CHAPTER 19 - ORGANIC COMPOUNDS CONTAINING NITROGEN (AMINES)

Single Correct Type

- (A) a hydrocarbon
- (B) a cyanide
- (C) primary amine
- (D) Isocupmate
- 2. Which of the following sequence of reagent is the good means to furnish the conversion?

$$R-CH_2OH \longrightarrow R-CH_2NH_2$$

- (I) $KMnO_4$; $SOCl_2$; NH_3 , Δ ; NaOBr
- (II) $SOCl_2$; NaCN; H_2 , Ni
- (III) cro₃ in dilute acetone; NH₃; H₂,Ni

(IV)

Cu,300°C; NH₃; LiAlH₄

(A) I, II, III, IV

(B) I, II, III

(C) II, III, IV

- (D) III, IV
- 3. In nitration of aniline, -NH₂ group is protected by the following process:
 - (A) Alkylation

(B) Acylation

(C) Diazotization

(D) Decarboxylation

4. Which of the following reactions will produce a secondary amine?

$$(A) \xrightarrow{\text{NH}_2} \xrightarrow{\text{1.LiAlH}_4.\text{diethylether}}$$

$$(B) \quad \bigcirc_{N} \xrightarrow{\stackrel{O}{\longleftarrow} \frac{1.\text{LiAlH}_{4}.\text{diethylether}}{2.\text{H}_{2}\text{O}}}$$

(C)
$$\stackrel{\text{HO}}{\longrightarrow}$$
 $\stackrel{\text{CH}_3}{\longrightarrow}$ $\stackrel{\text{1.LiAlH}_4.diethylether}{\longrightarrow}$

(D)
$$\stackrel{\parallel}{\underset{\stackrel{}{\underset{}}{\bigvee}}} CH_3$$
 $\stackrel{1.\text{LiAlH}_4.\text{diethylether}}{\underset{2.\text{H}_2O}{\longrightarrow}}$

5. Molecular formula of chloropicrin is

(A)CHCl₃NO₂

(B) CCl₃NO₃

(C)CCl₂NO₂

(D) CCl₃NO₂

6. Identify (Z) in the following sequence of reactions.

$$(B) \xrightarrow{H_3C} \xrightarrow{N_2^+CI}_{CH_3}$$

$$(C)$$
 OCH_3
 OH
 OH

(D)
$$\bigcirc$$
 OCH₃

7. Which of the following compound is most basic?

$$(A)_{NH_2}$$
 NH_2 NH_2 NH_2 NH_3 NH_4 NH_4 NH_4 NH_5 NH_5 NH_6 N

$$(C)_{Me-NH}$$
 $NH-Me$ (D) $(CH_3)_2NH$

 NH_2

 $\dot{\rm N}{\rm O}_2$

$$(C)$$
 NH_2
 NO_2

$$(B) \bigvee_{NO_2}^{NH_2}$$

$$(D) \bigcup_{NO_2}^{NHI}$$

9.
$$NO_2$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$(C)$$
 NH_2
 NH_2

$$(B) \bigcirc_{NO_2}^{NH_2}$$

$$(D) \qquad \qquad \bigvee_{\mathsf{HS}}^{\mathsf{NH}_2}$$

10.
$$\downarrow^{O}$$
 + H₃C-CH₂-NHCH₂CH₃ -----?

$$(C)
\downarrow N
\downarrow C_2H_5
\downarrow C_2H_5$$

$$N \subset C_2H_5$$

$$(D) \qquad \bigwedge^{\mathsf{N} \subset \mathsf{QH}_{\mathsf{E}}} \mathsf{C}_{\mathsf{QH}_{\mathsf{E}}}$$

Multiple Correct Type

- 11. CH₃CH₂NH₂ is soluble in
 - (A) dilute HCl

(B) Cuso₄ solution

(C) $AgNO_3$

(D) dil. H₂SO₄

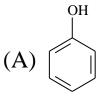
- 12. Which of the following compound cannot be prepared by Gabirielphthalimide synthesis?
 - $(A) CH_3 CH_2 NH_2$

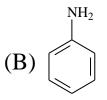
 $(B) (\mathsf{CH}_{\scriptscriptstyle 3})_{\scriptscriptstyle 3} \mathsf{C} \!-\! \mathsf{NH}_{\scriptscriptstyle 2}$

 $(C) \, \, \mathsf{Ph} \! - \! \mathsf{NH}_{_{\! 2}}$

- (D) $\langle \bigcirc \rangle$ NH CH₃
- 13. Aspirin and oil of wintergreen can be distinguished by
 - (A) Neutral Fecl₃

(B) Aq. NaOH


(C) Aq. NaHCO₃


- (D) Br_2/CCl_4
- 14. The reagent (s) used to convert phenol in to Anisole is/are.
 - (A) $NaOH, CH_3I$

(B) CH_2N_2, BF_3

(C) $(CH_3)_2 SO_4$, NaOH

- (D) $NaHCO_3, CH_3I$
- 15. Which of the following undergo reaction with alcoholic KOH and chloroform?

