QUALITATIVE ANALYSIS(ANION)

Contents

Particulars		Page No.
Theory		01 – 16
Exercise - 1		17 – 22
Part - I :	Subjective Questions	
Part - II :	Objective Questions	
Part - III :	Match the Columns	
Exercise - 2		22 – 26
Part - I :	Only one option correct type	
Part - II :	Numerical type questions	
Part - III :	One or More Than One Options Correct Type	
Part - IV :	Comprehensions	
Exercise - 3		27
	JEE(ADVANCED) Problems (Previous Years)	
Answer Key		28 - 30
Reliable Ranker	Problems (RRP)	31 – 37
Part - 1 :	Paper JEE (main) pattern	
Part - 2 :	Paper JEE (advanced) pattern	
Part - 3 :	OLYMPIAD (previous Years)	
Part - 4 :	Additional Problems	
RRP Answer Key	,	37
RRP Solutions		38 – 42

JEE(ADVANCED) SYLLABUS

Principles of Qualitative Analysis: Groups I to V (only Ag⁺, Hg²⁺, Cu²⁺, Pb²⁺, Bi³⁺, Fe³⁺, Cr³⁺, Al³⁺, Ca²⁺, Ba²⁺, Zn²⁺, Mn²⁺ and Mg²⁺); Nitrate, halides (excluding fluoride), sulphate and sulphide.

JEE (MAIN) SYLLABUS

Chemical Principle involved in the qualitative salt analysis : Cations - Pb²⁺, Cu²⁺, Al³⁺, Fe³⁺, Zn²⁺, Ni²⁺, Ca²⁺, Ba²⁺, Mg²⁺, NH₄⁺. Anions - CO₃²⁻, S²⁻, SO₄²⁻, NO₃⁻, NO₂⁻, Cl⁻, Br⁻, I⁻. (Insoluble salts excluded).

QUALITATIVE ANALYSIS(ANION)

PART-I

Introduction :

Qualitative analysis of inorganic salts means the identification of cations and anions present in the salt or a mixture of salts. Inorganic salts may be obtained by complete or partial neutralisation of acid with base or vice-versa. In the formation of a salt, the part contributed by the *acid* is called *anion* and the part contributed by the *base* is called *cation*. For example, in the salt $CuSO_4$, Cu^{2+} ion is cation and SO_4^{2-} ion is anion. The systematic procedure for qualitative analysis of an inorganic salt involves the following steps :

(a) Preliminary tests

- Physical appearance (smell, colour)
- Dry heating test.
- Flame test.
- Borax bead test.
- Charcoal cavity test.
- Cobalt nitrate test.
- Solubility in water

(b) Wet tests for acid radicals.

(c) Wet tests for basic radicals.

1. Physical appearance (smell).

Table : 1

Physical Examination

Take a pinch of the salt between your fingers and rub with a drop of water		
Smell Inference		
Ammoniacal smell	NH4 ⁺	
Smell like that of rotten eggs	S ^{2–}	
Vinegar like smell	CH₃COO [−]	

2. Dry Heating Test :

On heating small amount of salt in dry test tube, evolution of the gas(es) or changes in the colour take place. These observations are tabulated below.

Observations	Inference		
Observations	Gas Evolved	Possible Anion	
A colourless, odourless gas is evolved with brisk effervescence.	CO ₂	Carbonate (CO ₃ ²⁻)	
Brown gas with pungen smell.	NO ₂	Nitrite (NO_2^-)	

Colour when cold	Colour when hot	Inference	
Blue Green White Pink	White Dirty white or yellow Yellow Blue	Cu ²⁺ Fe ²⁺ Zn ²⁺ Co ²⁺	

Table 2 : Inferences from the colour change on heating the salt

Table 1: Preliminary test with dilute sulphuric acid

Swelling	Inference
The salt swells up on heating	PO_4^{3-} , BO_3^{3-} indicated

Note :

- Ο Use a perfectly dry test-tube for performing thes test. While drying a test-tube, keeps it in slanting position with its mouth slightly downwards so that the drops of water which condense on the upper cooler parts, do not fall back on the hot bottom, as this may break the tube.
- Ο For testing a gas, a filter paper strip dipped in the appropriate reagent is brought near the mouth of the test tube or alternatively the reagent is taken in a gas-detector and the gas is passed through it.

Ο Parts of Bunsen Burner (A)

Fig. Parts of Bunsen barner

Qualitative Analysis(Anion)

PRINCIPAL PARTS OF BUNSEN FLAME

- (B) PRINCIPAL PARTS OF BUNSEI
 The Inner Dark Cone, A E C
- The Middle Blue Cone, A D C E A
- The Outer Non-luminous Mantle, A B C D A

3. Flame test :

The chlorides of several metals impart characteristic colour to the flame because they are volatile in non-luminous flame. This test is performed with the help of a platinum wire. They impart a characteristic colour to the oxidising flame.

Table : 3			
Colour of Flame	Inference		
Crimson Red / Carmine Red	Lithium		
Golden yellow	Sodium		
Violet/Lilac	Potassium		
Brick red	Calcium		
Crimson	Strontium		
Apple Green/Yellowish Green	Barium		
Green with a Blue centre/Greenish Blue	Copper		

Figure : Flame test

4. Borax Bead test :

This test is employed only for coloured d block metal salts because borax reacts with metal oxy salts to form metal borates or metals, which have characteristic colours.

On heating, borax loses its water of crystallisation and decomposes to give sodium metaborate and boric anhydride.

 $\begin{array}{ccc} Na_{2}B_{4}O_{7} . 10H_{2}O \longrightarrow Na_{2}B_{4}O_{7} + 10H_{2}O \\ Borax \\ Na_{2}B_{4}O_{7} & \longrightarrow 2NaBO_{2} + B_{2}O_{3} \\ Sodium \ metaborate & Boric \ anhydride \end{array}$

On treatment with metal salt, boric anhydride forms metaborate of the metal which gives different colours in oxidising and reducing flame. For example, in the case of copper sulphate, following reactions occur. $CuSO_{+} + B_{0}O_{-} \xrightarrow{Non-lu min ous flame} Cu(BO_{0})_{-} + SO_{-}$

$$SO_4 + B_2O_3 \xrightarrow{\text{Non-turning stant}} Cu(BO_2)_2 + SO_3$$

Cupric metaborate
Blue-green

Two reactions may take place in the reducing flame:

(i) The blue $Cu(BO_2)_2$ is reduced to colourless cuprous metaborate as follows:

 $2Cu(BO_2)_2 + 2NaBO_2 + C \xrightarrow{Luminous flame} 2CuBO_2 + Na_2B_4O_7 + CO_2CuBO_2 + Na_2B_4O_7 + C$

or (ii) Cupric metaborate may be reduced to metallic copper and the bead appears red and opaque.

 $2Cu(BO_2)_2 + 4NaBO_2 + 2C \xrightarrow{Lumin ous flame} 2Cu + 2Na_2B_4O_7 + 2CO$

Motal	Colour in oxidising flame		Colour in reducing flame	
Weta	When Hot	When Cold	When Hot	When Cold
Copper	Green	Blue	Colourless	Brown red
Iron	Brown yellow	Pale yellow/Yellow	Bottle green	Bottle green
Chromium	Yellow	Green	Green	Green
Cobalt	Blue	Blue	Blue	Blue
Manganese	Violet/Amethyst	Red/Amethyst	Grey/Colourless	Grey/Colourless
Nickel	Violet	Brown/Reddish brown	Grey	Grey

Ē

Table : 4

Ŧ

Non luminous flame is called oxidising flame.

Luminous flame is called reducing flame.

(A) in reducing flame

(C) Removing bead from platinum wire

Figure : Borax bead test

All acid radicals which are in JEE syllabus are colourless and diamagnetic. Hence the colour of the salts is only due to the basic radicals.

5. **Charcoal Cavity Test :**

Metallic carbonate when heated in a charcoal cavity decomposes to give corresponding oxide. The oxide appears as a coloured residue in the cavity. Sometimes oxide may be reduced to metal by the carbon of the charcoal cavity.

The test may be performed as follows:

- Make a small cavity in a charcoal block with the help of a charcoal borer [Fig.1.6 (a)]. (i)
- (ii) Fill the cavity with about 0.2 g of the salt and about 0.5 g of anhydrous sodium carbonate.

Fig. 1.6 : (a) Making charcoal cavity (b) Heating salt in the cavity When test is performed with $CuSO_4$, the following change occurs.

> $CuSO_4 + Na_2CO_3 \xrightarrow{Heat} CuCO_3 + Na_2SO_4$ $CuCO_3 \xrightarrow{Heat} CuO + CO_2$

 $CuO + C \xrightarrow{Heat} Cu + CO$

In case of $ZnSO_4$:

$$ZnSO_4 + Na_2CO_3 \xrightarrow{Heat} ZnCO_3 + Na_2SO_4$$

 $ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$ Yellow when hot,

White when cold

Red colour

Table : Inference from the charcoal cavity test

Observations	Inference
Yellow residue when hot and grey metal when cold	Pb ²⁺
White residue with the odour of garlic	As ³⁺
Brown residue	Cd ²⁺
Yellow residue when hot and white when cold	Zn ²⁺

6. Cobalt Nitrate Test :

If the residue in the charcoal cavity is white, cobalt nitrate test is performed.

(i) Treat the residue with two or three drops of cobalt nitrate solution.

(ii) Heat it strongly in non-luminous flame with the help of a blow pipe and observe the colour of the residue. On heating, cobalt nitrate decomposes into cobalt (II) oxide, which gives a characteristic colour with metal oxide present in the cavity.

Thus, with ZnO, AI_2O_3 and MgO, the following reactions occur.

$$2Co(NO_3)_2 \xrightarrow{Heat} 2CoO + 4NO_2 + O_2$$

$$CoO + ZnO \longrightarrow CoO.ZnO$$

$$Green$$

$$CoO + MgO \longrightarrow CoO. MgO$$

$$Pink$$

$$CoO + Al_2O_3 \longrightarrow CoO. Al_2O_3$$
Blue

7. SOLUBILITY CHART (IN WATER)

S.No.	Anion	Solubility / Exception
1.	CO ₃ ²⁻	Except carbonates of alkali metals and of ammonium, all other normal carbonates are insoluble.
2.	SO ₃ ²⁻	Only the sulphites of the alkali metals and of ammonium are water soluble. The sulphite of other metals are either sparingly soluble or insoluble.
3.	S ²⁻	The acid, normal and polysulphide of alkali metals are soluble in water. The normal sulphides of most other metals are insoluble; those of the alkaline earths are sparingly soluble, but are gradually changed by contact with water into soluble hydrogen sulphides.
4.	NO ₂ ⁻ , NO ₃ ⁻	Almost all nitrites and nitrates are soluble in water. $AgNO_2$ is sparingly soluble. Nitrates of mercury and bismuth give basic salts on treatment with water. These are soluble in dilute nitric acid.
5.	CH₃COO⁻	Acetates are water soluble except Ag(I) and Hg(II) acetates which are sparingly soluble.
6.	CI-	Most chlorides are soluble in water. PbCl ₂ (sparingly soluble in cold but readily soluble in boiling water), Hg ₂ Cl ₂ , AgCl, CuCl, BiOCl, SbOCl and Hg ₂ OCl ₂ are insoluble in water.
7.	Br-	Silver, mercury(I) and copper(I), bromides are insoluble. Lead bromide is sparingly soluble in cold but more soluble in boiling water. All other bromides are soluble in water.
8.	ŀ	Silver, mercury(I), mercury(II), copper(I), lead and bismuth(III) iodides are the least soluble salts. All other iodides are water soluble.
9.	SO ₄ ²⁻	The sulphates of barium, silver lead are insoluble in water, those of calcium and mercury(II) are slightly soluble. Some basic sulphates of mercury, bismuth and chromium are also insoluble, but these dissolves in dilute hydrochloric or nitric acid.
10	PO ₄ ³⁻	The phosphate of the alkali metals, with the exception of lithium and ammonium, are soluble in water ; the primary phosphate of the alkaline earth metals are soluble. All the phosphates of the other metals and also the secondary and tertiary phosphate of the alkaline earth metals are sparingly soluble or insoluble in water.

Preparation of sodium carbonate extract :

Take 1-2 g of salt/salts mixture and three times the amount of pure solid sodium carbonate in a borosil conical flask. Add 20 mL of distilled water and boil the contents for 10 minutes. Cool the solution and then filter. The Filtrate is termed as "Sodium carbonate extract".

Sodium carbonate reacts with the inorganic salt to form water soluble sodium salt of the acid radical.

 $BaCl_2 + Na_2CO_3 \longrightarrow BaCO_3 \downarrow (white) + 2NaCl (aq)$

 $Cd_3 (PO_4)_2 + 3Na_2CO_3 \longrightarrow 3CdCO_3 \downarrow + 2Na_3PO_4 (aq)$

Sodium carbonate extract is used when

(a) salt is only partially soluble in water or insoluble

(b) cations interfere with the tests for acid radicals or the coloured salt solutions may be too intense in colour that the test results are not too clear.

As sodium carbonate extract contains excess of sodium carbonate, it should be neutralised with a suitable acid before proceeding for analysis of an anion.

Note : S.E. is not used for testing CO^{2-}_{3} or HCO^{-}_{3} ions.

Figure : Preparation of sodium carbonate extract

Analysis of ANIONS (Acidic Radicals) :

Analysis of anions (acidic radicals) can be broadly divided in to two groups.

(A) **GROUP 'A' RADICALS** : It involves those anions which are characterised by volatile products by reaction with HCI/H_2SO_4 It is further subdivided in to two groups as given below.

(a) Dilute Sulphuric acid/Dilute Hydrochloric acid : The anions of this group liberate gases or vapours with dilute sulphuric acid/hydrochloric acid.

Observation	Gas evolved	Acidic radical
Effervescence with the evolution of a colourless and odourless gas which turns lime water milky.	CO ₂	CO ₃ ²⁻
Evolution of colourless gas having smell of rotten egg which turns lead acetate paper black.	H ₂ S	S ²⁻
Colourless gas having suffocating odour (like burning sulphur) which turns acidified $K_2Cr_2O_7$ paper green.	SO ₂	SO ₃ ²⁻
Evolution of reddish brown pungent smelling gas which turns wet starch –iodide paper blue.	NO ₂	NO ₂ -
Colourless gas having smell of vinegar.	HAC(g)	CH₃COO-
No peculiar gas is evolved.	-	All above are absent

(b) Concentrated Sulphuric acid group : The anions of this group liberate vapours or gases with conc. H₂SO₄.

