RACE # 63	HYPERBOLA	MATHEMATICS
	SUBJECTIVE	

1. Find the equation of the normal to the curve $\frac{x^2}{16} - \frac{y^2}{9} = 1$. at $(8, 3\sqrt{3})$

2. A normal is drawn at one end of the latus rectum of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ which meets the axes at points A and B respectively. Find the area of the $\triangle OAB$.

3. Find the equation of the chord of contact of tangents from the point (2, 3) to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$.

4. Find the locus of the mid-points of the portions of the tangents to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ included between the axes.

- 5. From the points on the circle $x^2 + y^2 = a^2$, tangents are drawn to the hyperbola $x^2 y^2 = a^2$. Prove that the locus of the mid-points of the chord of contact is $(x^2 y^2)^2 = a^2(x^2 + y^2)$.
- 6. Find the asymptotes of the curve xy 3y 2x = 0.
- 7. Find the eccentricity of the hyperbola whose asymptotes are 3x + 4y = 10 and 4x 3y = 5.
- 8. Find the equation of a hyperbola whose asymptotes are 2x y = 3 and 3x + y = 7 and which pass through the point (1, 1).
- 9. Find the product of the lengths of the perpendiculars from any point on the hyperbola $x^2 2y^2 = 2$ to its asymptotes.
- 10. Find the area of the triangle formed by any tangent to the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ and its asymptotes.

SINGLE ANSWER CORRECT TYPE

11. If the normal to the rectangular hyperbola $xy = c^2$ at the point 't' meets the curve again at 't₁' then t³ t₁ has the value equal to

(C) 0

(D) none

(A) 1 (B) – 1

12.

plane

In which of the following cases maximum number of normals can be drawn from a point P lying in the same

(A) circle (B) parabola (C) ellipse (D) hyperbola

13. The normals at three points P,Q,R on a rectangular hyperbola $xy = c^2$ intersect at a point on the curve. The centre of the hyperbola of the triangle PQR, is its

(A) centroid (B) orthocenter (C) incentre (D) circumcenter

14. P is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to :

(A) e^2 (B) a^2 (C) b^2 (D) b^2/a^2

The chord PQ of the rectangular hyperbola $xy = a^2$ meets the axis of x at A; C is the mid point of PQ & 'O' is 15. the origin. Then the Δ ACO is : (A) equilateral (B) isosceles (C) right angled (D) right isosceles. The tangent to the hyperbola $xy = c^2$ at the point P intersects the x-axis at T and the y-axis at T'. The normal 16. to the hyperbola at P intersects the x-axis at N and the y-axis at N'. The areas of the triangles PNT and PN'T' are Δ and Δ' respectively, then $\frac{1}{\Lambda} + \frac{1}{\Lambda'}$ is (B) depends on t (A) equal to 1 (C) depends on c (D) equal to 217. Locus of the middle points of the parallel chords with gradient m of the rectangular hyperbola $xy = c^2$ is (B) y - mx = 0(C) my - x = 0(D) my + x = 0(A) y + mx = 0The locus of the foot of the perpendicular from the centre of the hyperbola $xy = c^2$ on a variable tangent is : 18. (A) $(x^2 - y^2)^2 = 4c^2 xy$ (B) $(x^2 + y^2)^2 = 2c^2 xy$ (C) $(x^2 + y^2) = 4c^2 xy$ (D) $(x^2 + y^2)^2 = 4c^2 xy$ 19. The equation to the chord joining two points (x_1, y_1) and (x_2, y_2) on the rectangular hyperbola $xy = c^2$ is : (B) $\frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$ (A) $\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$ (D) $\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2} = 1$ (C) $\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1$

[MULTIPLE CORRECT TYPE]

[MULTIPLE CORRECT TYPE] **20.** If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1)$, $Q(x_2, y_2)$, $R(x_3, y_3)$, $S(x_4, y_4)$, then (A) $x_1 + x_2 + x_3 + x_4 = 0$ (B) $y_1 + y_2 + y_3 + y_4 = 0$ (C) $x_1 x_2 x_3 x_4 = c^4$ (D) $y_1 y_2 y_3 y_4 = c^4$

Answers

RACE # 63

1. $2x + \sqrt{3}y = 25$ **2.** $\frac{1}{2}a^2e^5$ **3.** 4x - 9y = 18 **4.** $\frac{9}{4x^2} - \frac{1}{y^2} = 1$ **6.** x = 2 and y = 3 $\sqrt{2}$ 8. $6x^2 - xy - y^2 - 23x + 4y + 15 = 0$ 9. $\frac{2}{3}$ 10. 6 sq units 11. (B) 12. (A) 7. (A) 14. (B) 15. (B) 16. (C) 17. (A) 18. (D) 19. (A) 20. (ABCD) 13.