(D)

- 16. Which of the following compounds give carbylamines reaction?
- 17. Which of the following reaction represent the major product :

(A)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(B)
$$Ph - C - NH_2 \xrightarrow{Br_2 + KOH} Ph - NH_2$$

(C)
$$\xrightarrow{\text{Br}_2 + \text{KOH}}$$
 $\xrightarrow{\text{NH}_2}$

(D)
$$COC1 \xrightarrow{(i)N_{NaN_3}} COC1 \xrightarrow{(i)i)H_2O} C$$

- A mixture of primary, secondary and tertiary amines can be 18. separated by

 - (A) Nitrous acid test (B) Carbylamine reaction
 - (C) Hinsberg's method (D) reaction with chloride (Acylation)
 - acetyl
- 19. By which of the following reactions can methyl cyanide be prepared?

(A)
$$CH_3Br \xrightarrow{KCN} DMF$$

$$(B)$$
 $CH_3NH_2 \frac{CHCl_3}{KOH}$

(C)
$$H_3C - CH = N - OH \xrightarrow{P_2O_5} \Delta$$

$$(A) \ \mathsf{CH_3Br} \xrightarrow{\mathsf{KCN}} \qquad \qquad (B) \ \ \mathsf{CH_3NH_2} \xrightarrow{\mathsf{CHCl_3}} \qquad \\ (C) \ \mathsf{H_3C-CH=N-OH} \xrightarrow{\mathsf{P_2O_5}} \qquad (D) \ \ \mathsf{H_3C-C-NH_2} \xrightarrow{\mathsf{P_4O_{13}}} \qquad \\$$

- 20. Which of the following arrangements are correct with respect to the property of the compounds indicated in the parentheses?
 - $(A) \ \mathsf{HCOOH} > \mathsf{CH_3COOH} > \mathsf{CH_3CH_2COOH}(\mathsf{Acidic\ strength})$

$$(B) \ \, \text{F} \qquad \text{COOH} > \ \, \text{CI} \qquad \text{COOH} > \ \, \text{Br} \qquad \text{COOH} \, (\text{Acidic strength})$$

(C)

(D)

$$NH_2$$
 NH_2 $C-NH_2$ $>$ O (Base strength)

Integer Type

- 21. An organic amino compound reacts with aqueous nitrous acid at low temperature to produce an oily nitroso amine. The compound must have how many minimum carbon atom.
- 22. What is the number of benzene derivatives having the molecular formula C₇H₉N that would respond to carbyl amine test.
- 23. The Gabriel synthesis of amines is out lined the following way,

$$\begin{array}{c|c}
O & O & O \\
NH & KOH & N^{-}K^{+} & RX/DMF
\end{array}$$

$$\begin{array}{c|c}
N-R & \xrightarrow{Ethanol reflux} RNH_{2}
\end{array}$$

Out of the given amines, how many cannot be prepare by this method.

(1) CH₃CH₂NH₂

(2) CH₃NHCH₃

(3) $CH_2 = CH - NH_2$

(7)
$$(8)$$
 (8)

- 24. Certain nitrogenous compound with molecular mass (180) show an increase in its molecular mass to 348 after treatment with acetyl chloride. The number of possible NH₂ groups in the molecule is:
- 25. A nitrogenous compound with molecular mass 180 shows an increase in molecular mass to 348 after treatment with acetyl chloride. The number of possible NH₂ group in the molecule is.
- 26. Among R–CH₂–NO₂, Ph–NO₂, Ph–CH₂–NO₂, R₂CH–NO₂ and R₃C–NO₂, how many compounds with give blue colour when treated with HNO₂ followed by NaOH
- 27. Of the following amines how many can be separated by Hoffmann's mustard oil reaction?

