SiO_4 H_2SiO_3 - Metasilicic acid $H_6Si_2O_7$ - Pyrosilicic acid

H ₂ SO ₄	Na_2SO_4 - Sodium sulfate
Sulphuric acid	$K_2 \dot{SO}_4^4$ - Potassium sulfate
	$BaSO_4^{4}$ - Barium sulfate
	$\operatorname{FeSO}_{4}^{4}$ - Ferrous sulfate
	$Al_2(SO_4)_3$ - Aluminium sulfate
H ₃ PO ₄	$Na_{3}PO_{4}^{2}$ - Sodium orthophosphate
Orthophosphoric acid	$K_3 PO_4$ - Potassium orthophosphate
	$\operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2}$ - Calcium Orthophosphate
	$AlPO_4$ - Aluminium orthophosphate
HPO ₃	NaPO ₃ - Sodium metaphosphate
meta phosphoric acid	KPO ₃ - Potassium metaphosphate
	$Ca(PO_3)_2$ - Calcium metaphosphate
	$Al(PO_3)_3$ - Aluminium metaphosphate
HClO ₃	KClO ₃ - Potassium chlorate
chloric acid	NaClO ₃ - Sodium chlorate
	$Ca(ClO_3)_2$ - Calcium chlorate
HClO ₄	$NaClO_4$ - Sodium perchlorate
Perchloric acid	KClO_{4}^{4} - Potassium perchorate
	NH_4ClO_4 - Ammonium perchlorate
	$Ca(ClO_4)_2$ - Calcium perchlorate
H ₃ PO ₄	KH_2PO_4 potassium dihydrogen orthophosphate
Orthophosphoric acid	$Ca(H_2PO_4)_2$ calcium dihydrogen orthophosphate
$(HPO_3)_6 = H_6P_6O_{18}$	$Na_6P_6O_{18}$
Hexametaphosphoric acid	Sodium hexametaphosphate
HBO ₂	NaBO ₂ sodium metaborate
metaboric acid	2
H ₂ SO ₅	Na ₂ SO ₅ . Sodium peroxysulfate
Peroxysulphuric acid	2 5 1 2
$H_4P_2O_7$	$Na_4P_2O_7$ - Sodium pyrophosphate
Pyrophosphoric acid	4 2 7 10 1 1
	s with ous acid then the name of the salt ends with "ite"
HClO ₂	$NaC1O_2$ sodium chlorite
chlorous acid	$KCIO_2$ potassium chlorite
	$Ca(ClO_2)_2$ calcium chlorite
H ₃ PO ₃	Na_2HPO_3 sodium phosphite
Phosphorous acid	K ₂ HPO ₃ Potassium phosphite
(dibasic acid)	CaHPO ₃ calcium phosphite
H ₂ SO ₃	Na ₂ SO ₃ sodium sulfite
sulfurous acid	$K_2 \overset{2}{SO}_3$ potassium sulfite
HNO ₂	$NaNO_{2}^{2}$ sodium nitrite
Nitrous acid	KNO_2^2 potassium nitrite
HOC1	NaOCl sodium hypochlorite

Naming of salts of oxy acids : The name of salt ends with – "ate" if the name of the oxy acid

Hypochlorous acid	KOBr potassium hypobromite
	NaOI sodium hypoiodite
H ₃ PO ₂	NaH ₂ PO ₂ sodium hypophosphite
Hypophosphorous acid	$Ba(H_{2}PO_{2})$, Barium hypophosphite
(monobasic acid)	2 2 2

If all the ionisable hydrogens are not removed from the acid to form salt, then the hydrogen word is added to the name of the salt containing acidic hydrogens (H attached with oxygen)



Hypophosphorous acid (monobasic)

sodium hypophosphite but not sodium dihydrogen phosphite as H is not acidic.

SILICATES

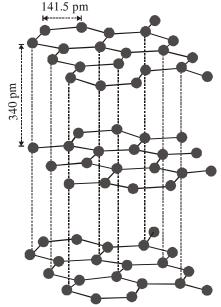
Silicates are metal derivatives of silicic acid, H_4SiO_4 or $Si(OH)_4$. Silicates are formed by heating metal oxide or metal carbonates with sand, e.g.,

Silicates have basic unit of SiO_4^{4-} , each silicon atom is bonded with four oxide ions tetrahedrally. There are following types of silicates

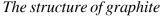
Silicates	Sharing of O-atom / Basic Tetrahedral unit	Contribution of O-atom/Basic Tetrahedral unit	General formula
Ortho	0	4	$\operatorname{SiO}_{4}^{4-}$
Pyro	1	3.5	$Si_2O_7^{-6}$
Cyclic	2	3	$(\overset{2}{\operatorname{SiO}_{3}})_{\mathfrak{p}_{n-1}}^{2n-1}$
Simple chain	2	3	$(SiO_3)_n^{2n-}$
(pyroxene) Double chain (Amphibole)	(3, 2) av = 2.5	$\frac{11}{4} = \left(\frac{5.5}{2}\right)$	$(Si_4O_{11})_n^{6n-}$
2D or (Sheet)	3	2.5	$(Si_2O_5)_n^{2n-}$
3D	4	2	$(SiO_2)_n$

ALLOTROPES OF CARBON FAMILY

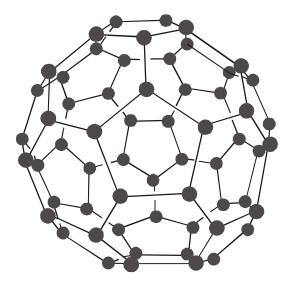

⇒ Diamond (kinetically most stable allotrope of carbon, meta stable phase of carbon)


• It has a **crystalline lattice**. A rigid three dimensional network of carbon atoms.

- Each carbon atom undergoes **sp³ hybridisation** and linked to four other carbon atoms by using hybridised orbitals in tetrahedral fashion.
- C–C bond length is 154 pm.
- It is very difficult to break **extended covalent bonding** and, therefore, diamond is a **very hard** substance.


Uses :-

- Used as an abrasive for sharpening hard tools, in making dyes and in the manufacture of tungsten filaments for electric light bulbs.
- Diamond is a precious stone and used in jewellery. It is measured in **carats** (1 carat = 200 mg).


The structure of diamond

- ⇒ Graphite (*Thermodynamically most stable allotrope of carbon*)
 - Layered structure. Layers are held by van der Waals forces and distance between two layers is 340 pm.
 - Each layer is composed of **planar hexagonal rings of** carbon atoms. C—C bond length within the **layer is 141.5 pm.**
 - Each carbon atom in hexagonal ring undergoes sp^2 hybridisation and makes three sigma bonds with three neighbouring carbon atoms. Fourth electron forms a π bond. The electrons are delocalised over the whole sheet. Thus, graphite is lusturous.
 - Electrons are mobile and, therefore, graphite conducts electricity along the sheet.
 - Graphite cleaves easily between the layers and, therefore, it is very soft and slippery.
 - Uses :- Due to slippery nature graphite is used as a dry lubricant in machines running at high temperature, where oil cannot be used as a lubricant.
 - Being good conductor, graphite is used for electrodes in batteries and industrial electrolysis.

Fullerenes

- Fullerenes are made by the heating of graphite in an electric arc in the presence of inert gases such as helium or argon.
- The sooty material formed by condensation of vapourised C_n small molecules consists of mainly C_{60} with smaller quantity of C_{70} and traces of fullerenes consisting of even number of carbon atoms up to 350 or above.
- Fullerenes are the only pure form of carbon because they have smooth structure without having 'dangling' bonds. Fullerenes are cage like molecules.
- Fullerene C₆₀ :- molecule has a shape like soccer ball and called Buckminsterfullerene. It contains 20, six- membered rings and 12, five membered rings.
- This ball shaped molecule has **60 vertices** and each one is occupied by one carbon atom and it also **contains both single and double bonds** with C–C distances of 143.5 pm and 138.3 pm respectively. **Spherical fullerenes are also called** *bucky balls* **in short.**
- A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings.
- All the carbon atoms are equal and they undergo sp^2 hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms.
- The remaining electron at each carbon is delocalised in molecular orbitals, which in turn give aromatic character to molecule. However, because of non-planar nature of fullerenes, their aromatic character gets diminished and reactivity increases.

[The structure of C_{60} , Buckminsterfullerene : Note that molecule has the shape of a soccer ball (football)]

IMPORTANT POINTS FOR CARBON

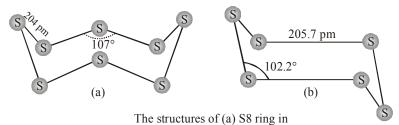
- **Thermodynamic stability order :** Graphite > Diamond > Fullerene C_{60}
- It is very important to know that graphite is thermodynamically most stable allotrope of carbon and, therefore, ΔH_f of graphite is taken as zero. ΔH_f values of diamond and fullerene, C_{60} are 1.90 and 38.1 kJ mol⁻¹, respectively.
- Other forms of elemental carbon like carbon black, coke, and charcoal are all impure forms of graphite or fullerenes.
 - \Rightarrow *Carbon black* is obtained by burning hydrocarbons in a limited supply of air.
 - ⇒ Charcoal and coke are obtained by heating wood or coal respectively at high temperatures in the absence of air.

Uses of Carbon

- **Graphite fibres** embedded in plastic material form high strength, lightweight composites. The composites are used in products such as tennis rackets, fishing rods, aircrafts and canoes.
- **Crucibles** made from graphite are inert to dilute acids and alkalies.
- Being **highly porous, activated charcoal** is used in adsorbing poisonous gases; also used in water filters to remove organic contaminators and in airconditioning system to control odour.
- **Carbon black** is used as black pigment in black ink and as filler in automobile tyres.
- **Coke** is used as a fuel and largely as a reducing agent in metallurgy.

ALLOTROPES OF OXYGEN FAMILY

• Oxygen


Two non-metallic forms, dioxygen O_2 and ozone O_3 . Dioxygen O_2 is stable as a diatomic molecule. O_3 molecule is diamagnetic while O_2 is paramagnetic.

- Six allotropes of **selenium** are known.
- *Tellurium* has only one crystalline form, which is silvery white and semimetallic.
- This is similar to grey Se, but has stronger metallic interaction.