Table : 6		
Observation	Gas evolved	Radical
Colourless gas with pungent smell which gives dense white fumes with a glass rod dipped in $NH_4OH.(aq.)$	HCI	CI-
Reddish brown gas with pungent smell, intensity of reddish brown fumes increases on addition of solid MnO ₂ . Also it turns starch paper orange red.	Br ₂	Br-
Evolution of violet vapours which turns starch paper blue.	l2	I–
Evolution of reddish brown fumes which intensifies on addition of copper turnings. Also it turns wet starch iodide paper blue.	NO ₂	NO3-

⁽B) **GROUP 'B' RADICALS**: Anions of this group do not give vapours or gases with dilute as well as concentrated H_2SO_4 but are characterised by their specific reactions in solutions. This group is further sub divided into two groups based on the type of the reactions.

- (a) Precipitation reactions : SO_4^{2-} , PO_4^{3-} etc.
- (b) Oxidation and reduction in solutions : CrO_4^{2-} , $Cr_2O_7^{2-}$ etc.

Individual tests :

•

(A) GROUP 'A' RADICALS :

(a) DILUTE SULPHURIC ACID/DILUTE HYDROCHLORIC ACID GROUP :

- 1. CARBONATE ION (CO_3^{2-}):
- Dilute H₂SO₄ test : A colourless odourless gas is evolved with brisk effervescence.

$$CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + CO_2^{\uparrow}$$

• Lime water/Baryta water (Ba(OH)₂) test : The liberated gas can be identified by its property of rendering lime water (or baryta water) turbid.

$$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow (milky) + H_2O$$

On prolonged passage of CO_2 , milkiness disappears.

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$$
 (soluble) $\xrightarrow{\Delta} CaCO_3 \downarrow + H_2O + CO_2$

• Magnesium sulphate test (for soluble carbonates) :

$$CO_3^{2-}$$
 (aq) + MgSO₄ (aq) \longrightarrow MgCO₃ \downarrow (white) + SO₄²⁻ (aq)

- Silver nitrate solution : White precipitate is formed
 - $CO_3^{2-} + Ag^+ \longrightarrow Ag_2CO_3 \downarrow$ (soluble in HNO₃ and ammonia)
- Phenolphthalein is turned pink by soluble carbonates and colourless by soluble hydrogen carbonates.
- Mercury(II) chloride does not form precipitate with hydrogen carbonate ions, while in a solution of normal carbonates a reddish–brown precipitate of basic mercury(II) carbonate (3HgO. HgCO₃ = $Hg_4O_3CO_3$) is formed.

$$\text{CO}_3^{2-}$$
 + 4 Hg²⁺ + 3 H₂O \longrightarrow Hg₄O₃CO₃ \downarrow + 6H⁺

- Soluble bicarbonates give white precipitate with $MgSO_4$ (aq) / $MgCl_2$ (aq) only on heating. $Mg^{2+} + 2HCO_3^- \longrightarrow Mg(HCO_3)_2 \xrightarrow{\Lambda} MgCO_3 \downarrow + H_2O + CO_2$
- Action of heat :

Bicarbonates: $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$

Carbonates : Except carbonates of Na, K, Rb, Cs ; the Li₂CO₃ and all alkaline earth metals decompose as given below :

 $\text{Li}_2\text{CO}_3 \xrightarrow{\Lambda} \text{Li}_2\text{O} + \text{CO}_2$; MgCO₃ $\xrightarrow{\Lambda}$ MgO + CO₂; Ag₂CO₃ $\xrightarrow{\Lambda}$ 2Ag + CO₂

- 2. SULPHITE ION (SO_3^{2-}) :
- **Dilute H_2SO_4 test :** Decomposition of salt is more rapidly on warming, with the evolution of sulphur dioxide.

 $CaSO_3 + H_2SO_4 \longrightarrow CaSO_4 + H_2O + SO_2 \uparrow$ SO₂ has odour of burning sulphur.

- Acidified potassium dichromate test : The filter paper dipped in acidified $K_2Cr_2O_7$ turns green. $Cr_2O_7^{2-} + 2H^+ + 3SO_2 \longrightarrow 2Cr^{3+}$ (green) + $3SO_4^{2-} + H_2O$.
- **Barium chloride/Strontium chloride solution :** White precipitate of barium (or strontium) sulphite is obtained.

$$SO_3^{2-} + Ba^{2+}/Sr^{2+} \longrightarrow BaSO_3/SrSO_3 \downarrow (white).$$

(Soluble in dilute)

White precipitate $(BaSO_3)$ on standing is slowly oxidised to sulphate which is insoluble in dilute mineral acids. This change is rapidly effected by warming with bromine water, a little concentrated nitric acid or with hydrogen peroxide.

 $\begin{array}{l} 2 \text{ BaSO}_{3} \downarrow + \text{O}_{2} \longrightarrow 2 \text{ BaSO}_{4} \downarrow \\ \text{BaSO}_{3} \downarrow + \text{Br}_{2} + \text{H}_{2} \text{O} \longrightarrow 2 \text{ BaSO}_{4} \downarrow + 2 \text{ HBr} \end{array}$

- These reactions are not given by carbonates (distinction from carbonates).
 - Zinc and sulphuric acid test : Hydrogen sulphide gas is evolved.

 $SO_3^{2-} + 3Zn^{2+} + 8H^+ \longrightarrow H_2S^+ + 3Zn^{2+} + 3H_2O$

• **Lime water test :** A white turbidity is formed. The precipitate dissolves on prolonged passage of the gas, due to the formation of hydrogen sulphite ions.

 $Ca(OH)_2 + SO_2 \longrightarrow CaSO_3 \downarrow (milkiness) + H_2O$

 $CaSO_3 \downarrow + SO_2 + H_2O \longrightarrow Ca(HSO_3)_2$ (soluble)

• Lead acetate or lead nitrate solution : White precipitate of $PbSO_3$ is obtained. $SO_3^{2-} + Pb^{2+} \longrightarrow PbSO_3 \downarrow$ (soluble in dil. HNO₃ on boiling)

3. SULPHIDE ION (S²⁻):

• **Dilute** H_2SO_4 test : Rotten egg smelling gas is obtained.

 $S^{2-} + 2H^{+} \longrightarrow H_2S^{+}$

- Lead acetate test : Filter paper moistened with lead acetate solution turns black. $(CH_3COO)_2Pb + H_2S \longrightarrow PbS \downarrow (black) + 2CH_3COOH.$
- **Sodium nitroprusside test** : Purple coloration is obtained.

 $S^{2-} + [Fe(CN)_5(NO)]^{2-} \longrightarrow [Fe(CN)_5NOS]^{4-} (violet/purple).$

It is a ligand change reaction not a redox where NO⁺ changes to (NOS)⁻¹.

No reaction occurs with solution of H_2S or free gas. If however, filter paper moistened with a solution of the reagent is made alkaline with NaOH or NH_3 solution, a purple colouration is produced with free H_2S also.

- \mathbb{C} H₂S does not provide sufficient concentration of S²⁻ ions so that it does not give sodium nitroprusside test.
- Cadmium carbonate suspension/ Cadmium acetate solution : Yellow precipitate is formed. Na₂S + CdCO₃ → CdS ↓ + Na₂CO₃
- **Silver nitrate solution :** Black precipitate is formed which is insoluble in cold, but soluble in hot, dilute nitric acid.

$$Ag^+ + S^{2-} \longrightarrow Ag_2S \downarrow$$

• **Methylene blue test :** NN–Dimethyl–p–phenylenediamine is converted by iron(III) chloride and hydrogen sulphide in strongly acid solution into the water–soluble dyestuff, methylene blue. This is a sensitive test for soluble sulphides and hydrogen sulphide.

4. NITRITE ION
$$(NO_2^{-})$$
:

Dilute H₂SO₄ test : Solid nitrite in cold produces a transient pale blue liquid (due to the presence of free nitrous acid, HNO₂ or its anhydride, N₂O₃) first and then evolution of pungent smelling reddish brown vapours of NO₂ takes place.

$$\begin{array}{ccc} \mathsf{NO}_2^- + \mathsf{H}^+ & \longrightarrow \mathsf{HNO}_2 \ ; \ (\mathsf{2HNO}_2 & \longrightarrow \mathsf{H}_2\mathsf{O} \ + \mathsf{N}_2\mathsf{O}_3); \\ \mathsf{3HNO}_2 & \longrightarrow & \mathsf{HNO}_3 + \mathsf{2NO} + \mathsf{H}_2\mathsf{O} \ ; \ \mathsf{2NO} + \mathsf{O}_2 & \longrightarrow & \mathsf{2NO}_2 \ \uparrow \end{array}$$

• Starch iodide test : The addition of a nitrite solution to a solution of potassium iodide, followed by acidification with acetic acid or with dilute sulphuric acid, results in the liberation of iodine, which may be identified by the blue colour produced with starch paste. A similar result is obtained by dipping potassium iodide–starch paper moistened with a little dilute acid into the solution.

 $2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO^+ + 4CH_3COO^- + 2H_2O$ Starch + $I_3^- \longrightarrow$ Blue (starch iodine adsorption complex)

Ferrous sulphate test (Brown ring test): When the nitrite solution is added carefully to a concentrated solution of iron(II) sulphate acidified with dilute acetic acid or dilute sulphuric acid, a brown ring appears due to the formation of [Fe(H₂O)₅NO]SO₄ at the junction of the two liquids. If the addition has not been made slowly and caustiously, a brown colouration results.

$$\begin{array}{rcl} \mathsf{NO_2}^- + \mathsf{CH_3COOH} & \longrightarrow & \mathsf{HNO_2} + \mathsf{CH_3COO}^-\\ \mathsf{3HNO_2} & \longrightarrow & \mathsf{H_2O} + \mathsf{HNO_3} + \mathsf{2NO} \uparrow\\ \mathsf{Fe}^{2+} + \mathsf{SO_4}^{2-} + \mathsf{NO} \uparrow & \longrightarrow & [\mathsf{Fe}, \mathsf{NO}]\mathsf{SO_4} \end{array}$$

• **Thiourea test :** When a dilute acetic acid solution of a nitrite is treated with a little solid thiourea, nitrogen is evolved and thiocyanic acid is produced. The latter may be identified by the red colour produced with dilute HCl and FeCl₃ solution.

$$NaNO_2 + CH_3COOH \longrightarrow HNO_2 + CH_3COONa$$

 $HNO_2 + H_2NCSNH_2(s)$ (thiourea) $\longrightarrow N_2 + HSCN + 2H_2O$

 $FeCl_3 + 3HSCN \xrightarrow{dilHCl} Fe(SCN)_3$ (blood red colouration) + 3HCl

Acidified potassium permanganate solution : Pink colour of KMnO₄ is decolourised by a solution of a nitrite, but no gas is evolved.

$$5 \text{ NO}_2^- + 2 \text{ MnO}_4^- + 6 \text{ H}^+ \longrightarrow 5 \text{ NO}_3^- + 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O}$$

Silver nitrate solution :

 NO_2^- + $AgNO_3(aq.) \longrightarrow AgNO_2 \downarrow (white) + NO_3^-$ (Water soluble metal nitrite)

5. ACETATE ION (CH₃COO⁻)

• **Dil.** H₂SO₄ test : colourless gas with vinegar smell is obtained.

$$(CH_3COO)_2Ca + H_2SO_4 \longrightarrow 2CH_3COOH + CaSO_4$$

Neutral ferric chloride test : A deep red/ blood red colouration (no precipitate) indicates the presence of acetate.

$$6CH_{3}COO^{-} + 3Fe^{3+} + 2H_{2}O \longrightarrow [Fe_{3}(OH)_{2}(CH_{3}COO)_{6}]^{+} + 2H^{+}$$

Ag⁺

When solution is diluted with water and boiled, brownish red precipitate of basic iron (III) acetate is obtained.

$$[Fe_{3}(OH)_{2}(CH_{3}COO)_{6}]^{+} + 4H_{2}O \xrightarrow{\text{Boil}} 3Fe(OH)_{2}CH_{3}COO \downarrow + 3CH_{3}COOH + H^{+}$$

Silver nitrate solution test :

CH₃COOAg↓

(Water soluble metal acetate)

(soluble in boiling water as well as in ammonia solution)

(b) CONC. H₂SO₄ GROUP :

- 1. CHLORIDE ION (CI):
- **Concentrated H_2SO_4 test**: Colourless pungent smelling gas is evolved which gives fumes of NH_4CI when a glass rod dipped in aq. ammonia is brought in contact.
 - $CI^- + H_2SO_4 \longrightarrow HCI + HSO_4^-$
- $NH_4OH + HCI \longrightarrow NH_4CI \uparrow (white fumes) + H_2O.$
- $\ensuremath{^{\textcircled{S}}}$ 2NaCl + MnO₂ + 2H₂SO₄ (conc.) $\xrightarrow{\Delta}$ Na₂SO₄ + MnSO₄ + 2H₂O + Cl₂
- Silver nitrate test :

 $Cl^- + Ag^+ \longrightarrow AgCl \downarrow (white)$ $3AgCl\downarrow + AsO_3^{3-} \longrightarrow Ag_3AsO_3\downarrow + 3Cl^-.$ (yellow)

White precipitate is soluble in aqueous ammonia and precipitate reappears with HNO₃.

AgCI + 2NH₄OH
$$\rightarrow$$
 [Ag(NH₃)₂]CI (Soluble) + 2H₂O

• Chromyl chloride test :

$$4CI^{-}(s) + Cr_2O_7^{2-}(s) + 6H^{+}(conc.) \xrightarrow{\Delta} 2CrO_2CI_2(deep red vapours) + 3H_2O_2^{-}(s)$$

When deep red vapours are passed into sodium hydroxide solution, a yellow solution of sodium chromate is formed, which when treated with lead acetate gives yellow precipitate of lead chromate.

$$CrO_2Cl_2 + 4OH^- \longrightarrow CrO_4^{2-} + 2Cl^- + 2H_2O$$

 $CrO_4^{2-} + Pb^{+2} \longrightarrow PbCrO_4 \downarrow (yellow)$

- Heavy metal chlorides such as Hg_2Cl_2 , $HgCl_2$, $SnCl_4$, AgCl, $PbCl_2$ and $SbCl_3$, CuCl do not respond to this test as they are partially dissociated. This test is given generally by ionic chlorides.
- Test should be carried out in a dry test tube otherwise chromic acid will be formed.

$$CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$$

2. BROMIDE ION (Br):

Ŧ

• **Concentrated H_2SO_4 test :** First a reddish-brown solution is formed, then reddish-brown bromine vapour accompanies the hydrogen bromide (fuming in moist air) is evolved.

$$2NaBr + H_2SO_4 \longrightarrow Na_2SO_4 + 2HBr$$

2HBr + $H_2SO_4 \longrightarrow Br_2 \uparrow + 2H_2O + SO_2$

$$2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2^{\uparrow} + K_2SO_4 + MnSO_4 + 2H_2O_4$$

Silver nitrate test : Pale yellow precipitate is formed

$$NaBr + AgNO_3 \longrightarrow AgBr \downarrow + NaNO_3$$

Yellow precipitate is partially soluble in dilute aqueous ammonia but readily dissolves in concentrated ammonia solution.

$$AgBr + 2NH_4OH \longrightarrow [Ag(NH_3)_2] Br + H_2O$$

• Lead acetate test : Bromides on treatment with lead acetate solution, gives a white crystalline precipitate of lead bromide, which is soluble in boiling water giving colourless solution.