28. How many of the following compound are more basic than aniline?

- 29. A compound with molecular formula C₉H₂₄N₄ is converted by the action of acetyl chloride to a compound with molecular mass 314. The number of NH₂ groups in the compound is_____.
- 30. Number of isomeric primary amines obtained from $c_4H_{11}N$ are

SOLUTIONS

Single Correct Type

1. (C)

$$\begin{array}{c|c} O \\ \parallel \\ CH_2-C-NH_2 \\ \hline \\ C-OCH_3 \\ \hline \\ O \end{array} \qquad \begin{array}{c} Br_2/NaOH \\ \hline \\ C-OCH_3 \\ \parallel \\ O \end{array}$$

The reaction above is a case of Hoffman Bromamide degradation reaction which converts an amide to a primary amine.

2. (D)

For (a),

$$\mathsf{R} - \mathsf{CH_2} - \mathsf{OH} \xrightarrow{\mathsf{KMnO_4}} \mathsf{RCOOH} \xrightarrow{\mathsf{SOCl_2}} \mathsf{RCoCl} \xrightarrow{\mathsf{NH_3}} \mathsf{RCONH_2} \xrightarrow{\mathsf{NaOBr}} \mathsf{RNH_2}$$

This result in R-NH₂ and not R-CH₂-NH₂

For (b),

$$\mathsf{R}-\mathsf{CH}_2-\mathsf{OH} \xrightarrow{\mathsf{SOCl}_2} \mathsf{R}-\mathsf{CH}_2-\mathsf{CI} \xrightarrow{\mathsf{NaCN}} \mathsf{R}-\mathsf{CH}_2-\mathsf{CN} \xrightarrow{\mathsf{H}_2} \mathsf{R}-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{NH}_2$$

This result in R-CH2-CH2-NH2 and not R-CH2-NH2

For (c),

$$\mathsf{R} - \mathsf{CH}_2 - \mathsf{OH} \xrightarrow{\mathsf{CrO}_3} \mathsf{R} - \mathsf{CHO} \xrightarrow{\mathsf{NH}_3} \mathsf{R} - \mathsf{CH} = \mathsf{NH} \xrightarrow{\mathsf{Ni}} \mathsf{R} - \mathsf{CH}_2 - \mathsf{NH}_2$$

This result in R-CH₂-NH₂

For (d),

$$R - CH_2 - OH \xrightarrow{Cu} R - CHO \xrightarrow{NH_3} R - CH = NH \xrightarrow{LiAlH_4} R - CH_2 - NH_2$$

This is also result in R—CH₂—NH₂

3. (B)

-NH₂ group is first converted to -NHCOCH₃ group through acylation and then after nitration it is converted back to -NH₂ group through Hydrolysis as shown below.

4. (D)

$$CH_3$$
 CH_3
 CH_3

5. (D)

Chloropicrin, also known as nitrochloroform, is a chemical compound currently used as a broad-spectrum antimicrobial, fungicide, herbicide, insecticide, and nematicide. It's chemical structural formula is Cl₃CNO₂.

 $HOC_6H_2(NO_2)_3 + 11 NaOCl \rightarrow 3 Cl_3CNO_2 + 3 Na_2CO_3 + 3 NaOH + 2 NaCl$

6. (D)

7. (C)

The conjugate acid of Me—NH—NH—Me is the most stabilized, indicating that Me—NH—NH—Me is the most basic.

8. (B)

Wijs solution (ICl in acetic acid) is used to produce (Iodonium ion) which adds to aromatic compounds.

(As $_{-NH_2}$ is ortho/para directing and $_{-NO_2}$ is meta directing, will result in the given product.)

9. (B)

NH₄HS reduces the nitrobenzene to Aniline. However, when we have two $-NO_2$ groups, it reduces only one $-NO_2$ group.

$$NO_2$$
 NH_2
 NO_2
 NH_4HS
 NO_2

10. (A)

$$C_{2}H_{5}$$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$

2º Amine on reaction with aldehyde or ketone gives enamine.

Multiple Correct Type

11. (A, B, C, D)

Amines being basic in nature dissolve in dilute HCl and dil. H₂SO₄. They can also coordinate with cu²⁺ and Ag⁺ ions to form soluble complexes as they can act as good ligands.

12. (B, C, D)

Primary aliphatic amines are prepared by Gabrielphthalimide synthesis.

cannot be prepared because it is a secondary amine.

(CH₃)₃C-NH₂ and Ph-NH₂ cannot be prepared because 3° alkyl halides and arylhalides cannot be used in this reaction.