Sulphur Allotropic forms :

- Sulphur forms numerous allotropes of which the yellow rhombic (α-sulphur) and monoclinic (β-sulphur) forms are the most important.
- The **stable form** at room temperature is **rhombic sulphur**, which transforms to monoclinic sulphur when heated above 369 K.

- \Rightarrow **Rhombic sulphur** (α -sulphur) (*Most stable sulphur allotrope at room temperature*)
- This allotrope is **yellow in colour, m.p. 385.8 K and specific gravity 2.06**. Rhombic sulphur crystals are formed on evaporating the solution of roll sulphur in CS₂.
- It is **insoluble in water** but dissolves to some extent in benzene, alcohol and ether. It is **readily soluble** in CS₂.
- \Rightarrow Monoclinic sulphur (β -sulphur)
- Its m.p. is 393 K and specific gravity 1.98. It is soluble in CS_2 while water insoluble.
- This form of sulphur is prepared by melting rhombic sulphur in a dish and cooling, till crust is formed. Two holes are made in the crust and the remaining liquid poured out. On removing the crust, colourless needle shaped crystals of β-sulphur are formed.
- It is stable above 369 K and transforms into α-sulphur below it. Conversely, α-sulphur is stable below 369 K and transforms into β-sulphur above this. At 369 K, both the forms are stable. This temperature is called transition temperature.
- Both rhombic and monoclinic sulphur have S₈ molecules. These S₈ molecules are packed to give different crystal structures. The S₈ ring in both the forms is puckered and has a crown shape. The molecular dimensions are given in the figure.

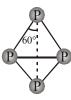
EXTRA POINTS

• Several other modifications of sulphur containing 6-20 sulphur atoms per ring have been synthesised in the last two decades.

rhombic sulphur and (b) S_6 form

- In cyclo- S_6 , the ring adopts the chair form and the molecular dimensions are as shown in figure. At elevated temperatures (~1000 K), S_2 is the dominant species and is paramagnetic just like O_2 .
 - **Engel's sulphur** (ε -sulphur) is unstable and contains S₆ rings arranged in the chair conformation. It is made by pouring Na₂S₂O₃ solution into concentrated HCl and extracting the S with toluene.
 - Plastic sulphur- (χ) is obtained by pouring liquid sulphur into water.

Allotropes of Nitrogen Family :

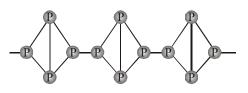

Solid As, Sb and Bi each exist in several allotropic forms. Arsenic vapour contains tetrahedral As_4 molecules. A reactive yellow form of the solid resembles white phosphorus and is thought to contain tetrahedral As_4 units. Sb also has a yellow form. All three elements have much less reactive metallic or α -forms.

PHOSPHORUS ALLOTROPIC FORMS

Phosphorus is found in many allotropic forms, the important ones being white, red and black.

- \Rightarrow White phosphorus
- Translucent, white, waxy solid.
- It is poisonous, **insoluble in water** but **soluble in carbon disulphide** and glows in dark (chemiluminescence).
- It dissolves in boiling NaOH solution in an inert atmosphere giving PH₃.

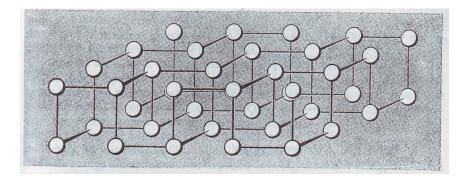
 $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ (Sodium hypophosphite)


Discrete tetrahedral P₄ unit of White Phosphorus

• White phosphorus is **less stable** and therefore, **more reactive** than the other solid phases under normal conditions **because of angular strain** in the P_4 molecule where the angles are only 60°. It readily catches fire in air to give dense white fumes of P_4O_{10} .

 $P_4 + 5O_2 \rightarrow P_4O_{10}$

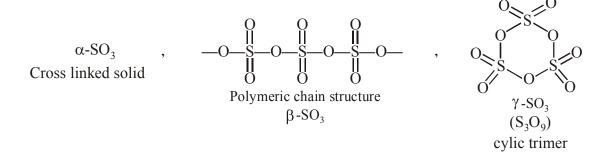
- \Rightarrow Red phosphorus
- Obtained by heating white phosphorus at 573K in an inert atmosphere for several days.
- When red phosphorus is heated under high pressure, a series of phases of black phosphorus is formed.
- Red phosphorus possesses iron grey lustre. It is odourless, nonpoisonous and insoluble in water as well as in carbon disulphide.
- Chemically, red phosphorus is **much less reactive than white phosphorus. It does not glow in the dark.**


It is polymeric, consisting of chains of P_4 tetrahedra linked together in the manner as shown in Fig.

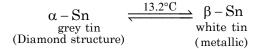
Red Phosphorus

\Rightarrow Black phosphorus

- Two forms α -black phosphorus and β -black phosphorus.
- α -Black phosphorus is formed when red phosphorus is heated in a sealed tube at 803K. It can be sublimed in air and has opaque monoclinic or rhombohedral crystals. It does not oxidise in air.
- β-Black phosphorus is prepared by heating white phosphorus at 473 K under high pressure. It does not burn in air upto 673 K.



Thermodynamic stability order : Black phosphorus > Red phosphorus > White phosphorus


Reactivity order : Black phosphorus < Red phosphorus < White phosphorus

ALLOTROPIC FORM OF SO₃

 SO_3 have three allotropic forms α -SO₃, β -SO₃ and γ -SO₃

NOTE:- Si, Ge and Sn have a diamond type of structure, though Sn exists as a metallic form. Pb exists only in the metallic form. Ge is unusual because the liquid expands when it forms the solid. This property is unique to Ga, Ge and Bi.

		EXERCI	ISE # 0-1					
		IONI	C BOND					
(On	ly one option is corr	ect)						
1.	The compound wh	ich contains ionic as wel	l as covalent bonds is	5				
	(A) $C_2H_4Cl_2$	(B) CH ₃ I	(C) KCN	(D) H ₂ O ₂				
					CBO000			
2.	A bond formed bet	A bond formed between two like atoms cannot be						
	(A) ionic	(B) covalent	(C) coordinate	(D) metallic				
					CBO0002			
3.	An ionic bond $A^+ B$	B^- is most likely to be for	rmed when :					
		(A) the ionization energy of A is high and the electron gain enthalpy of B is low						
		energy of A is low and th	-					
		energy of A and the elect	-					
		energy of A and the elect		-				
			8		CBO0003			
	COVALEN	T BOND , CO-ORDIN	ATE BOND & LEV	VIS STRUCTURE	E			
4.		wing species are hyperval						
	(1) PCl_5 ,	(2) BF_3 ,	(3) XeF_2 ,	(4) CO_3^{2-}				
	(A) 1, 2, 3	(B) 1, 3	(C) 3, 4	(D) 1, 2	CBO000 4			
5.	The types of bond	present in N ₂ O _{5(g)} are			CDC000-			
	(A) only covalent	(B) only ionic	(C) ionic and cov	alent (D) covalent	& coordinate			
_					CBO0005			
6.	Which of the follow	s?						
	(A) CH ₃ –NC	(B) CO	(C) O ₃	(D) CO_3^{2-}				
					CBO0006			
7.	Which of the follow	wing Lewis dot diagrams	is(are) incorrect ?					
		**	Гн	+	11			
	$(A) N_{T} O C I^{\bullet}$							
	(A) $Na - O - Cl$.	(B) $;; l = -c - ; l = $	(C) 2 H - N - H	$[S \cdot]$ (D) $H - N - $	- <i>N</i> - <i>H</i>			
		• ÇĮ•						
					CBO0007			
•		V.B.T., HYBRIDISAT						
8.								
	geometry)? (A) BF_4^-	(B) SO_4^{2-}	(C) XeF ₄	(D) PH_4^+				
	(<i>i</i>) D ₄	(b) 50 ₄	(c) m_4	(\mathbf{D}) \mathbf{H}_4	CBO0008			
9.	Maximum bond en	ergy is in :						
	(A) F ₂	(B) N ₂	(C) O ₂	(D) equal				
					CBO000 9			

				0
10.	10. The hybridisation and shape of BrF_3 molecule are :			
	(A) sp ³ d and bent T	Ũ	(B) sp^2d^2 and tetrage	onal
	(C) $sp^{3}d$ and bent		(D) none of these	
				CBO0010
11.	The shape of methyl	cation (CH_3^+) is likely t	o be:	
	(A) linear	(B) pyramidal	(C) planar	(D) spherical
				CBO0011
12.		F_2 involves hybridization		
	(A) sp^3	(B) sp^2	(C) sp^3d	(D) sp^3d^2
10				CBO0012
13.		•	(C) $sp^2 < sp^3 < sp$	ight of the hybrid orbitals ? (D) $sn^2 < sn < sn^3$
	$(A) sp < sp^2 < sp^2$	$(\mathbf{P}) \operatorname{sh}_{\mathbf{r}} < \operatorname{sh}_{\mathbf{r}} < \operatorname{sh}_{\mathbf{r}}$	$(C) sp^2 < sp^2 < sp$	(D) $sp^2 < sp < sp^2$ CBO0013
14.	In the context of carb	on which of the followi	ng is arranged in the corr	rect order of electronegativity :
110			(C) $sp^2 > sp > sp^3$	
	() -r -r -r	······································		CBO0014
15.	When 2s–2s, 2p–2p	and 2p-2s orbitals over	lap, the bond strength d	ecreases in the order :
	(A) $p - p > s - s > p$	p - s	(B) $p - p > p - s > s$	s - s
	(C) $s - s > p - p > p$	D-S	(D) $s - s > p - s > p$	р — р
				CBO0015
16.	Carbon atoms in C_2	$(CN)_4$ are :		
	(A) sp-hybridized		(B) <i>sp</i> ² -hybridized	
	(C) sp - and sp^2 hybrid	idized	(D) sp , sp^2 and sp^3 -	hybridized
				CBO0016
17.	The structure of XeF	0		
	(A) pentagonal bipyr		(B) trigonal bipyram	
	(C) capped octahedro	on	(D) square bipyramic	CBO0017
		RENT'S RULE A	ND DRAGO'S RULE	
18.	C–H bond distance i			
-	(A) C_2H_2	(B) C_2H_4	(C) $C_2 H_6$	(D) $C_2H_2Br_2$
	22	2 4	2 0	CBO0018
19.	The bond angle and	hybridization in ether (CH_3OCH_3) is :	
	(A) 106°51', sp ³	(B) 104°31', sp ³	(C) 110° , sp ³	(D) $109^{\circ}28'$, sp ³
				CBO0019
20.		•	n order of decreasing bo	-
	(A) P-O > Cl-O > S		(B) $P-O > S-O > C$	
	(C) $S-O > Cl-O > I$	2-0	(D) $Cl-O > S-O > I$	
				CBO0020