2Br[−] + Pb⁺²
$$\longrightarrow$$
 PbBr₂ ↓

• **Chlorine water test (organic layer test) :** When to a sodium carbonate extract of metal bromide containing CCl₄, CHCl₃ or CS₂, chlorine water is added and the content is shaken and then allow to settle down reddish brown colour is obtained in organic layer.

 $2Br^- + Cl_2 \longrightarrow 2Cl^- + Br_2^+$.

 $Br_2 + CHCl_3 / CCl_4 \longrightarrow Br_2$ (dissolve to give reddish brown colour in organic solvent). With excess of chlorine water, the bromine is converted into yellow bromine monochloride

$$Br_2 \uparrow + Cl_2 \uparrow \longrightarrow 2BrCl$$

(yellow)

• **Starch paper test :** When starch paper is brought in contact with evolving bromine gas orange red spots are produced.

 Br_2 + starch — \rightarrow starch bromine adsorption complex (orange red)

• **Potassium dichromate and concentrated H_2SO_4:** When a mixture of solid bromide, $K_2Cr_2O_7$ and concentrated H_2SO_4 is heated and evolved vapours are passed through water, a orange red solution is obtained.

 $6\mathsf{KBr} + \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 + 7\mathsf{H}_2\mathsf{SO}_4 \longrightarrow 3\mathsf{Br}_2^\uparrow + \mathsf{Cr}_2(\mathsf{SO}_4)_3 + 4\mathsf{K}_2\mathsf{SO}_4 + 7\mathsf{H}_2\mathsf{O}$

3. IODIDE ION (\overline{I}) :

• **Concentrated** H_2SO_4 test : Pungent smelling violet vapours are evolved.

 $2NaI + H_2SO_4 \longrightarrow Na_2SO_4 + 2HI$

2HI + $H_2SO_4 \longrightarrow I_2^{\uparrow}$ (dark violet) + 2 H_2O + S O_2

Evolution of dark violet fumes intensifies on adding a pinch of MnO₂.

 $3I^- + MnO_2 + 2H_2SO_4 \longrightarrow I_3^- \uparrow + Mn^{2+} + 2SO_4^{2-} + 2H_2S$

• **Starch paper test :** lodides are readily oxidised in acid solution to free iodine; the free iodine may than be identified by deep blue colouration produced with starch solution.

 $3I^- + 2NO_2^- + 4H^+ \longrightarrow I_3^- + 2NO \uparrow + 2H_2O.$

• Silver nitrate test : Bright yellow precipitate is formed.

 $I^- + Ag^+ \longrightarrow AgI \downarrow$

- Bright yellow precipitate is insoluble in dilute aqueous ammonia but is partially soluble in concentrated ammonia solution.
- **Chlorine water test (organic layer test) :** When chlorine water is added to a solution of iodide, free iodine is liberated which colours the solution brown and on shaking with CS₂, CHCl₃ or CCl₄, it dissolves in organic solvent forming a violet solution.

 $2Nal + Cl_2 \longrightarrow 2NaCl + l_2$

 $I_2 + CHCI_3 \longrightarrow I_2$ (dissolves in organic solvent to give violet layer)

• Lead acetate solution : A yellow precipitate is formed.

 $2I^- + Pb^{+2} \longrightarrow PbI_2 \downarrow$

• **Potassium dichromate and concentrated sulphuric acid :** Violet vapours are liberated, and no chromate is present in distillate.

$$6I^{-} + Cr_2O_7^{-2} + 2H_2SO_4 \longrightarrow 3I_{2+}Cr^{3+} + 7SO_4^{-2-} + 7H_2O_4^{-2-}$$

Action of heat :

Most of halides are stable but few decompose as

$$\begin{array}{ll} 2\text{FeCl}_{3} \longrightarrow 2\text{FeCl}_{2} + \text{Cl}_{2} \ ; & \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O} \longrightarrow \text{MgO} + 2\text{HCI} + 5\text{H}_{2}\text{O} \\ \text{Hg}_{2}\text{Cl}_{2} \longrightarrow \text{HgCl}_{2} + \text{Hg} \ ; & \text{NH}_{4}\text{CI} \longrightarrow \text{NH}_{3} + \text{HCI} \\ 2\text{Cul}_{2} \longrightarrow \text{Cu}_{2}\text{I}_{2} + \text{I}_{2} \ (\text{without heating}) \end{array}$$

4. NITRATE ION (NO₃⁻) :

- **Concentrated H₂SO₄ test**: Pungent smelling reddish brown vapours are evolved. $4NO_3^- + 2H_2SO_4 \longrightarrow 4NO_2^+ + O_2^- + 2SO_4^{2-} + 2H_2O$
- Addition of bright copper turnings or paper pellets intensifies the evolution of reddish brown gas.

$$2NO_{3}^{-} + 4H_{2}SO_{4} + 3Cu \longrightarrow 3Cu^{2+} + 2NO \uparrow + 4SO_{4}^{2-} + 4H_{2}O ; 2NO \uparrow + O_{2} \longrightarrow 2NO_{2} \uparrow 4C \text{ (paper pellet)} + 4HNO_{3} \longrightarrow 2H_{2}O + 4NO_{2} + 4CO_{2}.$$

• **Brown ring test**: When a freshly prepared saturated solution of iron (II) sulphate is added to nitrate solution and then concentrated H_2SO_4 is added slowly from the side of the test tube, a brown ring is obtained at the junction of two layers.

 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$

$$6FeSO_4 + 2HNO_3 + 3H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + 2NO + 4H_2O_3 + 2HO_3 + 2HO_3 + 2HO_4 + 2HO_3 + 2HO_4 + 2HO_3 + 2HO_3$$

or $2NO_3^- + 4H_2SO_4 + 6Fe^{2+} \longrightarrow 6Fe^{3+} + 2NO \downarrow + 4SO_4^{2-} + 4H_2O.$

 $Fe^{2+} + NO^{+} + 5H_2O \longrightarrow [Fe^{I}(H_2O)_5 NO^+]^{2+}$ (brown ring).

Figure : Brown ring test

- On shaking and warming the mixture, NO escapes and a yellow solution of iron(III) ions is obtained.
- Bromides and iodides interfere in brown ring test as liberated halogens obscure the brown ring.
 Nitrites also interfere the brown ring test and can be removed by adding a little sulphamic acid, or urea.

 $\begin{array}{l} \mathsf{H}_{2}\mathsf{NHSO}_{3}+\mathsf{NO}_{2}^{-} \longrightarrow \mathsf{N}_{2}\uparrow +\mathsf{SO}_{4}^{2-}+\mathsf{H}^{+}+\mathsf{H}_{2}\mathsf{O}\\ \mathsf{NO}_{2}^{-}+\mathsf{H}^{+} \xrightarrow{\mathsf{HCI}} \mathsf{HNO}_{2}\\ \mathsf{CO}(\mathsf{NH}_{2})_{2}+2\mathsf{HNO}_{2} \longrightarrow 2\mathsf{N}_{2}\uparrow +\mathsf{CO}_{2}\uparrow +3\mathsf{H}_{2}\mathsf{O} \end{array}$

Diphenyl amine test : Blue ring is formed at the junction of two liquids (reagent and nitrate salt solutions).

$$\begin{split} &\mathsf{NaNO}_3 + \mathsf{H}_2\mathsf{SO}_4 \longrightarrow \mathsf{NaHSO}_4 + \mathsf{HNO}_3 \\ &\mathsf{2HNO}_3 \longrightarrow \mathsf{H}_2\mathsf{O} + \mathsf{2NO}_2 + [\mathsf{O}] \\ &\mathsf{2C}_6\mathsf{H}_5\mathsf{NHC}_6\mathsf{H}_5 + [\mathsf{O}] \longrightarrow (\mathsf{C}_6\mathsf{H}_5)_2\,\mathsf{N} - \mathsf{N}\,(\mathsf{C}_6\mathsf{H}_5)_2\,(\mathsf{blue\,ring}) + \mathsf{H}_2\mathsf{O}. \end{split}$$

This test is also given by various oxidising agents like CrO_4^{2-} , $Cr_2O_7^{2-}$, ClO_3^{-} , BrO_3^{-} , IO_3^{-} , NO_2^{-} etc. To distinguish Br₂ with NO₂ (both are reddish brown gases)

(a) Br_2 + starch–iodide paper \rightarrow Blue black colour spots do not develop immediately as Br_2 is a weaker oxidising agent whereas NO₂ being strong oxidising agent develops the blue black colour immediately.

(b) Bromine develops orange-red colour spots on starch paper.

(B) GROUP 'B' RADICALS :

Group of anions which do not give any gas with dilute as well as concentrated H_2SO_4 in cold but give precipitate with certain reagents :

These acid radicals are identified in inorganic salts by their individual tests as given below

1. SULPHATE ION (SO₄²⁻):

• Barium chloride test :

W.E. + Barium chloride (aq) \longrightarrow White precipitate Na₂SO₄ + BaCl₂ \longrightarrow BaSO₄ \downarrow (white) + 2NaCl.

White precipitate is insoluble in warm dil. HNO_3 as well as HCl but moderately soluble in boiling

concentrated hydrochloric acid and conc. H_2SO_4 . PbSO₄ + $H_2SO_4 \longrightarrow$ PbHSO₄(soluble)

W.E.+ Lead acetate \longrightarrow white precipitate Na₂SO₄ + (CH₃COO)₂Pb \longrightarrow PbSO₄ \downarrow (White) + 2CH₃COONa

White precipitate soluble in excess of hot ammonium acetate and ammonium tartrate.

 $\begin{array}{l} \mathsf{PbSO}_4 + 2\mathsf{CH}_3\mathsf{COONH}_4 \longrightarrow (\mathsf{NH}_4)_2 [\mathsf{Pb}(\mathsf{CH}_3\mathsf{COO})_4 \text{ soluble.} + (\mathsf{NH}_4)_2 \mathsf{SO}_4 \\ \mathsf{PbSO}_4 + (\mathsf{NH}_4)_2 \mathsf{C}_4 \mathsf{H}_4 \mathsf{O}_6 \longrightarrow (\mathsf{NH}_4)_2 \mathsf{SO}_4 + (\mathsf{NH}_4)_2 [\mathsf{Pb}(\mathsf{C}_4 \mathsf{H}_4 \mathsf{O}_6)_2] \mathsf{soluble} \end{array}$

Match stick test :

(a) W.E. + Barium chloride \longrightarrow white precipitate

 $Na_2SO_4 + BaCl_2 \longrightarrow 2NaCl + BaSO_4 \downarrow (white)$

(b) White precipitate + $Na_2 CO_3(s)$ mix and apply the paste on the end of the carbonized match stick or a wooden splinter. Put it in the reducing flame.

 $BaSO_{4} (s) + Na_{2}CO_{3}(s) \longrightarrow Na_{2}SO_{4} + BaCO_{3} \downarrow \text{ (white)}$ $Na_{2}SO_{4} + 4C \longrightarrow Na_{2}S + 4CO$

(c) Now dip the match stick in sodium nitroprusside solution, purple colour near the fused mass is developed.

 $Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow Na_4[Fe(CN)_5NOS]$ (purple)

• Silver nitrate test : White precipitate is obtained.

 SO_4^{2-} + $2Ag^+ \longrightarrow Ag_2SO_4 \downarrow$

2. PHOSPHATE ION (PO43-):

• Ammonium molybdate test :

 $Na_{2}HPO_{4} (aq) + 12(NH_{4})_{2}MoO_{4} + 23HNO_{3} \rightarrow (NH_{4})_{3}PMo_{12}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 21NH_{4}NO_{3} + 12H_{2}O_{40} \downarrow (canary yellow) + 2NaNO_{3} + 2N$

- Some times ammonium phosphomolybdate is also represented by the formula (NH₄)₃ PO₄. 12MoO₃
- Magnesium nitrate or magnesia mixture test : W.E. + Magnesium nitrate reagent and allows to stand for 4-5 minutes, white crystalline precipitate is formed.
 Na₂HPO₄ (aq) + Mg(NO₃)₂ (aq) + NH₄OH(aq) → Mg(NH₄) PO₄ ↓ (white) + 2NaNO₃ + H₂O Magnesia mixture is a solution containing MgCl₂, NH₄Cl and a little aqueous NH₃.
- Silver nitrate solution : Yellow precipitate is formed which is soluble in dilute ammonia and in dilute nitric acid.

$$PO_4^{3-} + 3Ag^+ \longrightarrow Ag_3PO_4 \downarrow$$

3. BORATE ION (BO₃³⁻):

Salt (0.2 g) + conc. H₂SO₄ (1 mL) + Ethyl alcohol (4-5 mL) mix in a test tube and then heat. Ignite the evolved vapours with the help of Bunsen flame, green edged flame is obtained.

$$\begin{aligned} & 2\text{Na}_3\text{BO}_3 + 3\text{H}_2\text{SO}_4 \longrightarrow 3\text{Na}_2\text{SO}_4 + 2\text{H}_3\text{BO}_3 \\ & 3\text{C}_2\text{H}_5\text{OH} + \text{H}_3\text{BO}_3 \longrightarrow (\text{C}_2\text{H}_5)_3\text{BO}_3 \text{ or } (\text{C}_2\text{H}_5\text{O})_3\text{B} \uparrow + 3\text{H}_2\text{O} \end{aligned}$$

MISCELLANEOUS SOLVED PROBLEMS (MSPs)