13. (A, C)

$$\begin{array}{c|c}
OH & OCOCH_3 \\
\hline
OCOOH & (CH_3CO)_2O \\
\hline
& pyridine
\end{array}$$

$$\begin{array}{c}
OCOCH_3 \\
\hline
COOH
\end{array}$$

14. (A, B, C)

(A)
$$\frac{1) \operatorname{Hg}(OAC)_{2} - \operatorname{Hhr}/H_{2}O}{2) \operatorname{NCBH}_{4}/H_{2}O} \xrightarrow{OH}$$
(B)
$$\frac{\operatorname{H}^{+}/H_{2}O}{OH}$$

15. (A, B, C, D)

Alcoholic solution produces an electrophile :CCl₂. Hence are likely to show reaction.

16. (A, B, C)

Carbylamine reaction is given by 1° amines

17. (A, B, D)

(A) Beckmann rearrangement

(D)
$$C = O \xrightarrow{H_2O} C = O \xrightarrow{H_$$

18. (A, C, D)

Nitrous acid Test

1°, 2° and 3° amines can be separated by using HNO₂.

1° amines form alcohol with evolution of N₂.

2° amines form nitroso amine which gives green colour with phenol and conc. H₂SO₄.

3° amines forms nitrites which on heating gives nitroso amine which responds to **Liebermann's test.**

1° amine reacts with benzene sulphonyl chloride (Hinsberg's reagent) to form mono alkyl sulphonamide which is soluble in KOH.

2° amines forms similar compound with Hinsberg's reagent but it is insoluble in NaOH.

3° amines does not combine with Hinsberg's reagent.

Reaction with Acetyl Chloride

1° amine reacts with acetyl chloride to form N-substituted amides.

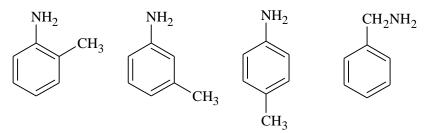
2° amines reacts with acid chlorides to form N, N-disubstituted amides.

3° amines does not react since they do not have replaceable hydrogen on nitrogen.

$$H_3CBr \xrightarrow{KCN} H_3CCN$$

$$CH_3NH_2 \xrightarrow{CHCI_3/KOH} H_3C \xrightarrow{P} C$$

$$\begin{array}{c} O \\ || \\ H_3C - C - NH_2 \xrightarrow{P_4O_{10}} H_3C - C \equiv N \end{array}$$


20. (A, B, C)

- group increases and +I group decreased acidic strength.

Carboxylic group are more acidic than alcohol. And aromatic alcohols are more acidic than aliphatic alcohol.

Integer Type

- 21. (2)
- 22. (4)

23. (5)

Only primary amines can be prepared by this method. The second step involves S_N2 reaction. Therefore

and $CH_2 = CH - X$ are not expected to give S_N2 .

24. (4)

The chemical reaction involved is as follows:

$$-NH_2 + Cl - \overset{O}{C} - CH_3 \xrightarrow{-H} -NH - \overset{O}{C} - CH_3$$

Net increase in mol. Mass on acylation of one $-NH_2$ group = Mol. Mass of CH_3CO group - At. Mass of H = 43 - 1 = 42

Actual increase in mol. Mass on acylation

$$=348-180=168$$

no. CH_3CO group added = 168/42 = 4Hence the compound has $4 - NH_2$ groups.

$$-NH_2$$
 + CI $-CH_3$ $\xrightarrow{-H}$ $-NH$ $-C$ $-CH_3$

Increase in molecular mass on acylation of one $-NH_2$ group is 42. Increase in Molecular mass = 348-180 = 168No. of $-NH_2$ group = $\frac{168}{42} = 4$

- 26. (1) only R₂CH–NO₂ will give this reaction
- 27. (4)
 Primary amine gives positive test for Hoffmann's mustard oil reaction.
- 28. (5)

Aliphatic amines and compound containing + M group are more basic than aniline.

29. (3)

$$R-NH_{2} + CH_{3} Cl \longrightarrow HCl + R-NH CH_{3}$$

$$Compoound_{1}(C_{9}H_{24}N_{4}) + Cl \longrightarrow Compoound_{2}$$

$$Molar\ mass = M_1 = 188$$

 $Molar\ mass = M_2 =$

314

The reaction involves loss of one H and it is replaced by – COCH₃ group.

$$\therefore M_1 - n + 43n = M_2$$

$$188 + 42n = 314$$

$$n = 3$$

30. (4)

Four 1° amines are possible

CH₃CH(NH₂)CH₂CH₃,(CH₃)₃CNH₂