21.	Select the CORREC				•
	(I) The bond angle de	a hybrid orbital decrease	(II) The bond strength	increases	
	· · · •	increases	· · · –		
		(B) (II), (III) and (IV)		(D) All are CORREC	
22.	Among the following	, the CORRECT statem	nent is :		
		PH_3 , NH_3 is a better elec l and is less directional	tron donor because the le	one pair of electrons occu	upies
	sp ³ orbital and is n				
	sp ³ orbital and is 1				
	5	PH_3 , PH_3 is a better electron l and is less directional	tron donor because the lo	one pair of electrons occu	upies
				CBO	0022
23.		ving molecule C—C bor			
	(A) $CF_3 - CF_3$	(B) $F_2CH - CHF_2$	(C) $FCH_2 - CH_2F$		0032
24.	In BCIBr I molecule t	he maximum % s-chara	cter provided from the	CBO central atom is in bond	
47.	(A) $B - I$	(B) B – Cl			
		(-)	(-)	СВО	0024
25.	Which of the followin	g order is CORRECT f	or increasing p-characte	er in orbital used for bon	ding
	by central atom		_		
	(A) $\operatorname{SiH}_4 > \operatorname{CH}_4$	(B) $H_2S > H_2O$	(C) $PH_4^+ > PH_3$	(D) $NH_3 > PH_3$ CBO	0025
		MOLECULE DO	DES NOT EXIST		0020
26.	PCl ₅ exists but NCl ₅	does not because :			
	(A) Nitrogen has no v	acant 2 <i>d</i> -orbitals	(B) NCl_5 is unstable		
	(C) Nitrogen atom is a	much smaller than P	(D) Nitrogen is highly	inert	
				CBO	0026
27.		g molecules do not exis		(\mathbf{D}) \mathbf{V} \mathbf{D}^{-}	
	(A) BF_6^{3-}	(B) NCl ₃	(C) NOF ₃	(D) XeF_5^- CBO	0027
28.	Select non existing sp	ecies		CDU	0027
20.	(A) PH ₃	(B) PH_4^+	$(C) [PF_6]$	(D) None of these	
		 	(-) [6]	СВО	0028
29.	Among the fluorides l	below, the one which do	bes not exist is -		
	(A) XeF ₄	(B) BeF ₄	(C) SF ₄	(D) CF ₄	
20	Which of the falls	~ ~ ~ ~ ~		CBO	0029
30.	Which of the followin (A) XeH ₂	(B) ClF_7	(C) PH ₅	(D) ICl ₃	
	(A) A (A)	$(\mathbf{D}) \subset \mathbf{I}_7$	(C) 1115	CBO	0030

•				0
•		DIPOLE MOMENT &	HYDROGEN BOND	DING
31.	Which of the following has been arranged in order of decreasing dipole moment ?			
	(A) $CH_3Cl > CH_3F$	$F > CH_3Br > CH_3I$	(B) $CH_3F > CH_3Cl$	$> CH_3Br > CH_3I$
	(C) $CH_3Cl > CH_3B$	$r > CH_3I > CH_3F$	(D) $CH_3F > CH_3CI$	$I > CH_3I > CH_3Br$
				CBO0031
32.		alue of the dipole momentage of ionic character		The length of the <i>H</i> – <i>Cl</i> bond is
	(A) 43	(B) 21	(C) 17	(D) 7
				CBO0032
33.	Ethanol has a higher This is due to :	boiling point than dimet	hyl ether though they h	ave the same molecular weight.
	(A) resonance		(B) coordinate bond	ling
	(C) hydrogen bondi	ng	(D) ionic bonding	
				CBO0033
34.	Which of the follow	ving compounds would h	ave significant intermo	olecular hydrogen bonding?
	HF, CH ₃ OH, N ₂ O ₄	, CH ₄		
	(A) HF, N_2O_4	(B) HF, CH_4 , CH_3C	OH (C) HF, CH ₃ OH	(D) CH ₃ OH, CH ₄
				CBO0034
35.	For H_2O_2 , H_2S , H_2C_2	O and HF, the correct or	der of decreasing stren	gth of hydrogen bonding is :
	(A) $H_2O > HF > H$	$I_2O_2 > H_2S$	(B) $HF > H_2O_2 >$	$H_2O > H_2S$
	(C) $HF > H_2O > H$	$I_2O_2 > H_2S$	(D) $H_2O_2 > H_2O >$	$HF > H_2S$
				CBO0035
36.	Which one of the fo	ollowing does not have in	termolecular H-bondin	ng?
	(A) H ₂ O	(B) <i>o</i> -nitro phenol	(C) HF	(D) CH ₃ COOH
				CBO0036
37.	-	th of hydrogen bonds is:		
	(A) NHN > OH		(B) NHN < OH	
	(C) NHN > OH	.O < FHF	(D) NHN < OH	
				CBO0037
38.	The <i>H</i> bond in solid	1 <i>HF</i> can be best represe	nted as:	
	(A) H – FH – F	H – F	(B) H_{F}	
	(C) H	H H	(D) F F	FFF
			Н	CBO0038

VANDERWAAL FORCES

39. Statement-1: The melting point of noble gases increases as its atomic mass increases.Statement-2: Instantaneous dipole induced dipole attraction increases with increase in atomic mass of noble gases.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CBO0039

40. The critical temperature of water is higher than that of O_2 because the H_2O molecule has :

(A) fewer electrons than O_2	(B) two ionic bonds
(C) V-shape	(D) dipole moment

CBO0040

41. Which of the following boiling point order is correct -(A) He > $T_2 > D_2$ (B) He < $T_2 < D_2$ (C) $T_2 > He > D_2$ (D) He < $D_2 < T_2$ CBO0041

42. Which is the incorrect match for the energy distance function for following interaction -(A) Debye force : r^{-6} (B) Ion-induced dipole interaction : r^{-2} (C) London force : r^{-6} (D) Keesom force : r^{-3}

43. Identify the incorrect order of boilng point in the following pair. (A) $B(OH)_3 < B(OCH_3)_3$ (B) $NF_3 < N(CH_3)_3$

(C) $BF_3 < B(CH_3)_3$ (D) $C_2H_6 < C_2F_6$

CBO0043

CBO0042

SILICATE

44.	The number of corner	s or O-atoms shared per	tetrahedron for pyroxe	ne chain silicate is -
	(A) 3	(B) 2	(C) 2.5	(D) 1

CBO0044

45. The mineral $Na_2Fe_3^{II}Fe_2^{II}[Si_8O_{22}](OH)_2$ (chrocidolite) is a :

(A) Pyroxene chain silicate	(B) Sheet silicate
(C) Amphiboles chain silicate	(D) 3D-silicate

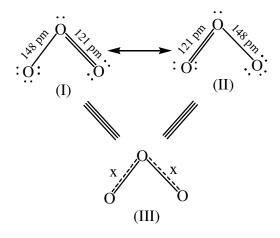
CBO0045

- 46. The silicate anion in the mineral kinoite is a chain of three SiO_4 tetrahedra that share corners with adjacent tetrahedra. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules in a 1:1:1 ratio mineral is represented as :
 - (A) $CaCuSi_3O_{10}H_2O$ (B) $CaCuSi_3O_{10}2H_2O$ (C) $Ca_2Cu_2Si_3O_{10}2H_2O$ (D) none of these

47.	Silicate thortveitite $(Sc_2Si_2O_7)$ is an example of -			
	(A) Ortho silicate	(B) Pyro silicate		(D) Chain silicate
				CBO0047
48.	Name of the structure	e of silicates in which	three oxygen atoms of Sa	iO_4^{4-} are shared is -
	(A) Pyro silicate		(B) Sheet silicate	-
	(C) Linear chain silica	ate	(D) Three dimension	al silicate
				CBO0048
		MISCEL	LEANEOUS	
49.	The formal charges o	n the three O-atoms in	O_3 molecule are	
	(A) 0, 0, 0	(B) 0, 0, −1	(C) 0, 0, +1	(D) 0, +1, -1
				CBO0049
50.		resent in $CuSO_4 \cdot 5H_2O_4$) are	
	(A) electrovalent and			
	(B) electrovalent, coordinate covalent & H-bond			
	(C) covalent, coordinate covalent & H-bonds			
	(D) electrovalent, covalent, coordinate covalent & H-bond			
				CBO0050
51.	•	lies in X-Y plane then	nodal planes of the π -bo	ond will lie in
	(A) XZ plane		(B) YZ plane	
	(C) In a plane that bis	sects C–C axis	(D) XY plane	
				CBO0051
52.	-		ind unite to form one cub	be. Which force is responsible
	for holding them toge			
	(A) van der Waal's fo		(B) Covalent attraction	
	(C) Hydrogen bond fo	ormation	(D) Dipole-dipole att	

EXERCISE # 0-2

IONIC BOND, COVALENT BOND & COORDINATE BOND


- Which of the following compounds contain ionic, covalent and co-ordinate bonds?
 (A) NH₄Cl
 (B) KCN
 (C) NaBF₄
 (D) NaOH
- 2. Which of the following statements is/are true?
 - (A) Covalent bonds are directional
 - (B) Ionic bonds are nondirectional
 - (C) A polar bond is formed between two atoms which have the same electronegativity value.
 - (D) The presence of polar bonds in a polyatomic molecule suggests that it has zero dipole moment
- **3.** To which of the following species octet rule is not applicable :
 - (A) BrF_5 (B) SF_6 (C) IF_7 (D) CO

CBO0055

CBO0054

LEWIS STRUCTURE & BOND LENGTH

4. $O_2(\text{ozone})$ molecule can be equally represented by the structures I and II shown below

which of the following values of x are not correct(A) 148 pm(B) 121 pm(C) less than 121 pm(D) more than 148 pmCBO0056

- 5. Select the correct statement -
 - (A) C–O bond length of CO molecule is higher than the C–O bond length of CO₂
 - (B) C–O bond length of CO molecule is lower than the C–O bond length of CO,
 - (C) N–O bond length of NO_3^- ion is higher than the N–O bond length of NO_2^-
 - (D) N–O bond length of NO_3^- ion is lower than the N–O bond length of NO_2^-

CBO0057

VBT, HYBRIDISATION & VSEPR THEORY

- 6. Which of the following statement(s) is / are not correct?
 - (A) Hybridization is the mixing of atomic orbitals of large energy difference.
 - (B) sp²-hybrid orbitals are formed from two p atomic orbitals and one s- atomic orbital
 - (C) sp^3d^2 -hybrid orbitals are all at 90° to one another
 - (D) sp³-hybrid orbitals are directed towards the corners of a regular tetrahedron
- 7. Which of the following species are linear ?