1.	BaCl ₂ solution gives a w with the evolution of color agent in the textile indu	white precipitate with a sol ourless, pungent smelling stries. The salt contains:	lution of a salt, which diss gas. The gas as well as th	solves in dilute hydrochloric acid le salt both are used as bleaching
A	(A) sulphite	(B) sulphide	(C) acetate	(D) carbonate
Ans. Sol	(A) Ba ²⁺ + SO ²⁻ Sa ²⁺	SO ∣ (white)		
•••	BaSO ₃ + 2HCI \longrightarrow B SO ₃ ²⁻ and SO ₂ both act	$BaCl_2 + SO_2$ (colourless put as bleaching agent.	ingent smelling gas) + H_2	0
2.	Pink colour of acidified k compound containing th	$KMnO_4$ is decolourised but ne following acid radical.	t there is no evolution of a	ny gas. This may happen with the
	(A) SO ₃ ²⁻	(B) NO ₂ ⁻	(C) S ²⁻	(D) All of these
Ans. Sol.	(D) (A) $5SO_3^{2-} + 2MnO_4^{-} + 6$ (B) $2MnO_4^{-} + 5NO_2^{-} + 6$ (C) $2MnO_4^{-} + H_2S + 6H$	$\begin{array}{rcl} & 6H^{*} & \longrightarrow & 2Mn^{2*} + 5SO \\ & 5H^{*} & \longrightarrow & 2Mn^{2*} + 5NO_{3} \\ & ^{*} & \longrightarrow & 2Mn^{2*} + 5S \downarrow + \end{array}$	0 ^{2−} + 3H ₂ O ^{3−} + 3H ₂ O - 8H ₂ O	
3. Ans	Which of the following g (A) Sodium chloride (C) Sodium nitrate	ives a precipitate with Pb	(NO ₃) ₂ but not with Ba(NO (B) Sodium acetate (D) Disodium hydrogen p	9 ₃) ₂ ? phosphate
Ans.	(A) $Pb^{2+} + 2Cl^{-} \longrightarrow F$ (B) $(CH_3COO)_2 Pb$ and ((C) Nitrates are mostly s (D) $3Pb^{2+} + 2HPO_4^{2-} \longrightarrow F$	PbCl ₂ \downarrow (white) ; Ba ²⁺ + 2 (CH ₃ COO) ₂ Ba both are wa soluble in water \longrightarrow Pb ₃ (PO ₄) ₂ \downarrow (white) +	$2CI^{-} \longrightarrow BaCI_{2}$ (water s ater soluble salts. + $2H^{+}$; $Ba^{2+} + HPO_{4}^{2-}$ —	soluble) → BaHPO₄ ↓ (white)
4.	When H_2S gas is passed	d through an ammonical s	salt solution X, a slightly w	hite precipitate is formed. The X
	can be : (A) a cobalt salt	(B) a lead salt	(C) a zinc salt	(D) a silver salt
Ans. Sol.	$\begin{array}{l} \textbf{(C)} \\ Zn^{2+} + H_2S \longrightarrow ZnS \end{array}$	↓ (white) + 2H ⁺		
5.	Which anion does not li	berate any gas with dilute	e as well as conc. H_2SO_4 .	
Ans.	(A) NO_2^- (D)	(B) NO_{3}^{-}	$(C) SO_{3}^{2-}$	(D) SO_4^{2-}
6.	A salt having BO_3^{3-} on b (A) green	urning with alcohol and co (B) yellow	onc. H_2SO_4 gives, which c (C) red	olour edge flame. (D) white
Ans. Sol.	(A) $3Na_3BO_3 + 3H_2SO_4$	$\rightarrow 3\text{Na}_2\text{SO}_4 + 2\text{H}_3\text{BO}_3$ $\rightarrow (\text{C}_2\text{H}_5)_3\text{BO}_3 + 3\text{H}_2\text{O}$ (green)		
7	When solution of KCI,	KF and KBr are treated w	i th I_2 ?	
Ans.	(A) Cl_2 and Br_2 are evolve (C) Cl_2 , F_2 and Br_2 are ev (D)	ed volved	(B) Cl ₂ is evolved (D) None of these	
Sol.	I_2 is weak oxidising age	nt.		
	It does not oxidise the I	F [−] , CI [−] , Br [−]		

8	A mixture when rubbed with organic (A) Sulphate (B) Nitrate	c acid smells like vinegar. I (C) Nitrite	t contains : (D) Acetate
Ans.	(D)		
9. Ans.	Nitrate & Nitrite both give brown ring (A) $HOSO_2NH_2$ (Sulphonic acid) (C) $FeSO_4$ (A)	g test, can be distinguish by (B) NH ₂ HgO. (D) None	y – Hgl (Million base)
10 Ans. Sol.	Which reagent is used to remove SO (A) NaOH (B) Pb(NO (B) Pb ²⁺ + SO ₄ ²⁺ \longrightarrow PbSO ₄ \downarrow (ppt)	D_4^{2-} or Cl ⁻ from water? D_2^{-} (C) BaSO ₄	(D) KOH
	$Pb^{2+} + Cl^{-} \longrightarrow PbCl_2 \downarrow (ppt)$ Others does not from precipitate wit	h both anions.	
11 Ans.	Which of the following statements is (A) Formation of chromyl chloride va (C) Formation of lead chromate (A,C,D)	apour (B) Liberatio (D) Formatio	loride test? n of chlorine gas n of reddish-brown vapour
Sol.	$CI^{-} + K_{2}Cr_{2}O_{7} + H^{+} \longrightarrow CrO_{2}CI_{2} ((Chromyl chloride))$	red-brown vapour) NaOH →	Na ₂ CrO ₄ (CH ₃ COO) ₂ Pb → PbCrO ₄ Yellow (sodium chromate) (CH ₃ COO) ₂ Pb → Lead chromate (Yellow)
12	Which of the following statements a (A) In thiourea test for nitrite, a greet (B) It is not necessary to carried out (C) Suspension of $CdCO_3$ gives blac (D) In PbNO ₃ , the brown ring test ca	re incorrect? n coloured solution is obtain the chromyl chloride test k precipitate with Na ₂ S solu n be performed with its wat	ned. in a dry test tube. ution. ter extract.
Ans.	(A,B,C,D)	formation of Eq.(SCN)	
301.	In presence of moisture, CrO CL + F	$H O \longrightarrow H CrO + HCL$	
	CdS (Yellow precipitate). White precipitate of $PbSO_4$ is forme	d and hence brown ring is r	not visible.
13 Ans. Sol.	Conc. H_2SO_4 will not give any gas w (A) $ZnSO_4$ (B) $Ba_3(PO$ (A,B,C) Only NO_3^- belong to conc. H_2SO_4 and	ith : $(C) Mg_3(BO_2)$ ion group.) ₂ (D) NaNO ₃
	Why does only the organic lover and	ire colour and not the equipe	us laver when the tests for halides are done 2

15. What will happen when free bromine, iodine and chlorine separately react with a yellow dye stuff, fluorescein?Ans. With free bromine it will convert into red tetra bromo fluorescein and with iodine into the red violet coloured iodoeosin. But chlorine tends to bleach the reagent.

Exercise-1

> Marked Questions may have for Revision Questions.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Heating in dry test tube

- A-1. How many of the following does not give metal oxide on heating Na_2CO_3 , K_2CO_3 , Rb_2CO_3 , $MgCO_3$, $CaCO_3$
- A-2. What is importance of dry tests and it is applicable to which kind of substances ?
- **A-3.** Give the observation when each of the following is heated in a dry test tube. Also give balanced equations : (a) HgCO₃ (b) NH_4NO_2 (c) ($NH_4CI + NaNO_3$) mixture (d) Pb(NO_3)₂

Section (B) : Flame and borax bead test

B-1. Which of the following cations can not detected by the flame test?

 NH_4^+ , K⁺ , Mg²⁺ , Al³⁺

- B-2. Why compounds shows colours in flame test?
- B-3. A Is intensity of colour in flame test, depends upon the concentration of metal present?
- B-4. Why is a green flame not obtained in the case of barium sulphate or barium phosphate?
- B-5. Cu²⁺ and Ba²⁺ interfere in the flame test for borate, why?
- **B-6.** Colourless salt (A) $\xrightarrow{\Delta}_{740^{\circ}C}$ (B) + (C) $\xrightarrow{Cu^{2+},\Delta}$ blue coloured bead (D) Identify the compound (A), (B),(C) and (D).

Section (C) : dil. HCl / dil. H₂SO₄ group

- C-1. Why is sodium carbonate extract acidified before performing the confirmatory test for anions ?
- **C-2.** When H₂S gas passed through sodium nitroprusside solution, no colour change is observed. However when solution is made alkaline, purple colouration is obtained, explain why
- **C-3.** What will happen if a solution of $Ca(HCO_3)_2$, formed by passing the carbon dioxide through a milky solution of $CaCO_3$ for a longer time if, ammonia solution is added ?
- **C-4.** What will happen if bromine water is added in a white precipitate of BaSO₃, ?
- **C-5.** A + Zn + OH⁻ \longrightarrow B + [Zn(OH)₄]²⁻ B + C \longrightarrow (D) White fumes Identify A, B, C and D
- C-6>. What will happen ? (Also write the chemical equations).
 (a) When a filter paper moistened with potassium iodate and starch solution is brought in contact with sulphur dioxide gas.
 (b) When H₂S gas is made to react with sodium tetrahydroxidoplumbate(II) solution.
 (c) When sulphite reacts with dilute H₂SO₄ in presence of zinc
- C-7 A nitrite solution is added to a saturated solution of iron(II) acidified with dilute acetic acid or with dilute sulphuric acid. If any reactions occurs then write the name and chemical composition of the products formed. Also write the chemical equations involved.

Section (D) : Concentrated HCI / Conc. H₂SO₄ group

- **D-1.** Why $Ca(NO_3)_2$, $Ba(NO_3)_2$ and $Pb(NO_3)_2$ don't respond to brown ring test
- **D-2.** Why is it necessary to test for the acid radicals first with dil. H_2SO_4 and then with conc. H_2SO_4 ?
- D-3. Why chromyl chloride test is carried out in a dry test tube ?
- D-4. Why bromides and iodides do not respond to chromyl chloride test?
- **D-5.** NaCl on heating with conc. H₂SO₄ gives HCl where as NaBr and Nal give Br₂ and I₂ respetively, why?
- D-6. Dilute Hydrochloric acid contains chloride ions but it doesnot give positive chromyl chloride test, why?

Identify the gas A, B and C.

D-9. Why is a freshly prepared solution of FeSO₄ used for the detection of nitrate and nitrite?

Section (E) : Precipitation Reactions

E-1. BO₃³⁻ + H₂SO₄
$$\longrightarrow$$
 (P)
Conc

$$BO_3^{3-} + H_2SO_4 + C_2H_5OH \xrightarrow{\Delta} (Q)_{Vapours}$$

P & Q are respectively -

- **E-2.** In which of the following reagents, the white precipitate of $PbSO_4$ is soluble? dilute HCI, hot concentrated H_2SO_4 , ammonium acetate (6M), ammonium tartrate 6M in the presence of ammonia, sodium hydroxide solution.
- **E-3.** Mercuric nitrate solution reacts with a soluble sulphate forming a yellow precipitate. If the statement is true then explain giving the complete balanced equation.
- E-4. How will you distinguish between sulphite and sulphate ions?

PART - II : OBJECTIVE QUESTIONS

Section (A) : Dry test

A-1.	When a metal sulphate i may be :	s heated in dry test tube, t	he colour changes from b	lue to white. Then metal sulphate
	(A) BaSO ₄	$(B) CuSO_4.5H_2O$	$(C) Na_2 SO_4$	(D) None of these
A-2.	Which of the following cases $(A) \text{ NaNO}_3(s)$	an not evolve more than ((B) MgCO ₃ (s)	one gas (vapour) if heated (C) FeSO ₄ (s)	t in dry test tube. (D) $(NH_4)_2Cr_2O_7(s)$
A-3. 🖎	On heating, a white amo	orphous inorganic compou	und becomes yellow and	on cooling, turns white again.The
	salt may be $(A) PbCO_3$	(B) MgCO ₃	(C)ZnCO ₃	(D) K_2CO_3
A-4.	Which of the following m $(A) \operatorname{Na}_2 \operatorname{CO}_3$	netal carbonates liberate. (B) K_2CO_3	$CO_2(g)$ on heating : (C) Rb_2CO_3	(D) Ag ₂ CO ₃
A-5. 🖎	In which of the following	reactions a brown coloure	ed gas is evolved?	
	(A) KBr (s) + dil. H_2SO_4 -	\rightarrow	(B) $NH_4NO_2 \xrightarrow{\Delta}$	
	(C) NaNO ₃ $\xrightarrow{\Delta}_{800^{\circ}C}$		(D) AgNO ₃ (s) + conc. H_2	$SO_4 \longrightarrow$
A-6.১	Which of the following w (A) BeO + MgO	<i>i</i> ll not react with each oth (B) Li ₂ CO ₃ + BeO	er when heated together (C) MgO + $CaCO_3$? (D) MgCO ₃ + Al ₂ O ₃
Sectio	on (B) : Flame and b	orax bead test		
B-1.	Which metal gives viole (A) Fe	t colour in oxidising flame (B) Pb	when heated with borax (C) Co	? (D) Mn
B-2.æ	Why is concentrated HC (A) strong acids produce (B) HCl is volatile (C) Volatile metal chlorid (D) sharper coloured are	Cl used to dissolve the give better flame test. de produce better flame te seen in the flame in pres	ren metal salt in the flame est. sence of Cl⁻ ions.	e test ?
B-3.	The hottest part of the fl (A) Blue Zone (C) Zone fo partial comb	ame of a Bunsen burner i ustion	s the (B) Zone of complete co (D) All parts of the flame	mbustion are equally hot.
B-4.১	Metal (M) shows crimso (A) Li	n red colour in flame test (B) Mg	and its halide is deliques (C) Ca	scent then metal (M) could be : (D) Ba
B-5.	In Borax bead test, meta (A) orthoborate ion	al oxides react with B_2O_3 a (B) metaborate ion	and form a coloured beac (C) double oxide	d. This bead contains. (D) tetraborate ion
B-6.	Which one of the followi (A) Cr ³⁺	ng ions does not give bor (B) Cu²+	ax bead test : (C) Mn²+	(D) Zn ²⁺
B-7.১	In the Borax bead test o $(A) B_2 O_3$	f Co ²⁺ , the blue colour of (B) Co ₃ B ₂	bead is due to the format (C) $Co(BO_2)_2$	ion of : (D) CoO
B-8.	A salt gives white residu	ie in charcoal cavity test	but in cobalt nitrate test il	gives pink mass. It represents:
	(A) Zn ⁺²	(B) Al ⁺³	(C) Mg ⁺²	(D) PO ₄ ⁻³

Section (C) : dil. HCI / dil. H₂SO₄ group

- C-1. Which of the following anions are identified by dil. HCl: (A) NO₂⁻, NO₃⁻, CO₃²⁻ (B) NO₂⁻, NO₃⁻, SO₃²⁻ (C) S²⁻, SO₃²⁻, NO₂⁻ (D) CH₃COO⁻, I⁻, CO₃²⁻
- C-2. Two inorganic compounds A and B were heated in a dry test tube. A evolved a colourless gas which turned lead acetate paper black and **B** evolved a gas which turned lime water milky. The anions in **A** and **B** respectively are :

(C) PO_4^{3-} , HSO_3^{-} (A) SO_3^{2-} , CO_3^{2-} (B) S^{2-} , CO_3^{2-} (D) S²⁻, NO₃⁻

C-3. If addition of conc. H₂SO₄ is made to an unknown salt, a colourless and odourless gas is produced then which of the following can be present?