(A) $\underline{NH}_2 + BF_2 \rightarrow H_2N.BF_2$

(A) ICl_2^- (B) I_3^- (C) N_3^- (D) ClO_2^+

8. Which of the following molecules have bent shape. Where A is central atom, B is surrounding atom and E is lone pair -(A) AB_2E_2 (B) AB_2E (C) AB_3E (D) AB_2 **CBO0060**

(B) SiF₄ + 2F^{Θ} \rightarrow [SiF₄]²⁻

9. In which of the following process(s) hybridisation of underlined atom does not change –

(C)
$$BH_3 + \bigcup_{\underline{O}} \rightarrow H_3B \longleftarrow O$$
 (D) $H_3\underline{B}O_3 \longrightarrow [B(OH)_4]^-$

CBO0061

CBO0058

CBO0059

- Which of the following 'd' orbital(s) participate in the hybridistaion for Xe in the cationic part of XeF₆(s) :-
 - (A) d_{xy} (B) $d_{x^2-y^2}$ (C) d_{z^2} (D) d_{y^2}

CBO0062

11. Select the CORRECT statement if internuclear axis is y-axis :
(A) d_{xy} and d_{xy} orbital of two atoms form π-bond
(B) p_z and p_z orbital of two atoms form σ-bond
(C) d_{x²-y²} and d_{x²-y²} orbital of two atoms form π-bond
(D) p_y and d_{zx} orbital of two atoms form π-bond

12. What is the hybridisation state of Cl in cationic part of solid Cl_2O_6 ?(A) sp^3 (B) sp(C) sp^2 (D) sp^3d

CBO0064

13.	INCORRECT order	of bond angle is:-			•
	(A) $OCl_2 > SF_2$	(B) $H_2O > OF_2$	(C) $SO_4^{2-} > CF_4$	(D) $NF_3 > NH$	[₃
					CBO0065
14.	Select the CORREC	T statement(s) ?			
	(A) Bond angle order	$: CH_4 > CF_4$	(B) Bond length order	$: d_{N-O}(NO_2^{-}) < d_N^{-}$	(NO_3^{-})
	(C) Bond order of S-	$-O: SO_4^{2-} > SO_3^{2-}$	(D) Bond angle order	$: : \mathrm{NH}_3 < \mathrm{PH}_3$	
					CBO0066
	TT 71 ' 1 C .1 C 11 '		OES NOT EXIST		
15.		ng molecules do not exi			
	(A) Br_2O	(B) SF_6	(C) NCl ₅	(D) OF_4	
16	X 71 · 1 · C · 1 · C · 11 ·	1 4 4 9			CBO0067
16.	Which of the following	-	2		
	(A) SH ₆	(B) HFO ₄	(C) $\operatorname{SiCl}_6^{-2}$	(D) HClO ₃	
					CBO0068
17.	Which of the following	ng molecule exist-			
	(A) SF ₆	(B) IH ₃	(C) SH ₂	(D) PCl ₅	
10	Which of the fellow	na malaaylaa daaa mata	wist and non-avistance -		CBO0069
18.	(A) OF_4	(B) SH_4	exist and non-existence r (C) PBr_6^-	(D) XeH_4	ulat of SH ₆
	$(\mathbf{A}) \mathbf{Or}_4$	(b) SH_4	$(C) \operatorname{IDI}_6$	$(D) \operatorname{Actr}_4$	CBO0070
		DIPOLE MOMENT	& HYDROGEN BONI)	
19.	Which of the following	ng compounds possesse	s zero dipole moment?		
	(A) Water		(B) Benzene		
	(C) Carbon tetrachlor	ide	(D) Boron trifluoride		
					CBO0071
20.	Which of the following	ng statements are correc	t?		
	(A) The crystal lattice	of ice is formed by cova	lent as well as hydrogen	bonds	
	(B) The density of wa	ter increases when heate	ed from $\theta^{o}C$ to $4^{o}C$		
	(C) Above $4^{\circ} C$ the the	ermal agitation of water r	nolecules increases. Ther	efore, intermolecu	ılar
	distance increases and	water starts expanding			
	(D) The density of wat	ter decreases from 0° C t	o a maximum at 4° C		
					CBO0072
21.		•	ydrogen bonding takes	-	
	(A) $Na_{2}HPO_{3}(s)$	(B) $K_2 HPO_4(s)$	(C) $\text{KHCO}_3(s)$	(D) NaHCO ₃ (s	CBO0073
					CD000/3

22.	If IF_x^n , types species are planar and non-polar, then which of the following match is correct- (where X is number of F atoms and n is charge an species)				
	· · ·	1			
	(A) $x = 2$ and $n = +1$ (B) $x = 3$ and $n = 0$	(C) $x = 2$ and $n = -1$			
			CBO00	74	
23.	The correct order/s of boiling point is/are -				
	(A) $H_2O > CH_3OH$ (B) $H_3PO_4 > Me_3PO_4$	$_{4}$ (C) NH ₃ < H ₂ O	(D) $H_2O > HF$		
			CBO002	75	
	VANDERWA	AAL FORCES			
24.	Which of the following factors are responsib	ble for origination of van	der Waals forces ?		
	(A) Instantaneous dipole-induced dipole inter	-			
	(B) Dipole-induced dipole interaction				
	(C) Dipole-dipole interaction				
	(D) Size of molecule			-	
			CBO00	/6	
25.	Which of the following are true ?				
	(A) Vander Waals forces are responsible for t	he formation of molecul	ar crystals		
	(B) Branching lowers the boiling points of isomeric organic compounds due to decrease in Vander			er	
	Waals forces of attraction				
	(C) In graphite, vander Waals forces act between the carbon layers				
	(D) In diamond, vander Waals forces act between the carbon layers				
			CBO00	77	
26.	Iodine molecules are held in solid lattice by _				
	(A) London forces	(B) Dipole-dipole attra	action		
	(C) Covalent bonds	(D) Coulombic force			
			CBO00	78	
27.	Which of the following inert gas liquefies ea	sily as compare to others	5 -		
	(A) Kr (B) He	(C) Ne	(D) Ar		
			CBO00	79	
	SILI	CATE			
28.	In which of the following cases the number of	of corner shared per tetra	hedron is '2' -		
	(A) Pyroxene chain silicate	(B) Amphibole chains			
	(C) 5-membered cyclic silicate	(D) None of these			
		()	CBO008	80	
29.	Which of the following minerals contain three of	oxygen corners shared per	silicate unit ?		
	(A) $CaMg[(SiO_3)_2]$	(B) BaTi[Si ₃ O ₉]			
	5 2	(D) $Al_2(OH)_4[Si_2O_5]$			
	(C) $Ca_2Mg_5[(Si_4O_{11})_2](OH)_2$	$(D) \operatorname{Al}_{2}(OII)_{4}[Sl_{2}O_{5}]$	CBO008	21	
30.	In Silica (SiO_2) , each silicon atom is bonded	to -) 1	
50.	(A) Two oxygen atoms	(B) Four oxygen atom	1S		
	(C) One silicon and two oxyen atoms	(D) One silicon and fo			
	(c) one smeon and two oxyen atoms				

31.	The ratio of 'Si' atom to monovalent 'O' atom in amphibole silicate is -				
	(A) 2 : 3	(B) 4 : 5	(C) 4 : 11	(D) 1 : 3	
					CBO0083
32.	In which of the follow	ving silicate/s, 'Si' atom	s are sp ³ hybrid -		
	(A) Pyro silicate	(B) Sheet silicate	(C) Pyroxene	(D) Amphibole	S
					CBO0084
		MISCELLEANEO	US & STRUCTURE		
33.	Which of the following	ng oxyacids of sulphur of	contain $S-S$ bonds?		
	(A) $H_2S_2O_8$	(B) $H_2S_2O_6$	(C) $H_2S_2O_4$	(D) $H_2S_2O_5$	
					CBO0085
34.	Molecule(s) having both polar and non polar bonds is / are				
	(A) O_2F_2	(B) S_2Cl_2	(C) N_2H_4	(D) S_2F_{10}	
					CBO0086
35.	Which of the following	ng molecule is/are plana	r -		
	(A) CH ₂ Cl ₂	(B) XeF_4	(C) SO ₃	(D) NF ₃	
	2 2	+	5	5	CBO0087

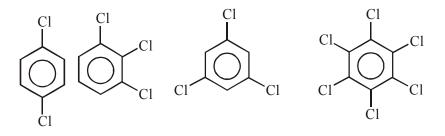
EXERCISE # S-1

Integer Type Answer :

- 1. In solid Na^+Cl^- one Na⁺ is surrounded by six Cl⁻ ions find out total number of directional bonds formed by each Na⁺ with Cl⁻ ions.
- 2. Find out total number of $p\pi$ -d π bonds present in SO₂ molecule
- 3. Find out total number of $p\pi p\pi$ bonds present in SO₄²⁻
- 4. How many number of atomic orbitals are required, so that their mixing produces hybrid orbitals each having % of s-character nearly equal to 17%.
- 5. Calculate the maximum number of atoms lying in one plane of PCl_3F_2 .
- 6. Find the total number of following molecule(s) which have all bond lengths are same. XeF₄, SF₄, SH₂, NO₃⁻, SiF₄, ClF₃, PF₂Cl₃, XeO₃F₂
- A diatomic molecule has a dipole moment of 1.2 D. If bond length is 1.0 Å, what percentage of an electronic charge exists on each atom.
 [Add the digits untill you are getting single digit. e.g. If the answer is 537, then 5 + 3 + 7 = 15] again 1 + 5 = 6 and 6 is to be written as answer.
- 8. Total number of sp³ hybridised atom(s) in given hydrocarbon. $CH_3-CH=CH-CH -C=CH$ CH_3

CBO0095

CBO0096


CBO0097

9. Find the number of lone pair on central atom of ICl_{4}

- **10.** Find the number of acid(s) which are having hypo prefix in it's name from the following. H₃PO₄, H₃BO₃, H₃PO₃, H₃PO₂, HClO₃, HClO, (HNO)₂, H₄P₂O₆
- **11.** Find the number of planar molecules/ions which are cyclic $B_3N_3H_6$, $C_3N_3Cl_3$, $(BO_2)_3$, $S_2O_8^{2-}$

CBO0098

12. Find the number of molecule having dipole moment less than the dipole moment of

CBO0099

CBO0090

CBO0091

CBO0092

CBO0093

CBO0094

CBO0088

13. Find the number of molecules having intramolecular hydrogen bonding in the following : ice, o-boric acid, o-nitrophenol, o-chlorophenol, chloral hydrate, o-salicyaldehyde

CBO0100

CBO0101

14. Calculate the value of "n" in $Zn_nCa_2(Si_3O_{10}).2H_2O$

15. In which of the following silicates structure, the number of corner/oxygen atoms shared per tetrahedron is '2'.Pyrosilicate , pyroxene chain silicate ,

2D-silicate, 3D-silicate, 4-membered cyclic silicate

EXERCISE # S-2

(Comprehension) (Q.1 to Q.2)

2.

4.

7.

Bond angle and bond polarity are important parameters associated for bonding in molecule.

- 1. Which of the following bond angle order is incorrect.
- (A) $NH_3 > PH_3$ (B) $BF_3 < BH_3$ (D) $CO_3^{2-} < CO_2$ (C) $O(CH_2)_2 < O(C_2H_2)_2$ **CBO0103** Which of the following molecule is polar and non-planar (C) SO₂ (A) CH₂Cl₂ (B) PCl_{5} (D) XeF_4 **CBO0103** (Comprehension) (Q.3 to Q.4)

During the formation of a covalent bond each participating atom usually acquires electronic configuration to that of nearest noble gas, and the shared electron pair remains localized between the bonded nuclei. Besides these shared electrons there are certain electron pairs which remains localized on C.A. or on substituent or both and are called non bonding or lone pair electrons.

3. Which of the following species does / do not follow octet rule:

(A) Hypovalent	(B) Hypervalent
(C) Odd electron molecules	(D) All

In SO_3^{2-} the total number of lone pairs and bond pairs are respectively

(A) 18 and 4 (C) 9 and 4 (B) 9 and 8 (D) 7 and 4 **CBO0104**

(Comprehension) (Q.5 to Q.7)

Hybridisation is a theoretical concept, as state of hybridisation cannot be detected even by spectroscopically; unlike intermediates or transition state in various reactions. but it corrects the predictions which are based simple on overlapping of pure atomic orbitals. VSEPR theory predicts precisely shape and bond angle in a given molecule.

5. In which pair of molecules bond angles are not same:

(A) $CCl_4 \& SiCl_4$ (B) $NH_4^+ \& NF_4$ (C) $ClF_6^+ \& SF_6$ (D) None

CBO0105

CBO0104

The molecules / ions which are planar as well as polar. 6.

The correct order of energy levels of hybrid orbitals.

(A) BF_3 , H_2O , HF , NH_2^-	(B) SnCl_2 , I_3^+ , NH_2^- , IF_3
(C) CO_3^{2-} , I_3^{-} , SF ₂ , XeF ₂	(D) NO_2^{-} , XeF_4 , ICl_4^{-} , NH_2^{+}

CBO0105

(B) $sp < sp^2 < sp^3$ (C) $sp^2 > sp^3 > sp$ (D) $sp^3 > sp > sp^2$ (A) $sp > sp^2 > sp^3$ **CBO0105**

(Comprehension) (Q.8 to Q.10)

As one moves from sp hybridisation to sp^3 . % of s-character in hybrid orbital decreases from 50% to 25% and p-character increases from 50% to 75% and in any hybrid orbital total % of s & p- character remains 100%. By increasing p-character the hybrid orbitals become elongated hence, their overlapping extent decreases that is results into weak bond energy also bond angle decreases.

8. Statement-1 : On decreasing s-character in hybrid orbitals, bond angle decreases.

Statement-2: p-orbitals are at 90° to one another.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CBO0106

- 9. The type of overlapping which produces bond of maximum bond energy is: (A) $sp^3 - 1s$ (B) $sp^2 - 1s$
 - (C) sp -1s (D) All have same bond energy

CBO0106

CBO0106

- **10.** The molecule having bond pair in which % of s character is minimum for the central atom's hybrid orbital.
 - (A) SiF_4 (B) BCl_3 (C) CH_3^+ (D) CO_2

Match the Column :

11. Match the column

- Column-I (molecules) (A) $\underline{P}Cl_{s}(\theta = 120^{\circ}), (\theta' = 90^{\circ})$
- (B) <u>NH</u>₂($\theta = 107^{\circ}$)
- (D) $\underline{\mathbf{N}}\mathbf{\Pi}_{3}(0 107)$
- (C) $\underline{SiH}_4(\theta = 109^\circ 28')$
- (D) $\underline{SO}_2(\theta = 116^\circ)$

12. Column I

- (A) BrF_3
- (B) TeF_5
- (C) IF_7
- (D) XeF_4

13. Column I

- (A) $I(CN)_2^{-}$
- (B) CO_3^{2-}
- (C) XeO₂F₂
- (D) SOF_4

Column-II (correct about molecule)

- (P) Number of the given bond angle (θ or θ') is = One
- (Q) Number of the given bond angle (θ or θ') is = Three
- (R) Number of the given bond angle (θ or θ) is = Six
- (S) d-orbital(s) is/are involved in hybrdisation of central atom
- (T) Lone pair at underlined atom is present

CBO0107

Column II

- (P) Atleast one angle $\leq 90^{\circ}$
- (Q) Central atom is sp³d² hybridised
- (R) Non planar
- (S) Polar

CBO0108

Column II

- (P) Having $p\pi p\pi$ bond & $\mu_D = 0$
- (Q) Having $p\pi\text{-}d\pi$ bond & $\mu_D\neq 0$
- (R) Planar
- (S) Central atom is sp³d

14. Column I

- (A) $H_2S_2O_5$
- (B) $H_6 B_2 O_7^{2-}$
- (C) $H_4P_2O_6$ (tetrabasic)
- (D) $H_6Si_2O_7$

15. Column-I

- (P) XeF₄
- $(Q) BrF_5$
- (R) ClF₃
- (S) SO_3^{2-}
- Code :

	Р	Q	R	S
(A)	1	2	3	4
(B)	2	4	1	3
(C)	2	4	3	1
(D)	3	1	4	2

16. Column–I

- (P) NH_4Cl
- $(Q) K[HF_2]$
- (R) $B_3N_3H_6$
- (S) SiC

Code :

	Р	Q	R	S
(A)	4	3	2	1
(B)	3	4	2	1
(C)	3	4	1	2
(D)	4	1	3	2

Column II

- (P) Central atom is sp³ hybridised
- (Q) M–O–M i.e. oxo linkage is present
- (R) M-M linkage is present
- (S) Non planar

Column-II

- (1) $sp^{3}d$ hybridised with 2 lone pair on central atom
- (2) sp^3d^2 hybridised with 2 lone pair on central atom
- (3) sp^3 hybridised with 1 lone pair on central atom
- (4) sp^3d^2 hybridised with 1 lone pair on central atom

CBO0111

CBO0110

Column-II

- (1) diamond like structure
- (2) Benzene like structure
- (3) Both hydrogen bond and ionic bond exist
- (4) Both covalent bond and ionic bond exist

following table.				
Column - I	Column - II	Column - III		
(P) d _{yz}	(1) p _y	(i) 1 lobe – 1 lobe overlap		
(Q) s	(2) p _x	(ii) 2 lobe – 2 lobe overlap		
(R) d_{xz}	(3) d _{yz}	(iii) 4 lobe – 4 lobe overlap		
(S) p _z	(4) s	(iv) Zero overlap		

Answer Q.17, Q.18 and Q.19 by appropriately matching the information given in the three columns of the following table.

17. Which of the following combination results in π -bond formation if internuclear axis is z-axis (A) (P), (1), (ii) (B) (P), (4), (i) (C) (R), (4), (iv) (D) (R), (3), (ii)

18. Which of the following combination results σ -bond formation if internuclear axis is z-axis (A) (P), (1), (ii) (B) (Q), (3), (ii) (C) (Q), (4), (i) (D) (R), (2), (ii) **CBO0113**

- **19.** Which of the following combination results in δ -bond formation if internuclear axis is x-axis (A) (P), (1), (i) (B) (P), (3), (iii) (C) (R), (3), (iv) (D) (P), (2), (ii)
- **20.** Match the column

(A) CH₄ (B) CH₂F₂

(C) CHF₂

(D) CF_4

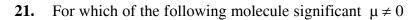
Column-I (Molecules)

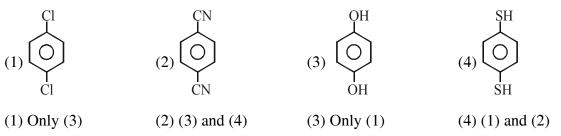
Column-I

(Characteristics)

- (P) Molecule is having perfect tetrahedral shape
- (Q) C-F bond has maximum p-character
- (R) C–H bond has maximum s-character
- (S) Molecule is having maximum number of equal angles
- (T) Molecule has lowest bond angle