(A)
$$CO_3^{2-}$$
 (B) S^{2-} (C) CI^- (D) NO_3^{-}

- A gas turns lime water milky and acidified K₂Cr₂O₇ solution green then gas is : C-4. (A) HCI $(B)H_2S$ $(C) SO_{2}$ $(D) CO_{2}$
- C-5. A gas has smell like rotten egg and turns lead acetate paper black. The gas is : (A) NO₂ (B) H₂S $(C) CO_{2}$ (D) SO₂

Anion (X2-) is: (B) SO₃²⁻ (A) CO₃²⁻ (C) S²⁻ $(D) S_2 O_3^{2-}$

C-7. The acidic solution of a salt produces blue colour with KI starch solution. The reaction indicates the presence of : (D) Chloride

(A) Sulphite (B) Bromide (C) Nitrite

C-8. Sulphide ion reacts with Na₂[Fe(CN)₅NO] to form a purple coloured compound (X). In this reaction oxidation state of iron. (A) changes from +2 to +3 (B) changes from +3 to +2

	(C) changes from +2 to +4					(D) does not change.				
C-9.	(P) (Q) (R) (S)	List- CO ₂ SO ₂ H ₂ S CH ₃ (-I (Moled	cule)		List–II (Characteristic Odour) (1) Rotten egg smell (2) Suffocating smell of burning sulphur (3) Vineger like smell (4) Odour less			ur	
Code	:									
		Ρ	Q	R	S		Ρ	Q	R	S
	(A)	4	2	1	3	(B)	2	4	1	3
	(C)	3	1	2	4	(D)	2	4	1	3

Section (D) : Concentrated HCI / Conc. H_2SO_4 group

D-1.	A white solid imparts a v gives violet vapours tha (A) KI	iolet colour to a Bunsen f t turn starch paper blue. T (B) Nal	lame. On being heated w ⁻ he salt may be : (C) Mgl ₂	ith concentrated H_2SO_4 , the solid (D) CaBr ₂
D-2.	Which of the following w (A) Copper chloride, Cu(C) Zinc chloride, ZnCl ₂	rill not give positive chrom Cl ₂	nyl chloride test ? (B) Mercuric chloride, He (D)Anilinium chloride C ₆	gCl ₂ H₅NH₃Cl
D-3.	A one litre flask is full of decrease appreciably of (A) pieces of marble (C) carbon tetrachloride	of reddish brown bromine n adding to the flask some	e fumes. The intensity of e : (B) animal charcoal pow (D) carbondisulphide	brown colour of vapour will not
D-4. 🖎	Which of the following p (A) NO_3^{-} , CO_3^{2-}	air of anions are identified (B) Cl ⁻ , NO ₃ ⁻	d by conc. H_2SO_4 . (C) Br ⁻ , CO ₃ ²⁻	(D) CO ₃ ^{2–} , CH ₃ COO [–]
D-5.	Which of the following a (A) Cl (C) Br	nion behaves in a differer	nt manner than other on h (B) I (D) All behave in a simila	eating with conc. H ₂ SO ₄ ? ar manner
D-6.	Which of the following re (A) $NaNO_3$	eagents turns white precip (B) Na ₃ AsO ₃	pitate of AgCl yellow ? (C) Na ₃ AsO ₄	(D) NaCN
D-7.æ	A Unknown salt (S) whe vapours are obtained. The salt (S) contains.	n heated with dil. H_2SO_4 d he vapours when brought	loes not evolve brown vap in contact with AgNO ₃ so	bours but with conc. H_2SO_4 brown lution do not give any precipitate.
	(A) NO ₂ ⁻	(B) NO ₃ ⁻	(C) I⁻	(D) Br
D-8.	When a mixture of solid obtained. This is due to (A) chromous chloride	l NaCl and solid K ₂ Cr ₂ O ₇ the formation of : (B) chromyl chloride	is heated with concentrat (C) chromic chloride	ted H_2SO_4 , deep red vapours are (D) chromic sulphate
D-9.১	AgCl dissolves in ammo (A) Ag ⁺ , NH_4^+ and Cl^-	nia solution giving : (B) [Ag(NH_3)] ⁺ and Cl ⁻	(C) $[Ag_2(NH_3)]^{2+}$ and Cl ⁻	(D) $[Ag(NH_3)_2]^+$ and CI^-
D-10.	A solution of a salt in co	ncentrated H_2SO_4 produc	ed a deep blue colour wit	h starch iodide solution. The salt
	may contain : (A) chloride	(B) carbonate	(C) acetate	(D) bromide
D-11.a	A colourless solution of a of Na_2CO_3 . The action of The compound is :	a compound gives a precip of concentrated H_2SO_4 on	pitate with $AgNO_3$ solutior the compound liberates	n but no precipitate with a solution a suffocating reddish brown gas.
	$(A) Ba(CH_3COO)_2$	(B) CaCl ₂	(C) Nal	(D) NaBr
D-12.	An aqueous solution of s The gas evolved product (A) CH_3COO^-	alt containing an acidic ra ces blue black colour spot (B) Br [_]	dical X ⁻ reacts with sodiur t on the starch paper. The (C) I ⁻	n hypochlorite in neutral medium. anion X ⁻ is : (D) NO₂⁻
D-13.æ	Which of the following g (A) CO_2	ases turn starch iodide pa (B) SO ₂	aper blue? (C) NO ₂	(D) H ₂ S
D-14.	Nitrate is confirmed by r (A) ferrous nitrite (C) ferrous nitrate	ing test. The brown colou	rr of the ring is due to forn (B) nitroso ferrous sulph (D) FeSO ₄ .NO ₂	nation of : ate

Section (E) : Precipitation Reactions

- **E-1.** Precipitate of $PbSO_4$ is soluble in : (A) ammonium acetate (6M) (C) dilute H_2SO_4
- **E-2.** When a mixture containing phosphate is heated with conc. HNO_3 and ammonium molybdate solution, a canary yellow precipitate is formed. The formula of the yellow precipitate is : (A) $(NH_4)_3PO_4$ (B) $(NH_4)_3PO_4$.12MoO_4 (C) $(NH_4)_2PO_4$.12MoO_2 (D) $(NH_4)_2PO_4$.(NH_4)_2MO_4
- **E-3.** A metal salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dil. Nitric acid as well as in ammonium hydroxide. The solution contains. (A) Br (B) Γ (C) PO₄³⁻ (D) SO₄²⁻

(B) dilute HCl (D) none of these

4.	Which of the following h (A) AgF	alide is soluble in wate (B) AgCl	r? (C)AgBr	(D) Agl
5. 🙇	Which of the following p	air of acidic radical ca	n be distinguished by using	g dil H₂SO₄?
	(I) SO_3^{2-} and HSO_3^{-}		(II) NO_3^- and NO_2^-	- 2 +
	(III) Cl [_] and Br [_]		(IV) HCO_3^- and CO_3^{2-}	
	(A) I and II	(B) II only	(C) II and IV	(D) III and IV
6.	Which of the following s (A) KNO_2	alt liberates a colourle (B) Na ₂ CO ₂	ss gas when acidification (C) NaNO ₂	with dil. H ₂ SO ₄ ? (D) NaHCO ₃
7.	The compound formed i (A) Cu	in the borax bead test of (B) CuBO ₂	of Cu^{2+} ion in oxidising flam (C) $Cu(BO_2)_2$	ne is : (D) None of these
8.	Alkali metal salt "X" give (A) NaCl	es a pale violet colour i (B) LiCl	n flame test "X" is : (C) KCl	(D) None of these
9.	A sodium salt of unknow unknown salt is :	n anion when treated v	vith MgCl ₂ gives white pred	sipiate only on boiling. The anion of
	(A) SO ₄ ²⁻	(B) HCO_3^-	(C) CO_{3}^{-}	(D) NO_{3}^{-}
10.🏊	Which of the following a	nions are producing sa	ame gas on treatment with	$(Zn + dil. H_2SO_4)$
	$I : SO_3^{2-}$ II : HSC (A) I and II only	D_3^- III : S ^{2–} (B) I, II and III only	IV : CI ⁻ (C) I, II, III and IV	(D) I, III and IV only
11.24	Consider the following returns the product in the above (A) FeCl ₃ / dilute HCl, where (B) FeCl ₃ / dilute HCl, when (C) $K_2Cr_2O_7$ / HCl, when (D) KMnO ₄ / HCl, when (C) K_2Cr_2O_7 / HCl, when (C) KMnO ₄ / HCl, when (C) (C) KMNO ₄ / HCl, when (C)	eaction ; Nitrite + Aceti e reaction can be identi hen blood red colour ap hen blue colour appear green colour appears. colourless solution is fo	ic acid + Thiourea → fied by : opears. 's.	$N_2^{\uparrow} + HSCN + 2H_2^{\circ}O.$ Formation of
12.2	A white sodium salt dissess solution is added to the anion could be : (A) CO $^{2-}$	olves readily in water to solution, a white preci (B) Cl ⁻	p give a solution which is n pitate is obtained which d (C) SO ^{2–}	eutral to litmus. When silver nitrate oes not dissolve in dil. HNO_3 . The (D) S ^{2–}
13.2	A salt solution of Cd ²⁺ in	dilute HCl, on treatme	ent with a solution of BaCl	gives a white precipitate, which is
	$(A) SO^{2-}$	(B) CO^{2-}	$(C) SO^{2-}$	(D) S ²⁻
	(A) 30 ₄	(B) CO ₃	Fuse this precipitate on charcoal with Na ₂ CO ₃ and extract the soluble substance with H O	(0)3
14.	$Na_2SO_4 + BaCl_2$	→ Whiteprecipitate-	• Ac	jueous solution.
			Add di heat th	l H₂SO₄ and e solution
				♦ Gas 'G' is evolved
	The gas 'G' will show wh (A) It turns lead acetate (B) It turns acidified K.C	hich of the following pro filter paper black. r.O. filter paper green.	operty ?	

(C) It produces purple colouration on filter paper moistened with sodium nitroprusside already made alkaline with sodium hydroxide.

(D) All of these

Qualitative Analysis(Anion)

- **15.** Sodium borate on reaction with conc. H_2SO_4 and C_2H_5OH gives a compound **(A)** which burns with a green edged flame. The compound **(A)** is : (A) $H_2B_4O_7$ (B) $(C_2H_5)_2B_4O_7$ (C) H_3BO_3 (D) $(C_2H_5)_3BO_3$
- **16.** When a acidic solution of salt (**X**) is treated with thiourea, N_2 is evolved and thiocyanic acid is produced. This thiocyanic acid give blood red colour with FeCl₃ solution. Salt (**X**) contains the anion : (A) S²⁻ (B) NO₃⁻ (C) NO₂⁻ (D) CO₃²⁻

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- **1.** How many compounds liberate NH_3 on heating from the following? (NH_4)₂ SO₄, (NH_4)₂ CO₃, NH_4 Cl, NH_4 NO₃, (NH_4)₂ Cr₂O₇
- 2. Number of ions which are identified by dil. HCl from the following. SO_4^{2-} , CO_3^{2-} , SO_3^{2-} , HCO_3^{-} , NO_2^{-} , NO_3^{-} , CH_3COO^{-} , PO_4^{3-}
- 3. Na₂S + Na₂ [Fe(CN)₅NO] → "X" (Violet colour) The total number of possible isomers for complex "X" is, provided the ambident behaviour of CN⁻ is not considered.

4.
$$B(g) \leftarrow Conc.$$

 H_2SO_4 (A) $\xrightarrow{(Sulphamic acid)} (C) \xrightarrow{FeSO_4} (D)$ (Unstable brown coloured + conc. H_2SO_4 (D) (Unstable brown coloured compound)

Calculate difference in oxidation state of element (other than oxygen) in two anions.

- **5.** The magnetic moment of complex 'X' (Brown ring complex) The magnetic moment of complex 'X' to its nearest integer is :
- 6. How many anions evolve brownish gas when treated with dil./conc. HCl. ?

 $\rm CO_3{}^{2-},$ $\rm SO_3{}^{2-},$ $\rm NO_2^{-}$, $\rm CI^-,$ $\rm Br^-,$ $\rm NO_3^-,$ $\rm CH_3COO^-$

- **7.** Na₂CO₃, NaCl, NaNO₂, Na₂SO₃, NaBr, CH₃COONa are separately treated with AgNO₃ solution. In How many cases white precipitate is/are obtained.
- 8. BO_3^{3-} + conc. H_2SO_4 + CH_3CH_2 - $OH \xrightarrow{ignite}$ 'A' (green flame)

What is the oxidation number of central atom in Compound 'A' that is responsible for green flame ?

9. A NaCl (s)
$$K_2Cr_2O_7 / Conc. H_2SO_4 \rightarrow Y(g)$$

a = difference in the oxidation number of CI in the product X and product Y, respectively

b = total number of atom in X and Y

c = total number of lone pair in X

then calculate a + b + c = ?

- (C) Formation of Na₂[Fe(H₂O), NOS] complex confirm the presence of S²⁻ anion.
- (D) Iron has +2 oxidation state in sodiumthionitroprusside complex.