CBO0114


CBO0113


EXERCISE # JEE-MAIN

1.	The hybridisation of	orbitals of N atom in N	O_3^- , NO_2^+ and NH_4^+ are	respectively:- [AIE	EE-2011]
	(1) sp, sp^3 , sp^2	(2) sp^2 , sp^3 , sp	(3) sp, sp^2 , sp^3	(4) sp^2 , sp , sp^3	
					CBO0115
2.	The structure of IF ₇	is :-		_	EE-2011]
	(1) octahedral		(2) pentagonal bipyra	mid	
	(3) square pyramid		(4) trigonal bipyramic		
3.	Which of the follow	ing has maximum numb	er of long pairs associat		CBO0116
5.	(1) XeO_3	(2) XeF ₄	(3) XeF_6	(4) XeF_2	EE-2011j
	(1) AcO_3	(2) Aer_4	(3) Ach_6	<u>-</u>	CBO0117
4.	The molecule having	g smallest bond angle is	:-		EE-2012]
	(1) PCl ₃	(2) NCl ₃	(3) AsCl ₃	(4) SbCl ₃	
	(1) 1 013	(-) - (-) - (-)	(0) 12013	U	CBO0118
5.	In which of the follo	wing pairs the two spec	ies are not isostructural		EE-2012]
	(1) AlF_6^{3-} and SF_6	(2) CO_3^{2-} and NO_3^{-}	(3) PCl_4^+ and $SiCl_4$	(4) PF_5 and BrF_5	5
					CBO0119
6.	The number of S–S	bonds in SO ₃ , $S_2O_3^{2-}$, S	$S_2O_6^{2-}$ and $S_2O_8^{2-}$ respectively.	ectively are :-	
				[JEE-MAI	NS-2012]
	(1) 1, 0, 1, 0	(2) 0, 1, 1, 0	(3) 1, 0, 0, 1	(4) 0, 1, 0, 1	(On line)
					CBO0120
7.	Among the following	g species which two hav	e trigonal bipyramidal s	shape? [JEE-MA]	NS-2012]
	(I) NI ₃	(II) I_3^-	(III) SO_3^{2-}	(IV) NO_3^-	(On line)
	(1) II and III	(2) III and IV	(3) I and IV	(4) I and III	
					CBO0121
8.	Which of the followi	ing has the square planar	r structure :-	[JEE-MAI	NS-2012]
	(1) NH_4^+	(2) CCl ₄	(3) XeF_4	(4) BF_{4}^{-}	(On line)
					CBO0122
9.	The compound of X	enon with zero dipole m	noment is :-	[JEE-MAI	NS-2012]
	(1) XeO ₃	(2) XeO ₂	(3) XeF_4	(4) $XeOF_4$	(On line)
					CBO0123
10.	-	g the molecule with the	-		_
	(1) CHCl_3	(2) CH_2Cl_2	(3) CCl ₄	(4) CH_3Cl	(On line) CBO0124

11.	The formation of mo	olecular complex BF ₃ –	- NH ₃ results in a chang	e in hybridisation	of boron :-
				[JEE-M	AINS-2012]
	(1) from sp^3 to sp^3d		(2) from sp^2 to dsp^2	2	(On line)
	(3) from sp^3 to sp^2		(4) from sp^2 to sp^3		
					CBO0125
12.	Trigonal bipyramida	l geometry is shown by	:	[JEE-M	AINS-2013]
	(1) XeO_3F_2	(2) $XeOF_2$	$(3) \operatorname{XeO}_{3}$	(4) FXeOSO ₂	F (On line)
	5 2	2	5	2	CBO0126
13.	Which one of the fol	llowing molecules is po	olar?	[JEE-M	AINS-2013]
	(1) CF_4	(2) SbF_5	(3) IF_{5}	(4) XeF_4	(On line)
	·	U U	-		CBO0127
14.	Oxidation state of su	ulphur in anions $SO_{3,}^{2-}$	$S_2O_4^{2-}$ and $S_2O_6^{2-}$ increases	ses in the orders :	
				[JEE-M	AINS-2013]
	(1) $S_2 O_6^{2-} < S_2 O_4^{2-} <$	$< SO_{3}^{2-}$	(2) $SO_3^{2-} < S_2O_4^{2-} <$	$< S_2 O_6^{2-}$	(On line)
	(3) $S_2O_4^{2-} < SO_3^{2-} <$	$S_2O_6^{2-}$	(4) $S_2 O_4^{2-} < S_2 O_6^{2-} <$	SO_{3}^{2-}	
	2 7 3	2 0	2 7 2 0	5	CBO0128
15.	XeO ₄ molecule is te	trahedral having :		[JEE-M	AINS-2013]
	(1) Two $p\pi$ -d π bone	ds	(2) Four $p\pi$ -d π bon	ıds	(On line)
	(3) One $p\pi$ -d π bond	1	(4) Three $p\pi$ -d π bo	nds	
					CBO0129
16.			m. Dipole moment o		
		aracter in HF will be : (electron charge = $1.60 \times$	(10 ⁻¹⁹ C) [JEE-M	
	(1) 61.0%(3) 35.5%		(2) 38.0% (4) 41.5%		(On line)
	(3) 33.3 %		(+) +1.3 %		CBO0130
17.	The shape of IF_6^- is :			[JEE-M	AINS-2013]
	(1) distorted octahed		(2) Pyramidal	[0	(On line)
	(3) Octahedral		(4) Square antiprism	1	. , ,
					CBO0131
18.	Which has trigonal b	pipyramidal shape?		[JEE-M	AINS-2013]
	(1) XeOF_4	(2) XeO_3	(3) XeO_3F_2	(4) $XeOF_2$	(On line)
10					CBO0132
19.		-	Ge is in the order Ge		-
			bonds are respectively :		
	(1) 348, 260, 297	(2) 348, 297, 260	(3) 297, 348, 260	(4) 260, 297, 3	CBO0133
20.	In which of the follow	ving sets all the given su	becies are isostructural?	LIEF-MAINS-201	
_ U•	(1) BF_3 , NF_3 , PF_3 , A	• • •	(2) PCl_3 , $AlCl_3$, BC		
	(1) Br_{3}^{-} , Rr_{3}^{-} , Rr_{3}^{-} , (3) BF_{4}^{-} , CCl_{4}^{-} , NH_{4}^{+}	5	$(4) CO_2, NO_2, CIO_2$	5 5	
	4 4 4	4	2 2 2 2	2* 2	CBO0134

[JEE-M-2014]

CBO0135

22. Among the following oxoacids, the correct decreasing order of acid strength is :- [JEE-M-2014] (1) $HClO_4 > HClO_3 > HClO_2 > HOCl$ (2) $HClO_2 > HClO_4 > HClO_3 > HOCl$

- (3) $HOCl > HClO_2 > HClO_3 > HClO_4$
- (4) $HClO_4 > HOCl > HClO_2 > HClO_3$

CBO0136

CBO0137

23. The number and type of bonds in C_2^{2-} ion in CaC₂ are:

[AIEEE-2005, AIEEE-2011, JEE-MAINS-2014 (On line)]

- (1) Two σ bonds and one π bond
- (2) Two σ bonds and two π bonds
- (3) One σ bond and two π bonds
- (4) One σ bond and one π bond

24. For the compounds

CH₃Cl, CH₃Br, CH₃I and CH₃F, (On line) the correct order of increasing C-halogen bond length is : (1) $CH_3F < CH_3Br < CH_3Cl < CH_3I$ (2) $CH_3F < CH_3Cl < CH_3Br < CH_3I$ (3) $CH_3Cl < CH_3Br < CH_3F < CH_3I$ (4) $CH_3F < CH_3I < CH_3Br < CH_3Cl$

CBO0138

25. Shapes of certain interhalogen compounds are stated below. Which one of them is not correctly stated?

[JEE-MAINS-2014]

[JEE-MAINS-2014]

(1) IF ₇ : Pentagonal bipyramid	(2) BrF_5 : Trigonal bipyramid	(On line)
(3) ICl ₃ : Planar dimeric	(4) BrF_3 : Planar T-shaped	

CBO0139

26. Which of the following molecules has two sigma(σ) and two pi(π) bonds :- [JEE-MAINS-2014] (4) C_2H_4 (1) HCN $(2) C_{2}H_{2}Cl_{2}$ (3) $N_{2}F_{2}$ (On line) **CBO0140**

124	JEE-Chemistry			
27.	Example of a three	ee-dimensional silicate is	s :	[JEE-MAINS-2014]
	(1) Beryls	(2) Zeolites	(3) Feldspars	(4) Ultramarines (On-line) CBO0141
28.	The intermolecularis :-	ar interaction that is deper	ndent on the inverse cube	of distance between the molecules [JEE-M-2015]
	(1) London force	e	(2) Hydrogen bo	nd
	(3) ion-ion intera	action	(4) ion-dipole into	eraction
				CBO0142
29.	Which one has the	ne highest boiling point	?	[JEE-M-2015]
	(1) Kr	(2) Xe	(3) He	(4) Ne
				CBO0143
30.	Which intermole	cular force is most respo	onsible in allowing xend	on gas to liquefy?
	(1) Ionic			[JEE (MAIN) ONLINE 2016]
	(2) Instantaneous	s dipole- induced dipole		
	(3) Dipole - dipo	le		
	(4) Ion - dipole			
				CBO0144
31.	The pair in which	h phosphorous atoms ha	we a formal oxidation s	tate of $+ 3$ is :-
	(1) Pyrophospho	rous and pyrophosphoric	c acids	[JEE-MAINS(offline)-2016]
	(2) Orthophosphor	rous and pyrophosphorous	s acids	
	(3) Pyrophospho	rous and hypophosphoric	acids	
	(4) Orthophospho	orous and hypophosphoric	e acids	
				CBO0145
32.	The group of mo	lecules having identical	shape is :	[JEE-MAINS(online)-2016]
	(1) SF_4 , XeF_4 , C	CCl ₄	(2) ClF_3 , XeOF_2	, XeF ₃ +
	(3) PCl_5 , IF_5 , Xe	eO_2F_2	(4) BF ₃ , PCl ₃ , X	eO ₃
				CBO0146
33.	Assertion : Amon of electricity.	g the carbon allotropes, di	iamond is an insulator, wl	hereas, graphite is a good conductor [JEE-MAINS(online)-2016]
	Reason : Hybrid	ization of carbon in diar	nond and graphite are s	sp ³ and sp ² , respectively.
	(1) Assertion is in	ncorrect statement, but th	he reason is correct.	
	() Dath accortion	and rancon are correct	and the reason is the cor	ract avalanction for the assortion

- (2)Both assertion and reason are correct, and the reason is the correct explanation for the assertion.
- (3) Both assertion and reason are incorrect.
- (4) Both assertion and reson are correct, but the reason is not the correct explanation for the assertion.

34.	Aqueous solution of $1s^22s^22p^63s^23p^6$?	of which salt will no	t contain ions wit		tronic configuration AINS(online)-2016]
	(1) NaCl	(2) CaI ₂	(3) KBr	(4) NaF	
					CBO0148
35.	The correct sequence and $H_2S_2O_7$ is:-	ce of decreasing num	ber of π -bonds in t		res of H_2SO_3 , H_2SO_4 MAINS(online)-2017]
	(1) $H_2S_2O_7 > H_2SO_2$	$_1 > H_2 SO_3$	(2) $H_2SO_3 > H_2SO_3 > $	$SO_4 > H_2S_2$	$_{2}O_{7}$
	(3) $H_2S_2O_7 > H_2SO_7$		(4) $H_2SO_4 > H_2SO_4$,
	<i>, , , , , , , , , , , , , , , , , , , </i>	, 2 4	× 7 2 4 2	2 1 2	CBO0149
36.	The increasing order	of the boiling points fo	or the following com	pounds is :	-
	(I) C_2H_5OH	or or	(II) C_2H_5Cl	-	MAINS(online)-2017]
	(III) $C_2H_5CH_3$		$(IV) C_2H_5OCH_3$	[022	
	$(III) C_2 II_5 CII_3$ (1) (IIII) < (II) < (I)	(\mathbf{IV})	$(1^{\circ}) C_2 II_5 OCII_3$ (2) (II) < (III) < ($\mathbf{W} > \mathbf{W}$	
	(3) (IV) < (III) < (I) \cdot	< (11)	(4) (III) < (IV) <	(11) < (1)	
~-					CBO0150
37.		H bonds and the oxidat	ion state of phospho		
	$(H_4P_2O_7)$ respectively			-	MAINS(online)-2017]
	(1) five and four	(2) five and five	(3) four a	nd five	(4) four and four
					CBO0151
38.	The group having tria	angular planar structure	es is :-	[JEE-	MAINS(online)-2017]
	(1) CO_3^{2-}, NO_3^-, SO_3	(2) NCl_3, BCl_3, SO_3	(3) NH_3, SO_3, CO_3^2	- (4) B	F_3, NF_3, CO_3^{2-}
					CBO0152
39.	The number of S=O	and S-OH bonds prese	ent in peroxodisulpl	nuric acid a	and pyrosulphuric acid
	respectively are :			[JEE-	MAINS(online)-2017]
	(1) (2 and 4) and (2 a	and 4)	(2) (4 and 2) and	(2 and 4)	
	(3) (2 and 2) and (2 a	and 2)	(4) (4 and 2) and	(4 and 2)	
					CBO0153
40.	The number of P–O	bonds in P_4O_6 is :-		[JEE-	MAINS(online)-2018]
	(1) 18	(2) 12	(3) 9	(4) 6	
					CBO0154
41.	In XeO_3F_2 , the numb	per of bond pair(s), π -bo	ond(s) and lone pair	(s) on Xe a	tom respectively are :-
	5 2	1 ())			MAINS(online)-2018]
	(1) 4, 2, 2	(2) 4, 4, 0	(3) 5, 2, 0	(4) 5,	–
	(1) 1, 2, 2	(2) 1, 1, 0	(3) $3, 2, 0$	(1) 5,	CBO0155
42.	The decreasing order	of bond angles in BF ₄	NH PF and I	is · [TFF_	
72.	-				WAI (5(011116)-2010]
	(1) $I_3 > BF_3 > NH_3$	e	(2) $BF_3 > NH_3 >$	5 5	
	(3) $I_3^- > NH_3 > PF_3$	$> BF_3$	(4) $BF_3 > I_3^- > PI$	$F_3 > NH_3$	
4.4	T1			T 1	CBO0156
43.		which the geometry	of the species is '		
	respectively :-				MAINS(online)-2018]
	(1) IO_3^- and $IO_2F_2^-$	(2) $XeOF_2$ and XeO	F_4 (3) ICl_2^- and ICl_4^-	₅ (4) Cl	F_3 and IO_4^-
					CBO0157

44.	Which of the following	ng is a lewis acid ?		JEE-MAINS(online)-2018]
	(1) NaH	(2) NF_3	(3) PH ₃	(4) B(CH ₃) ₃
				CBO0158
45.	bond is/are :-			Ile(s) having nitrogen-nitrogen [JEE-MAINS(online)-2018]
	(1) N_2O_3 and N_2O_5	(2) N_2O_4 and N_2O_5	(3) N_2O_3 and N_2O_4	
46.	The incorrect geomet	ry is represented by :-		CBO0159 [JEE-MAINS(online)-2018]
-101	(1) BF_3 - trigonal plan	• • •	(2) NF ₃ - trigonal pla	
	(3) AsF_5 - trigonal bip		(4) H_2O - bent	
				CBO0160
47.	Which of the following	ng conversions involves	s change in both shape	and hybridisation ?
				[JEE-MAINS(online)-2018]
	(1) $BF_3 \rightarrow BF_4^-$	(2) $H_2O \rightarrow H_3O^+$	$(3) \operatorname{CH}_4 \to \operatorname{C}_2\operatorname{H}_6$	
48.	Which of the following	na ara Lavvia agida ?		CBO0161 [JEE-MAINS(offline)-2018]
40.	Which of the followin	-	(3) BCl ₃ and AlCl ₃	
	(1) $AlCl_3$ and $SiCl_4$	(2) FII_3 and SICI_4	(5) DCI_3 and $AICI_3$	(4) $\Gamma \Pi_3$ and $D \Omega_3$ CBO0162
49.	Total number of lone	pair of electrons in I_3^-	ion is	[JEE-MAINS(offline)-2018]
	(1) 6	(2) 9	(3) 12	(4) 3
				CBO0163
50.		• • •		s: [JEE-MAINS(online)-2019]
	(1) Si	(2) Ge	(3) Sn	(4) C
51.	The type of hybridies	tion and number of la	a pair(s) of electrons	CBO0164 of Xe in $XeOF_4$, respectively,
51.	are :		ic pair(s) of electrons	[JEE-MAINS(online)-2019]
	(1) sp^3d and 1	(2) sp^3d and 2	(3) $sp^{3}d^{2}$ and 1	(4) sp^3d^2 and 2
				CBO0165
52.	The pair that contains	s two P–H bonds in eac	th of the oxoacids is :	[JEE-MAINS(online)-2019]
	(1) H_3PO_2 nad H_4P_2	0 ₅	(2) $H_4P_2O_5$ a	and $H_4P_2O_6$
	(3) H_3PO_3 and H_3PC_3	\mathbf{D}_2	(4) $H_4P_2O_5$ nad H_3P_3	5
= 2				CB00166
53.	-	² hybridization for the c		[JEE-MAINS(online)-2019]
	(1) [ICI ₂] ⁻	(2) $[IF_6]^-$	(3) $[ICI_4]^-$	(4) $[BrF_2]^-$
				CBO0167
54.	C_{60} , an allotrope of c			[JEE-MAINS(online)-2019]
	(1) 20 hexagons and 1 (2) 18 h		(2) 12 hexagons and (4) 16 h	
	(3) 18 hexagons and	14 pentagons.	(4) 16 hexagons and	CBO0168
55.	The oxoacid of sulph	ur that does not contair	bond between sulphu	
~~	(1) $H_2S_4O_6$	ar that does not contain	(2) $H_2S_2O_7$	[JEE-MAINS(online)-2019]
	(3) $H_2S_2O_3$		(4) $H_2S_2O_4$	
	= = -		- - ·	CD00160

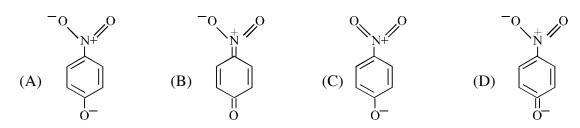
56.	The number of pentag (1) 12 and 3	gons in C_{60} and trigons	(triangles) in white ph (2) 20 and 4	osphorus, respectively, are: [JEE-MAINS(online)-2019]
				[JEE-MAINS(OIIIIIe)-2019]
	(3) 12 and 4		(4) 20 and 3	CD00170
	TI 0 01 11 4			CB00170
57.	The C–C bond length			[JEE-MAINS(online)-2019]
	(1) graphite	(2) C ₇₀	(3) diamond	(4) C_{60}
-0				CBO0171
58.			H_4 are in the order :	
	(1) $CH_4 = CCl_4 < CH$	•	$(2) \operatorname{CH}_4 < \operatorname{CCl}_4 < \operatorname{C}$	5
	$(3) \operatorname{CCl}_4 < \operatorname{CH}_4 < \operatorname{CH}_4$	HCl ₃	(4) $\operatorname{CHCl}_3 < \operatorname{CH}_4 =$	•
				CBO0172
59.	The relative strength of	of interionic/intermolec	cular forces in decreasir	-
	(1) ion-dipole $>$ ion-ion	n>dipole-dipole		[JEE-MAINS(online)-2020]
	(2) dipole-dipole $>$ ion	-dipole > ion-ion		
	(3) ion-dipole > dipole	-dipole > ion-ion		
	(4) ion-ion > ion-dipo	le > dipole-dipole		
				CBO0173
60.	Arrange the following	g bonds according to th	eir average bond energ	gies in descending order :
	C-Cl, C-Br, C-F, C-	-I		[JEE-MAINS(online)-2020]
	(1) $C-I > C-Br > C-$	Cl > C-F	(2) $C-Br > C-I > C$	-Cl > C-F
	(3) $C-F > C-Cl > C-$	-Br > C-I	(4) $C-Cl > C-Br > C$	C-I > C-F
				CBO0174
61.	The predominant inter	rmolecular forces prese	ent in ethyl acetate, a lie	quid, are :
	(1) hydrogen bonding	and London dispersio	n	[JEE-MAINS(online)-2020]
	(2) Dipole-dipole and	-		
	(3) London dispersion			
	-	n, dipole-dipole and hy	drogen bonding	
	() is a rest	, Free Free S		CBO0175
(\mathbf{a})	The marks of the state 1		\sim	
62.				d the number of bonds between
		oms in rhombic sulphur,	respectively, are :	
	(1) 4 and 8	(2) 4 and 6		[JEE-MAINS(online)-2020]
	(3) 8 and 8	(4) 8 and 6		
				CBO0176
63.	The number of sp ² hy	brid orbitals in a mole	cule of benzene is :	[JEE-MAINS(online)-2020]
	(1) 24	(2) 6	(3) 12	(4) 18
				CBO0177