10.2	Which statement(s) is/are correct about Brown ring test ? (A) This test is given by NO_2^- , NO_3^- anions. (B) Brown ring test depend upon the reduction of NO_2^- and NO_3^- to Nitric oxide. (C) Brown ring is formed due to formation of $[Fe(H_2O)_5NO]_2(SO_4)_3$ (D) Charge on NO ligand is +1.						
11.๖	Which of the following r (A) NaCl	netal chloride will give ch (B) KCl	romyl chloride test ? (C) AgCl	(D) SbCl ₃			
12.	Which of the following v (A) AgCl	vill be completely or partia (B) AgBr	ally dissolved in NH₄OH ? (C) Agl	(D) BaSO ₄			
13.	Reddish-brown gas is o	btained when the followin	g are treated with conc. H	2 ₂ SO ₄ ?			
	(A) Br⁻	(B) NO ₂ ⁻	(C) NO ₃ ⁻	(D) SO ₃ ²⁻			
14.	Each of these are added positive test for iodine w (A) NaCl solution	d to a mixture of aqueous /hen the solutions are vigo (B) NaBr solution	solutions of iodide and Cl orously mixed? (C) Chlorine water	HCl ₃ separately. Which will give a (D) Bromine water			
15.১	A Cold (mixture of two anions) Cold excess of BaCl ₂ Anion of (A) could be : (A) SO ²⁻ HSO ⁻	$\rightarrow \text{ white ppt.} \xrightarrow{\text{filtered}} ($	Filtrate) $\xrightarrow{\text{boil}}$ White p	(D) None of these			
	(A) 00 ₃ , 1100 ₃						
		PART - IV : CO	MPREHENSION				
Compr	ehension # 1 Step-I	Step-II	Step-III				
	$\begin{array}{c} A \\ \text{(chloride salt)} \end{array} \xrightarrow{K_2 Cr_2 O}{\text{conc. } H_2 S} \end{array}$	$ \stackrel{7}{O_4} B \xrightarrow{\text{passed through}} \text{dil NaOH solution} $	$C \xrightarrow{\text{acidified with CH}_3COOH} \& Pb(CH_3COO)_2 \text{ is added} \rightarrow$	D			
1.	'A' can be : (A) PbCl ₂	(B) SbCl ₃	(C) SnCl ₂	(D) RbCl			
2.	In step-III if Pb(CH ₃ COC be:	$D)_2$ is added without acidify	ying the solution with CH_3	COOH then possible product may			
	(A) PbCrO ₄	$(B) Na_2 Cr_2 O_7$	$(C) Na_2 CrO_4$	(D) Na_2PbO_2			
Compr	ehension #2						
		(A) $(CH_3COO)_2pb$ Black $(CH_3COO)_2pb$ Heat/air (D) + Pungent gas (E)	White ppt dil.H ₂ SO ₄ B) + Compound (C) (Soluble in hot water) (Soluble in hot water) Green solution				
3.	Gas (B) on passing thro (A) Black ppt	ugh cadmium acetate so (B) Yellow ppt	lution will give : (C) Orange ppt	(D) White ppt			
4.	Gas (B) and (E) are resp (A) H_2S , NH_3	pectively : (B) H ₂ S, SO ₂	(C) SO_2 , H_2S	(D) H_2S , CO_2			

	Exercise -	3			
	JEE (ADVANC	ED) / IIT-JEE PF		VIOUS YEAR	S)
* Mark	ed Questions may hav	ve more than one corr	ect option.		
1.	The acidic aqueous solution two steps :	ition of Ferrous ion forms	a brown complex in the	presence of NO_3^- by	the following [JEE 1993]
	$[Fe(H_2O)_6]^{2+} + NO_3^{-} + H$	⁺> + [Fe	$(H_2O)_6]^{3+} + H_2O$		
	$[Fe(H_2O)_6]^{2+}$ + Complete and balance t	$H \longrightarrow H_2$ he equations.	0		
2.	In nitroprusside ion the i can be differentiated by (A) estimating the conce (B) measuring the conce (C) measuring the solid (D) thermally decompose	ron and NO exist. They e : entration of Iron. entration of CN. state magnetic moment. ing the compound.	exist as Fe [∥] and NO⁺ rath	er than Fe [⊪] and NO.	These forms [JEE 1998]
3.	Assertion : Sulphate is Reason : Ionic radius of (A) Both Assertion and F (B) Both Assertion and F (C) Assertion is true but (D) Assertion is false but	estimated as BaSO₄ and f Mg²⁺ is smaller than tha Reason are true and Rea Reason are true but Reas Reason is false. t Reason is true.	d not as MgSO₄. It of Ba²⁺. son is the correct explana son is not correct explana	ation of Assertion. Ition of Assertion.	[JEE 1998]
4.	A gas 'X' is passed throu nitrate gives a white pre- evolution of a colourless (A) $X = CO_2$, $Y = CI_2$	gh water to form a satura ecipitate. The saturated gas 'Y'. Identify 'X' and ' (B) $X = Cl_2, Y = CO_2$	ted solution. The aqueou aqueous solution also d Y'? (C) X = Cl ₂ , Y = H ₂	s solution on treatme issolves magnesium [JEE (D) X = H ₂ , Y = Cl	ent with silver n ribbon with 2002, 3/150] 2
5.	$[X] + H_2SO_4 \longrightarrow [Y] a$ [X] and [Y] is : (A) SO ₂ ²⁻ , SO ₂	a colourless gas with irrit (B) Cl⁻, HCl	ating smell; [Y] + $K_2 Cr_2 O$ (C) S ²⁻ , H ₂ S	$_{7} + H_{2}SO_{4} \longrightarrow gr$ [JEE (D) CO ₂ ²⁻ , CO ₂	een solution. 2003, 3/144]
6.	A dilute aqueous solution the sodium salt is :	n of a sodium salt forms v	white precipitate with MgC	Cl ₂ , only after boiling.	The anion of 2004, 3/144]
	(A) HCO ₃ ⁻	(B) CO ₃ ²⁻	(C) NO ₃ ⁻	(D) SO ₄ ²⁻	
7.	The species present in s (A) CO_2 , H_2CO_3 , HCO_3^- , (C) CO_3^{2-} , HCO_3^-	solution when CO_2 is diss CO_3^{2-}	olved in water are : (B) HCO_3^{2-} , CO_3^{2-} (D) CO_2 , H_2CO_3	[JEE	2006, 5/184]
8.	Consider the following li Acidified $K_2Cr_2O_7$, alkal The total number of re	ist of reagents : ine KMnO _{4,} CuSO ₄ , H ₂ C agents that can oxidise	P_2 , Cl ₂ , O ₃ , FeCl ₃ , HNO ₃ aqueous iodide to iodir	[JE and $Na_2S_2O_3$. ne is	E Adv. 2014]
9.	The reagent(s) that can	selectively precipiate S ^{2–}	from a mixture of S^{2-} and	$ SO_4^{2-} $ in aqueous so [JEE	oltuion is(are) (Adv.)-2016]
10.	(A) $CuCl_2$ The green colour product (A) $Cr(BO_2)_3$	(B) BaCl ₂ ced in the borax bead tes (B) CrB	(C) PD(OOCCH ₃) ₂ st of a chromium(III) salt i (C) $Cr_2(B_4O_7)_3$	(D) $\operatorname{Na}_{2}[Fe(CN)_{5}NC]$ s due to- JEE (D) $\operatorname{Cr}_{2}O_{3}$	ر (Adv.)-2019]

ANSWER KEY

EXERCISE - 1

PART - I

A-1. 3

A-2. The dry test give information in short time and also provides a clue about the presence or absence of certain substances so wet analysis may be modified and shortened. It is applicable to solid substances.

A-3. (a) HgCO₃ $\xrightarrow{\Delta}$ Hg + CO₂↑ + $\frac{1}{2}$ O₂↑

(b) $NH_4NO_2 \xrightarrow{\Delta} N_2^{\uparrow} + 2H_2O^{\uparrow}$ (no solid residue)

(c) (NH₄Cl + NaNO₃) mixture $\xrightarrow{\Delta}$ NaCl + N₂O \uparrow + 2H₂O \uparrow

(d)
$$Pb(NO_3)_2 \xrightarrow{\Delta} PbO + 2NO_2^{\uparrow} + \frac{1}{2}O_2^{\uparrow}$$

- **B-1**. 3
- **B-2.** When compound is heated, the electrons gain energy and can jump into the empty orbitals at higher level. Higher levels are energetically unstable so electrons tend to fall back and transmit the light as characteristic colour.
- B-3. Yes, because intensity of the absorbed light is proportional to the concentration of element in the flame.
- **B-4.** Both barium sulphate and barium phosphate are insoluble and cannot be easily converted into chlorides. Therefore, the green flame is either indistinct or visible with difficulty.
- **B-5.** Because they also impart green colour to flame.

B-6. A Na₂B₄O₇.10H₂O
$$\xrightarrow{\Delta}_{740^{\circ}C}$$
 2NaBO₂ + B₂O₃ $\xrightarrow{Cu^{2^+},\Delta}$ Cu (BO₂)₂
(A) (B+C) (Blue bead) (D)

- C-1. Sodium carbonate extract in addition to the sodium salts of anions contain carbonate also. On heating with the test reagent carbonates of certain metals precipitate which interfere in the detection of acid redicals. Because of this, Na₂CO₃ is decomposed by adding HCl, HNO₃, H₂SO₄, depending upon the nature of test.
- C-2. Bacause H_2S is a weak acid and don't provide sufficient S^2 ions to change the colour but on addition of alkali, concentration of S^2 ions increases and give this test
- **C-3.** White precipitate of CaCO₃ is formed.

 $Ca(HCO_3)_2 + 2 NH_3 \longrightarrow (NH_4)_2 CO_3 + CaCO_3 \downarrow$

C-4. Colour of bromine water is discharged according to the following reaction.

 $BaSO_3 + Br_2 + H_2O \longrightarrow BaSO_4 \downarrow (white) + 2HBr$

C-5. $A = NO_{2}^{-} Or NO_{3}^{-} B = NH_{3}, C = HCI, D = NH_{4}CI$

C-62. (a) Blue colouration develops due to the formation of iodine gas.

$$5 \text{ SO}_2 + 2\text{IO}_3^- + 4 \text{ H}_2\text{O} \longrightarrow \text{I}_2 + 5 \text{ SO}_4^{2-} + 2 \text{ H}^+$$

 I_2 + Starch \longrightarrow Blue (starch iodine adsorption complex)

- (b) Black precipitate is formed owing to the formation of PbS.
- $[\mathsf{Pb}(\mathsf{OH})_4]|^{2-} + \mathsf{H}_2\mathsf{S} \longrightarrow \mathsf{PbS} \downarrow + 2\mathsf{OH}^- + 2\mathsf{H}_2\mathsf{O}$
- (c) SO_3^{2-} + 3 Zn + 8 H⁺ \longrightarrow H₂S + 3 Zn²⁺ + 3 H₂O
- **C-7** \therefore NO₂⁻ + CH₃COOH \longrightarrow HNO₂ + CH₃COO⁻

 $3 HNO_2 \longrightarrow H_2O + HNO_3 + 2 NO^{\uparrow}$

NO \uparrow + Fe²⁺ + SO₄²⁻ \longrightarrow [FeNO]SO₄ (Nitroso ferrous sulphate)

D-1. Due to the precipitation of corresponding metal sulphate

- **D-2.** There are some ions like, SO_3^{2-} , S^{2-} , NO_2^{-} , and CH_3COO^- which can react with dilute/conc. H_2SO_4 whereas ions like CI^- , Br^- , I^- , NO_3^{00} , etc. react only with con. H_2SO_4 . Now if conc. H_2SO_4 is used first then the anions of both the types will react. Hence, it is desired to test acid radicals first with dilute H_2SO_4 and then with conc. H_2SO_4 .
- **D-3.** Because in presence of water, chromyl chloride forms the chromic acid. $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCI$
- **D-4.** Because chromyl bromide (CrO_2Br_2) and chromyl iodide. (CrO_2I_2) compounds are unstable and are not formed. In such case bromine and iodine are evolved
- **D-5.** HBr and HI are reducing agent where as H_2SO_4 is oxidizing agent and thus Br_2 and I_2 are formed. NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$ NaBr / Nal + $H_2SO_4 \rightarrow NaHSO_4 + HBr/HI$ HBr/HI + $H_2SO_4 \rightarrow Br_2/I_2 + SO_2 + 2H_2O$
- **D-6.** Because in presence of water chromic acid is obtained in place of chromyl chloride.

D-7.
$$A = Cl_2$$

- $B = Br_2$
- $C = I_2$
- **D-8.** Because heavy metal chlorides are partially dissociated, This test is given generally by lonic chloride.
- **D-9.** This is because Fe²⁺ ions on long standing are oxidised to Fe³⁺ ions which are not used for the detection of nitrate and nitrite.
- **E-1.** $H_3BO_3 \& (C_2H_5)_3BO_3$
- E-2.2. Not in dilute HCl but dissolves in all other reagents.

 $PbSO_{4} \downarrow + H_{2}SO_{4} \longrightarrow Pb^{2+} + 2 HSO_{4}^{-}; PbSO_{4} \downarrow + 4 CH_{3}COO^{-} \longrightarrow [Pb(CH_{3}COO)_{4}]^{2-} + SO_{4}^{2-}$ $PbSO_{4} \downarrow + 2 C_{6}H_{4}O_{6}^{2-} \longrightarrow [Pb(C_{6}H_{4}O_{6})_{2}]^{2-} + SO_{4}^{2-}$

 $PbSO_4 \downarrow + 4 OH^- \longrightarrow [Pb(OH)_4]^{2-} + SO_4^{-2-}$

E-3. SO₄²⁻ + 3 Hg²⁺ + 2 H₂O \longrightarrow HgSO₄. 2 HgO \downarrow + 4 H⁺

Yellow precipitate is owing to the formation of basic Hg(II) sulphate.

E-4. BaCl₂ gives a white precipitate. with both sulphite and sulphate ions. BaSO₃ is soluble in conc.HCl whereas $BaSO_4$ is insoluble in conc.HCl. FeCl₃ solution gives a red colour with sulphite and no colour is obtained with sulphate.

PART - II

A-1.	(B)	A-2.	(B)	A-3. 🕿	(C)	A-4.	(D)	A-5. 🕰	(D)
A-6. 🔊	(C)	B-1.	(D)	B-2. 🔈	(C)	B-3.	(B)	B-4. 🖎	(A)
B-5.	(B)	B-6.	(D)	B-7.æ	(C)	B-8.	(C)	C-1.	(C)
C-2. 🔊	(B)	C-3.১	(A)	C-4.	(C)	C-5.	(B)	C-6. 🖎	(C)
C-7.	(C)	C-8.æ	(D)	C-9.	(A)	D-1.	(A)	D-2.	(B)
D-3.	(A)	D-4. 🖎	(B)	D-5.	(A)	D-6.	(B)	D-7.🖎	(B)
D-8.	(B)	D-9.১	(D)	D-10.	(D)	D-11.a	(D)	D-12.	(C)
D-13.æ	(C)	D-14.	(B)	E-1.	(A)	E-2.æ	(C)	E-3.	(C)

PART - III

1. (A) - (r,t); (B) - (q); (C) - (q, t); (D) - (p, s)

2. (A) - (p,q,r,s); (B) - (q); (C) - (p,q,r); (D) - (q,r,s)

	EXERCISE - 2											
	PART - I											
1. 6.	(B) (C)	2. 7.	(A) (C)	3. 8.	(D) (C)	4. 9.	(A) (B)	5.æ 10.æ	(B) (B)			
11.a	(A)	12.2	(B)	13.2	(A)	14.	(D)	15.2	(D)			
16.2	(C)											
PART - II												
1.24	3	2.	5	3.2	3	4.	2	5. 🕿	4			
6.24	1	7.ზ	5	8.	3	9.2	14					
	PART - III											
1.	(BCD)	2.	(ACD)	3. 🙇	(ACD)	4.2	(AC)					
5.	(ABCD)	6.	(AC)	7.2a	(BC)	8.2	(CD)					
9.	(AD)	10.ര.	(ABD)	11.ര.	(AB)	12.	(AB)					
13.	(ABC)	14.	(CD)	15.๖	(AC)							
				PAR	RT - IV							
1.	(D)	2.	(AD)	3.	(B)	4.	(B)					
			I	EXER	CISE - 3							
1.	3[Fe(H ₂ O) ₆] ²⁺	+ NO ₃ -+	$H^{+} \longrightarrow NO +$	3[Fe(H ₂ C	D) ₆] ³⁺							
2.	$[Fe(H_2O)_6]^{2+} + \cdots$ Fe ^{II} and Fe ^{II}	NO —— have diff	→ [Fe(H ₂ O) ₅ NO	$]^{2+} + H_2O$ moment	due to different	t number o	f unpair electrons	S.				
3.	(B)	4.	(C)	5.	(A)	6.	(A)	7.	(A)			
8.	7	9.	(AC)	10.	(A)	-	· /		()			

This Section is not meant for classroom discussion. It is being given to promote selfstudy and self testing amongst the Reliable students.