EXERCISE # JEE-ADVANCED

Integer Type

1.	The number of water molecule(s) directly bonded to the metal centre in CuSC	$O_4.5H_2O$ is
		[JEE 2009]
		CBO0178
2.	Based on VSEPR theory, the number of 90 degree F–Br–F angles in BrF_5 is	[JEE 2010]
		CBO0179
3.	The difference in the oxidation numbers of the two types of sulphur atoms in	$Na_2S_4O_6$ is.
		[JEE 2011]
		CBO0180
4.	The total number of lone-pairs of electrons in melamine is	[JEE Adv. 2013]
		CBO0181

The sum of the number of lone pairs of electrons on each central atom in the following species is.
 [JEE 2017]


 $[\text{TeBr}_6]^{2-}$, $[\text{BrF}_2]^+$, SNF_3 and $[\text{XeF}_3]^-$

[Atomic number : N = 7, F = 9, S = 16, Br = 35, Te = 52, Xe = 54]

CBO0182

One or more than one correct

6. The most likely representation of resonance structure of p–nitrophenoxide is:

CBO0183

7. Specify hybridization of N and B atoms in a 1 : 1 complex of BF₃ and NH₃ [JEE 2002]
(A) N : tetrahedral, sp³; B : tetrahedral, sp³
(B) N : pyramidal, sp³; B : pyramidal, sp³
(C) N : pyramidal, sp³; B : planar, sp²
(D) N : pyramidal, sp³; B : tetrahedral, sp³

CBO0184 [JEE 2002]

- 8. The nodal plane in the π -bond of ethene is located in
 - (A) the molecular plane
 - (B) a plane parallel to the molecular plane
 - (C) a plane perpendicular to the molecular plane which bisects, the carbon-carbon σ bond at right angle
 - (D) a plane perpendicular to the molecular plane which contains, the carbon-carbon bond.

Statement-1 : p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.
 because

Statement-2 : o-Hydroxybenzoic acid has intramolecular hydrogen bonding. [JEE 2007]

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.

- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

CBO0186

10. Statement-1 : In water, orthoboric acid behaves as a weak monobasic acid.

because

Statement-2 : In water, orthoboric acid acts as a proton donor. [JEE 2007]

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.

(C) Statement-1 is True, Statement-2 is False.

(D) Statement-1 is False, Statement-2 is True.

				CBO0187
The nitrogen oxide(s) that contain(s) N-	N bond(s) is/are		[JEE 2009]
(A) N ₂ O	(B) N ₂ O ₃	(C) N ₂ O ₄	(D) N ₂ O ₅	
				CBO0188
The value of n in the	molecular formula	$Be_nAl_2Si_6O_{18}$ is		[JEE 2010]
				CBO0189
The species having p	yramidal shape is/a	re :		[JEE 2010]
(A) SO ₃	(B) BrF ₃	(C) $SiO_{3}^{}$	(D) OSF ₂	
				CBO0190
Which ordering of co	mpounds is accordir	ng to the decreasing order	of the oxidation sta	ate of nitrogen-
(A) HNO ₃ , NO, NH	₄ Cl, N ₂	(B) HNO ₃ , NO, 1	N ₂ , NH ₄ Cl	[JEE 2012]
(C) HNO ₃ , NH ₄ Cl, N	NO, N ₂	(D) NO, HNO ₃ ,	NH ₄ Cl, N ₂	
				CBO0191
The shape of XeO_2F_2	₂ molecule is :			[JEE 2012]
(A) Trigonal bipyram	idal	(B) Square plana	ſ	
(C) tetrahedral		(D) see-saw		
				CBO0192
The compound(s) wi	th TWO lone pairs	of electrons on the cen	tral atom is(are)	[JEE 2016]
(A) BrF ₅	(B) ClF ₃	(C) XeF ₄	(D) SF ₄	
	(A) N_2O The value of n in the The species having p (A) SO_3 Which ordering of co (A) HNO_3 , NO, NH (C) HNO_3 , NH ₄ Cl, N The shape of XeO_2F_4 (A) Trigonal bipyram (C) tetrahedral The compound(s) with	(A) N_2O (B) N_2O_3 The value of n in the molecular formula The species having pyramidal shape is/a (A) SO_3 (B) BrF_3 Which ordering of compounds is accordin (A) HNO_3 , NO , NH_4Cl , N_2 (C) HNO_3 , NH_4Cl , NO , N_2 The shape of XeO_2F_2 molecule is : (A) Trigonal bipyramidal (C) tetrahedral The compound(s) with TWO lone pairs	The value of n in the molecular formula $Be_nAl_2Si_6O_{18}$ is The species having pyramidal shape is/are : (A) SO ₃ (B) BrF ₃ (C) SiO ₃ Which ordering of compounds is according to the decreasing order (A) HNO ₃ , NO, NH ₄ Cl, N ₂ (B) HNO ₃ , NO, T (C) HNO ₃ , NH ₄ Cl, NO, N ₂ (D) NO, HNO ₃ , The shape of XeO ₂ F ₂ molecule is : (A) Trigonal bipyramidal (B) Square planat (C) tetrahedral (D) see-saw The compound(s) with TWO lone pairs of electrons on the cent	(A) N_2O (B) N_2O_3 (C) N_2O_4 (D) N_2O_5 The value of n in the molecular formula $Be_nAl_2Si_6O_{18}$ isThe species having pyramidal shape is/are :(A) SO_3 (B) BrF_3 (C) SiO_3^- (D) OSF_2 Which ordering of compounds is according to the decreasing order of the oxidation state(A) HNO_3 , NO , NH_4Cl , N_2 (B) HNO_3 , NO , N_2 , NH_4Cl (C) HNO_3 , NH_4Cl , NO , N_2 (C) HNO_3 , NH_4Cl , NO , N_2 (D) NO , HNO_3 , NH_4Cl , N_2 The shape of XeO_2F_2 molecule is :(A) Trigonal bipyramidal(B) Square planar(C) tetrahedral(D) see-sawThe compound(s) with TWO lone pairs of electrons on the central atom is(are)

- **17.** The crystalline form of borax has
 - (A) Tetranuclear $[B_4O_5(OH)_4]^{2-}$ unit
 - (B) All boron atoms in the same plane
 - (C) Equal number of sp² and sp³ hybridized boron atoms
 - (D) One terminal hydroxide per boron atom

18. The order of the oxidation state of the phosphorus atom in H_3PO_2 , H_3PO_4 , H_3PO_3 and $H_4P_2O_6$ is (A) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$ [JEE 2017] (B) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$ (C) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$

- (D) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$
- 19. Based on the compounds of group 15 elements , the correct statement(s) is (are) [JEE 2018]
 (A) Bi₂O₅ is more basic than N₂O₅
 - (B) NF_3 is more covalent than BiF_3
 - (C) PH₃ boils at lower temperature than NH₃
 - (D) The N-N single bond is stronger than the P-P single bond

CBO0196

20. The total number of compounds having at least one bridging oxo group among the molecules given below is _____. [JEE 2018]

N₂O₃, N₂O₅, P₄O₆, P₄O₇, H₄P₂O₅, H₅P₃O₁₀, H₂S₂O₃, H₂S₂O₅

CBO0197

[JEE 2016]

CBO0194

EXERCISE # 0-1											
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	С	А	В	В	D	D	А	С	В	Α	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	С	С	А	А	В	С	С	С	С	В	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	А	С	С	А	В	А	А	D	В	D	
Que.	31	32	33	34	35	36	37	38	39	40	
Ans.	А	С	С	С	С	В	В	С	Α	D	
Que.	41	42	43	44	45	46	47	48	49	50	
Ans.	D	В	А	В	С	С	В	В	D	D	
Que.	51	52									
Ans.	D	С									

ANSWERS KEY

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,C	A,B	A,B,C	A,B,C,D	B,C	A,C	A,B,C	A,B	A,C	B,C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	А	С	C,D	B,C	C,D	A,B,C	A,C,D	B,D	B,C,D	A,B,C
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	B,C,D	С	A,B,C,D	A,B,C	A,B,C	А	А	A,C	D	В
Que.	31	32	33	34	35					
Ans.	А	A,B,C,D	B,C,D	A,B,C,D	B,C					

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	0	1	0	6	4	4	7 (25%)	3	2	4
Que.	11	12	13	14	15					
Ans.	3	3	4	2	2					

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10		
Ans.	В	А	D	С	D	В	В	В	С	А		
Que.		1	1		12							
Ans.	(A)→Q,R	.,S;(B)→Q,	T;(C)→R;(D)→P,T	$(A) \rightarrow P, S (B) \rightarrow P, Q, R, S (C) \rightarrow P, R (D) \rightarrow P, Q$							
Que.			13			14						
Ans.	$(A) \rightarrow P, R, S (B) \rightarrow P, R (C) \rightarrow Q, S (D) \rightarrow Q, S$					$(A) \rightarrow P, R, S (B) \rightarrow P, Q, S (C) \rightarrow P, R, S (D) \rightarrow P, Q, S$						
Que.	15	16	17	18	19	20						
Ans.	В	А	А	С	В	$(A) \rightarrow P, S (B) \rightarrow Q, T (C) \rightarrow R (D) \rightarrow P, S$						

EXERCISE # JEE-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	2	4	4	4	2	BONUS	3	3	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	3	3	2	4	1	3	2	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	3	2	2	1	2,3,4	2	2	2
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	2	2	4	4	1	4	3	1	4	2
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	4	1	2	4	3	2	1	3	2	4
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	3	1	3	1	2	3	3	1	4	3
Que.	61	62	63							
Ans.	3	3	4							

EXERCISE # JEE-ADVANCED

- 1. Ans. 4
- 2. Ans. 0
- 3. Ans. 5
- 4. Ans. 6
- 5. Ans. 6

Que.	6	7	8	9	10	11	12	13	14
Ans.	А	А	А	D	С	A,B,C or A,C	3	D	В
Que.	15	16	17	18	19	20			
Ans.	D	B,C	A,C,D	А	A,B,C	5 or 6			