Self Assessment Test

		PART-1: PAPER	R JEE (MAIN) F	ATTERN
•	This section conf Each question ha For each question For each question Full Marks : +41 Zero Marks : 0 h Negative Marks	SECTION-I : (tains TWENTY questions. as FOUR options (A), (B), on, darken the bubble corre- on, marks will be awarded f only the bubble correspond f none of the bubbles is d t -1 In all other cases	(Maximum Marks : 8 (C) and (D). ONLY esponding to the corr in <u>one of the followir</u> onding to the correct of larkened.	0) ONE of these four options is correct. rect option in the ORS. ng categories : option is darkened.
1.	When a salt is hea is :	ated with dilute H_2SO_4 and K	$(MnO_4 \text{ solution, the pin})$	k colour of KMnO₄ is discharged, the salt
2.	(A) a suprite Solution of a salt i contains :	n dilute H_2SO_4 or acetic acic	(C) a minate i produces deep blue c	olour with starch iodide solution. The salt
3.	A test tube contait H_2SO_4 . The reddit (A) the nitrate	ning a nitrate and another of sh brown fumes evolved are (B) the bromide	containing a bromide a passed through water (C) both	and MnO_2 are treated with concentrated r. The water will be coloured by : (D) none of the two
4.	Which of the follo $(A) N_2 O$	wing combines with Fe(II) id (B) NO	ons to form a brown co (C) N ₂ O ₃	mplex? (D) N ₂ O ₄
5.	Colourless salt (A (A) $K_2 SO_3$	h) + dil. H_2SO_4 or CH_3COOH (B) Na_2CO_3	$H + KI \longrightarrow blue color(C) NH4NO2$	our with starch. (A) can be (D) NH₄Cl
6.	There are four te reagents will help (A) NaOH	st tubes containing dilute H in the identification of BaCl (B) K ₂ CrO ₄	ICI, BaCl ₂ , CdCl ₂ and $\binom{1}{2}$?	KNO_3 solutions. Which of the following (D) both (B) and (C)
7.	Which one of the (A) Cr ³⁺	following ions does not give (B) Cu²+	e borax bead test ? (C) Mn²+	(D) Zn ²⁺
8.	A brick red colour (A) Ca salt	is imparted to Bunsen flam (B) Sr salt	ne by a : (C) Na salt	(D) Co salt
9.	Which one of the (A) Zn ²⁺	following metal salts produc (B) Mg²+	ces a blue coloured be (C) Sn ²⁺	ad in cobalt nitrate charcoal cavity test ? (D)Al ³⁺
10.	BaCl ₂ solution giv with the evolution agent in the textil (A) sulphite	es a white precipitate with of colourless, pungent sme e industries. The salt conta (B) sulphide	a solution of a salt, wh lling gas. The gas as w ins: (C) acetate	ich dissolves in dilute hydrochloric acid ell as the salt both are used as bleaching (D) carbonate
11.	Pink colour of acio compound contain	dified KMnO $_4$ is decolourised ning the following acid radic	d but there is no evolut al.	ion of any gas. This may happen with the
	(A) SO ₃ ^{2–}	(B) NO ₂	(C) S ²⁻	(D) All of these

12.	When KI is added to acidified solution of sodium nitrite :(A) NO gas is liberated and I_2 is set free(B) N_2 gas is liberated and HI is produced(C) N_2 O gas is liberated and I_2 is set free(D) N_2 gas is liberated and HOI is produced					
13.	Zinc pieces are added to acidified solution of SO_3^{2-} . Gas liberated can : (A) turn lead acetate paper black (B) turn lime water milky (C) give white precipitate with AgNO ₃ solution (D) None of these					
14.	A substance on treatment with dilute H_2SO_4 liberates a colourless gas which produces (i) turbidity with baryta water and (ii) turns acidified dichromate solution green. The reaction indicates the presence of : (A) CO_3^{2-} (B) S^{2-} (C) SO_3^{2-} (D) NO_2^{-}					
15.	Ammonium molybdate test is used for the estimation of :					
	(A) PO_4^{3-} (B) NO_3^{-} (C) SO_3^{2-} (D) SO_4^{2-}					
16.	A colourless gas is dissolved in water and the resulting solution turns red litmus blue; the gas may have been which one of the following? (A) HCl (B) H ₂ S (C) SO ₂ (D) NH ₂					
17.	When Ag reacts with conc. HCl, then products will be : (A) AgCl, Cl_2 (B) AgCl, H_2 (C) AgCl, H_2 , Cl_2 (D) None of these					
18.	Which of the following salt will evolve sulphur dioxide gas along with formation of yellowish turbidity when treated with dilute H_2SO_4 ? (A) Sodium sulphide (B) Sodium sulphite (C) Sodium thiosulphate (D) Sodium sulphate					
19.	Aqueous solution of a salt + MgSO ₄ solution \longrightarrow no precipitate in cold $\xrightarrow{\text{Heating}}$ White precipitate appears. The salt contains the acidic radical :					
	(A) CO_3^{2-} (B) HCO_3^{-} (C) SO_3^{2-} (D) $C_2O_4^{2-}$					
20.	In the test for iodine, I_2 is treated with sodium thiosulphate ($Na_2S_2O_3$): $Na_2S_2O_3 + I_2 \longrightarrow Nal +$					
	$(A) \operatorname{Na}_2 \operatorname{S}_4 \operatorname{O}_6 \qquad (B) \operatorname{Na}_2 \operatorname{SO}_4 \qquad (C) \operatorname{Na}_2 \operatorname{S} \qquad (D) \operatorname{Na}_3 \operatorname{ISO}_4$					
•	This section contains FIVE questions. The answer to each question is a NUMERICAL VALUE . For each question, enter the correct numerical value (If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places; e.g. 6.25, 7.00, -0.33,30, 30.27, -127.30, if answer is 11.36777 then both 11.36 and 11.37 will be correct) by darken the corresponding bubbles in the ORS. For Example : If answer is -77.25, 5.2 then fill the bubbles as follows. Answer to each question will be evaluated according to the following marking scheme: <i>Full Marks</i> : +4 If ONLY the correct numerical value is entered as answer.					
21.	 When calamine is heated then a product (A) is formed then find the total number of following options are correct for compound (A) - (i) Compound (A) is white in cold conditions (ii) Compound (A) is yellow in hot conditions (iii) Compound (A) is called phillosopher's wool (iv) Compound (A) when combined with CoO, then compound (B) is formed & colour of new compound (B) is green (v) Compound (B) is called Rinmann's green 					
22.	$NaNO_3 \xrightarrow{500^{\circ}C} (A) + (B); (A) \xrightarrow{800^{\circ}C} (C) + (D) + (E)$					
	Find the number of correct statements (1) Compound (B) is paramagnetic in nature (2) Compound (B) when undergoes dimerisation then dimer product is diamagnetic in nature (3) Bond order of compound (B) is two (4) D is N ₂ gas (5) Compound B and E are some gas					

A metal salt evolves the dark violet fumes of (X) with MnO, and this (X) gives the deep blue colouration with 23. starch solution. Then number of lone pair on central atom in (X). How many of the following will volatilize on heating leaving no solid residue ? 24. NaNO₃, NH₄NO₃, Ca(H₂PO₂), NH₄HCO₃, N₂H₅HSO₃, AlCl₃, [Cu(NH₃)₄]SO₄, FeSO₄.7H₂O 25. $Na_{2}S + Na_{2}[Fe(CN)_{e}NO] \rightarrow "A" (Violet Color)$ In Complex "A", number of type of ambidentate ligand is/are "a" and number of d-orbital involved in hybridisation is/are "b" Then 7a + 8 b will be : PART 2 : PAPER JEE (ADVANCED) PATTERN SECTION-I : (Maximum Marks : 12) This section contains FOUR questions. Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is correct. For each question, darken the bubble corresponding to the correct option in the ORS. For each question, marks will be awarded in one of the following categories : Full Marks +3 If only the bubble corresponding to the correct option is darkened. Zero Marks 0 If none of the bubbles is darkened. Negative Marks : -1 In all other cases An inorganic salt when heated with concentrated H₂SO₄ evolves a colourless pungent smelling gas but with 1. concentrated H₂SO₄ and MnO₂, evolves a coloured pungent smelling gas which bleaches moist litmus paper. The coloured gas is : $(C) Br_2$ (D) I_{2} (A) NO₂ $(B) Cl_2$ 2. Chromyl chloride vapours are dissolved in water and acetic acid and barium acetate solution is added, then: (A) the solution will remain colourless. (B) the solution will become dark green. (C) a yellow solution will be obtained. (D) a yellow precipitate will be obtained. When CS_2 layer containing both Br_2 and I_2 (2 : 1) is shaken with excess of chlorine (CI_2) water, the violet colour 3. due to l₂ disappears and a pale yellow colour appears in the solution. The disappearance of violet colour and appearance of pale yellow colour is due to the formation of : (A) I_3^- and Br_2 respectively. (B) HIO₃ and BrCl respectively. (C) ICI and BrCI respectively. (D) I- and Br-respectively. 4. A metal salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dilute nitric acid as well as in dilute ammonia solution. The solution contains : (A) bromide ions (B) iodide ions (C) phosphate ions (D) chromate ions SECTION-II : (Maximum Marks: 32) This section contains **EIGHT** questions. Each question has FOUR options for correct answer(s). ONE OR MORE THAN ONE of these four option(s) is (are) correct option(s). For each question, choose the correct option(s) to answer the question. Answer to each question will be evaluated according to the following marking scheme: Full Marks +4 If only (all) the correct option(s) is (are) chosen. Partial Marks +3 If all the four options are correct but ONLY three options are chosen. Partial Marks If three or more options are correct but ONLY two options are chosen, +2 both of which are correct options. Partial Marks If two or more options are correct but ONLY one option is chosen +1 and it is a correct option. Zero Marks 0 If none of the options is chosen (i.e. the question is unanswered). Negative Marks : -1 In all other cases. For Example : If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -1 marks.

5.	Which of the following statements is/are incorrect ? (A) A filter paper moistened with cadmium acetate solution turns yellow, when brought in contact with H_2S gas. (B) Both carbonate ions as well as bicarbonate ions in the solutions, give reddish-brown precipitate with mercury(II) chloride. (C) Sulphites in presence of zinc, reacts with dilute H_2SO_4 to liberate SO_3 gas. (D) A filter paper moistened with KIO ₃ and starch turns blue in contact with SO_2 vapours.						
6.	Which of the following reagents can be used for making the distinction between AgCl and Agl ?(A) Sodium arsenite solution.(B) Dilute ammonia solution.(C) Potassium cyanide solution.(D) Dilute HNO3.						
7.	Which of the following statement(s) is/are correct with respect to bromide ions? (A) KBr on heating with MnO ₂ and concentrated H_2SO_4 liberates Br_2 and SO_2 gases. (B) KBr on heating with concentrated H_2SO_4 liberates Br_2 and SO_2 gases. (C) KBr forms HBr with concentrated H_3PO_4 . (D) KBr(s) liberates Br_2 on gentle warming with concentrated H_2SO_4 and $K_2Cr_2O_4$ (s).						
8.	Which of the following imparts green/apple green col(A) Calcium chloride(C) Barium chloride(D)	lour to the Bunsen fla) Volatile boron trifluo) Ethoxy borate	me ? ride				
9.	What final product(s) is/are formed in the following set	eries of reactions?					
	Concentrated borax solution + silver nitrate solution	\longrightarrow Precipitate $-\frac{1}{1}$	$\xrightarrow{H_2O} \text{Products (final)}$				
	$(A) Ag_{3}BO_{3} (B) Ag_{2}O (C$) H ₃ BO ₃	(D) AgBO ₂				
10.	Heating which of the following salts in a dry test tube $(A) ZnCO_3$ (white)(B) $(C) FeSO_4.6H_2O$ (green)(D)	e may cause a chang) $Co(NO_3)_2.6H_2O$ (red) MnSO ₄ (faint pink)	e in their colour ?)				
11.	Which of the following combinations will give yellowish precipitate in an aqueous medium ? $(A) AgNO_3 + NaBr$ $(B) (CH_3COO)_2Pb + Na_2CrO_4$ $(C) AgCl + Na_3AsO_3$ $(D) AgNO_3 + NaNO_2$						
12.	Which of the following produce red coloured flame du (A) Li (B) Ca ²⁺ (C	uring flame test?) Sr ²⁺	(D) Ba ²⁺				
•	This section contains SIX questions. The answer to each question is a NUMERICAL VALUE . For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place ; e.g. 6.25, 7.00, -0.33,30, 30.27, -127.30, if answer is 11.36777 then both 11.36 and 11.37 will be correct) by darken the corresponding bubbles in the ORS. For Example : If answer is -77.25, 5.2 then fill the bubbles as follows. Answer to each question will be evaluated according to the following marking scheme: <i>Full Marks</i> : +3 If ONLY the correct numerical value is entered as answer. <i>Zero Marks</i> : 0 In all other cases.						
13.	How many of following metals give Borax bead test Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn						
14.	How many of the following salts impart characteristic NaCl, KCl, CuCl ₂ , BaCl ₂ , CaCl ₂ , SrCl ₂ , ZnCl ₂ , Mg	c colours to the Buns gCl ₂ , AICl ₃	en flame?				
15.	How many of the following liberate coloured vapour/g KCl (s) + $K_2Cr_2O_7$ (s), KNO ₂ (s), KI(s), KBr(s), KCl(s) KBr (s) + MnO ₂ (s), KNO ₃ , KCl(s) + MnO ₂ , K ₂ SO ₃	as with concentrated	H ₂ SO ₄ ?				

16.	Which of the follow	ing statements is/are incorr	ect								
	(I) Filter pape	(I) Filter paper moistened with cadmium acetate and lead acetate turn black and yellow respectively,									
	when broug	ght in contact with H ₂ S gas.									
	(II) Sulphites in presence of Zinc, reacts with dilute H_2SO_4 to liberate H_2S gas.										
	(III) Stability of	carbonates decrease with in	ncreasing metallic characte	er.							
	(IV) Bolax Deal	loride on heating with aquer	bus solution of K Cr O and	concentrated H	SO produced						
	white fume	s.									
17.	How many B–O–B	bond(s)(per molecule) is/ar	re present in compound wh	ich is used in Bo	rax bead test?						
18.	In brown ring compl	ex, if number of ambidenta	te is/are "a" and oxidation s	tate of iron is/are	e "b" then a + b =?						
	PA	ART - 3 : OLYMPI	AD (PREVIOUS YE	EARS)							
1.	Which of the follow $(A) K_2 CO_3$	ng metal carbonate will dec $(B) Na_2CO_3$	compose on heating ? (C) MgCO ₃	(D) None of the	[NSEC-2000] ese						
2.	For which element (A) sodium	crimson colour is obtained (B) barium	in flame test ? (C) strontium	(D) calcium	[NSEC-2002]						
3.	The precipitate of A (A) conc. HNO ₃	gCl dissolves in (B) excess of HCl	(C) dilute H_2SO_4	(D) aq. ammor	[NSEC-2004] nia.						
4.	Colour of the bead i (A) metal oxides	n borax bead test mainly du (B) boron oxide	ue to the formation of (C) metal metaborates	(D) elemental b	[NSEC-2005] boron						
5.	The brown compou (A) [Fe(H ₂ O) ₅ NO] ³⁺ (C) [Fe(H ₂ O) ₅ NO] ⁴⁺	nd formed in the ring test fo	or nitrates contains the ion (B) [Fe(H ₂ O) ₅ NO] ²⁺ (D) [Fe(H ₂ O) ₅ NO] ⁺ .		[NSEC-2005]						
6.	The brown ring test (A) [Fe(H ₂ O) ₆] ²⁺	for NO ₂ ⁻ and NO ₃ ⁻ is due to (B) [Fe(CN) ₅ (NO)] ²⁻	formation of complex ion v (C) $[Fe(H_2O)_5(NO)]^{2+}$	vith formula : (D) [Fe(H ₂ O)(N	[NSEC-2006] O) ₅] ²⁺						
7.	$MgSO_4$ on reaction v is :	with NH_4OH and Na_2HPO_4 for	rms a white crystalline precip	bitate. The formula	a of the precipitate [NSEC-2009]						
	(A) Mg(NH ₄)PO ₄	(B) $Mg_{3}(PO_{4})_{2}$	(C) MgCl ₂ .MgSO ₄	(D) MgSO ₄							
8.	The gas which liber (A) Cl_2	ates bromine from a solution (B) I ₂	on of KBr is (C) SO ₂	(D) HI	[NSEC-2013]						
9.	Silver nitrate solution disolves in excess of solution gives a whit (A) Na_2S	on when added to a colorles of E. If the white precipitate te precipitate with acidified (B) $Na_2S_2O_3$	ss aqueous solution E form: is heated with water it turn barrum nitrate solution. The (C) Na ₂ SO ₃	s a white precipit is black and the s erefore, E is : (D) Na ₂ SO ₄	ate which supernatant [NSEC-2015]						
10.	If a dilute solution o (A) (NH4)2S	f aqueous NH₃ is saturated (B) NH₄HS	with H ₂ S then the product f (C) (NH ₄) ₂ S _x	ormed is : (D) NH₄OH + S	[NSEC-2016]						
11.	A colorless water-so residue that turns w (NH4)2S. The origin	oluble compound on strong /hite on cooling. An aqueou al solid is :	heating liberates a brown on solution of the original so	colored gas and I lid gives a white	eaves a yellow precipitate with [NSEC-2016]						
	(A) Zn(NO3)2	(B) Ca(NO ₃) ₂	(C) AI(NO ₃) ₃	(D) NaNO₃							
		PART - 4 : ADDI	TIONAL PROBLE	MS							
1.	What are the produ $(A) MgCO_3, H_2O, CO_3$	cts formed when an aqueou O_2 (B) Mg(HCO ₃), H ₂ O	us solution of magnesium b (C) Mg(OH),, H ₂ O	icarbonate is boi (D) Mg, CO, H	led? ₂O						

2. NaX (Sodium salt of particular anion 'X') gives brisk effervescence of Y with dilute HCI. On heating, NaX evolves gas Y which can be completely absorbed in conc. KOH solution and is colorless odourless gas. Hence X and Y respectively are :

(A) HSO_3^- , SO_2^- (B) $HS^- \& H_2 S$ (C) HCO_3^- , CO_2^- (D) $HC_2O_4^- \& CO_2 + CO_2$

3.	White precipitate of Ag (A) reacts with Na ₃ AsO (C) reacts with K_2CrO_4	Cl turns to greyish or blac ³	k when : (B) exposed to sunlight (D) reacts with concentr	rated HCI			
4.	A mixture is known to o should be made free of (A) conc. HNO	contain NO ₃ ⁻ and NO ₂ ⁻ . E NO ₂ ⁻ . This is done by hea (B) dil HNO	efore performing ring tea ating aqueous extract with (C) urea	st for NO ₃ ⁻ , the aqueous solution h : (D) zinc dust			
5	When Borax is heated i	(2) and 100_3	v bead because of forma	ation of :			
5.	(A) B_2H_6	(B) NaBO ₂	$(C) B_2O_3$	$(D) \operatorname{Na}_{2} \operatorname{B}_{4} \operatorname{O}_{7}$			
6.	Which of the following a (A) Cl ⁻	anion(s) is/are easily remc (B) SO ₄ ^{2–}	wed from aqueous solution $(C) NO_3^-$	on by precipitation? (D) CO_3^{2-}			
7.	H_2S and SO_2 can be dis (A) Litmus paper	stinguished by : (B) MnO₄⁻/H⁺	$(C) (CH_3COO)_2Pb$	(D) None of these			
8.	CuCO ₃ was strongly he sodium 'X' and oxide Y , same combination of X in oxidizing flame. Mate (A) A (B) B (C) C (D) X	ated to obtain a residue A which produced a blue co and Y gave a green colore ch the following according (P) Cu(BO (Q) Na ₂ CO (Q) Na ₂ CO (R) CuO (S) CO (T) Cu ₂ O (U) CO ₂ (V) NaBO ₂ (W) Cr(BO ₂)	and gas B . The residue of lored glassy compound C d glassy compound D when ly : $_{2}^{2}_{2}$	obtained was treated with a salt of on heating in oxidizing flame. The en $Cr_2(SO_4)_3$ was heated with them			
Comprehension # When compound (A) is treated with conc. H_2SO_4 , a reddish brown colour gas (B) is evolved. To this solution, a solution of (C) is added slowly from the side of the test tube, a blue ring is obtained at the junction of two layers due to formation of (D).							
9.	Gas (B) may be :						
	(A) Cl_2	$(B) Br_2$	$(\mathbf{C})\mathbf{I}_2$	$(\mathbf{D}) \mathbf{W}_2$			
10.	(A) Cl_2 Compound (D) has form	(B) Br ₂ nula :	(C) I ₂	$(D) \cap O_2$			
10.	(A) CI_2 Compound (D) has form (A) $C_6H_5NH-C_6H_5$	(B) Br ₂ nula : (B) (C ₆ H ₅) ₂ N–N(C ₆ H ₅) ₂	$(C) C_{6}H_{5}-NH-NH-C_{6}H_{5}$	(D) $C_6H_5 - NH - N - C_6H_5$ \downarrow O			
10. 11.	(A) CI_2 Compound (D) has form (A) $C_6H_5NH-C_6H_5$ Which compound gives (A) NaCl	(B) Br_2 nula : (B) $(C_6H_5)_2N-N(C_6H_5)_2$ s same test as compound (B) NaBr	(C) C_6H_5 NHNH C_6H_5 (A) (C) Na_2CrO_4	(D) $C_6H_5 - NH - N - C_6H_5$ \downarrow O (D) Na_2S			
10. 11. 12.	(A) CI_2 Compound (D) has form (A) $C_6H_5NH-C_6H_5$ Which compound gives (A) NaCl A white sodium salt diss is added to the solution (A) CO_3^{2-}	(B) Br_2 hula : (B) $(C_6H_5)_2N-N(C_6H_5)_2$ is same test as compound (B) NaBr polves in water to give a so , a white precipitate is obt (B) Cl^-	(C) C_6H_5 –NH–NH– C_6H_5 (A) (C) Na_2CrO_4 lution which is neutral to li ained which does not diss (C) SO_3^{2-}	(D) $C_6H_5 - NH - N - C_6H_5$ (D) Na_2S tmus. When silver nitrate solution solve in dilute HNO ₃ . The anion is (D) S^{2-}			
10. 11. 12. Paragr	(A) CI_2 Compound (D) has form (A) $C_6H_5NH-C_6H_5$ Which compound gives (A) NaCl A white sodium salt diss is added to the solution (A) CO_3^{2-} aph For Questions 13 f	(B) Br_2 nula : (B) $(C_6H_5)_2N-N(C_6H_5)_2$ s same test as compound (B) NaBr solves in water to give a so , a white precipitate is obt (B) Cl ⁻	(C) C_6H_5 –NH–NH– C_6H_5 (A) (C) Na_2CrO_4 lution which is neutral to li ained which does not diss (C) SO_3^{2-}	(D) $C_6H_5 - NH - N - C_6H_5$ (D) Na_2S tmus. When silver nitrate solution solve in dilute HNO ₃ . The anion is (D) S^{2-}			

13.	Find the	e anion(s 2-	s):		2- 02-		2- 00	<u>)_</u>		o ² -
	(A) SO	3		(B) SO	β ₃ ² , S ^{2−}	(C) SO	b_3^2 , CO_3^2	3	(D) S_2	0_{3}^{2}
14.	Find ou	ut (E) :								
	(A) S ²⁻			(B) CO	2- 3	(C) S ₂ 0	D_{3}^{2-}		(D) SO	2- 4
15.	Find ou	ıt (F) :								
	(A) HgS	SO ₄ .2Hg	C	(B) HgS	SO₄.3HgO	(C) HgS	SO ₄		(D) Hg ₂	SO ₄ .3HgO
16.	Match I	List-I witl List-I	h List-II a	and sele	ct the correct an	swer usir	ng the co List-II	des give	en below	the lists :
	P.	White t	urbidity			1.	IO ₃ ⁻ +	SO ₂ + st	arch —	\rightarrow
	Q.	Rotten	egg sme	ell		2.	SO ₂ +	MnO ₄ –	\rightarrow	
	R.	Colourl	ess solu	tion		3.	Zn + Na	aOH + S	$0_2 \rightarrow$	
	S.	Blue co	lour			4.	CO ₂ + 0	Ca(OH) ₂	\rightarrow	
Code :		_	_	_	_		_	-	_	-
		Р	Q	R	S		Р	Q	R	S
	(A)	1	3	2	4	(B)	3	2	4	1
	(C)	4	3	2	1	(D)	4	1	2	3

RRP ANSWER KEY

	PART	-	1
--	------	---	---

1. 8. 15. 22.	(A) (A) (A) 4	2. 9. 16. 23.	(D) (D) (D) 3	3. 10. 17. 24.	(B) (A) (D) 4	4. 11. 18. 25.	(B) (D) (C) 30	5. 12. 19.	(C) (A) (B)	6. 13. 20.	(B) (A) (A)	7. 14. 21.	(D) (C) 5
						PA	RT - 2						
1. 6. 11. 16.	(B) (AB) (AB) 4 (I), (I	II), (IV)	2. 7. 12. & (∨)	(D) (BCD) (ABC)		3. 8. 13. 17.	(C) (BCD) 5 5)	4. 9. 14. 18.	(C) (BC) 6 1	5. 10. 15.	(BC) (ABCI 7	D)
						PA	RI - 3						
1. 7.	(C) (A)		2. 8.	(C) (A)		3. 9.	(D) (B)	4. 10.	(B) (B)	5. 11.	(B) (A)	6.	(C)
						ΡΑ	RT - 4						
1. 6.	(A) (ABD)		2. 7.	(C) (ABC)		3. 8.	(B) A→R.	. B→U. (4. C→P, D-	(C) →V		5.	(BC)
9. 14.	(D) (D)		10. 15.	(B) (A)		11. 16.	(C) (C)	, ,	12.	(B)		13.	(B)

RRP SOLUTIONS

PART- 1

1.	SO_3^{2-} reduces KMnO ₄ to colourless Mn ²⁺ $SSO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$
2.	Nitrite ion liberates I_2 from potassium iodide turning starch blue. $2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO^+ + 4CH_3COO^- + 2H_2O$ $I_2 + starch \longrightarrow blue colour$
3.	NO_3^- gives NO_2 with concentrated H_2SO_4 which on passing through water form colourless $HNO_3(\ell)$ and $HNO_2(\ell)$. Br ⁻ + MnO_2 on heating with concentrated H_2SO_4 gives Br_2 gas which on passing through water imparts it a reddish brown colour.
4.	$Fe^{2+} + NO + 5H_2O \longrightarrow [Fe(H_2O)_5NO]^{2+}$ (brown complex)
5.	$2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO^+ + 4CH_3COO^- + 2H_2O.$
	I_3^- + starch \longrightarrow blue colouration.
6.	$Ba^{2+} + CrO_4^{2-} \longrightarrow BaCrO_4 \downarrow (yellow); Ag^+ + Cl^- \longrightarrow AgCl \downarrow (white)$
7.	Zn ²⁺ is colourless and borax bead test is given by coloured ions such as Cu ²⁺ , Mn ²⁺ , Fe ³⁺ etc.
8.	Ca salts impart brick red colour to the flame.
9.	AI_2O_3 . CoO formed in the test is blue in colour. It is called as thenard's blue.
10.	$Ba^{2+} + SO_3^{2-} \longrightarrow BaSO_3 \downarrow$ (white)
	BaSO ₃ + 2HCI \longrightarrow BaCl ₂ + SO ₂ (colourless pungent smelling gas) + H ₂ O SO ₃ ²⁻ and SO ₂ both act as bleaching agent.
11.	(A) $5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$
	(B) $2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$
	(C) $2MnO_4^- + H_2S + 6H^+ \longrightarrow 2Mn^{2+} + 5S \downarrow + 8H_2O$
12.	$NO_2^- + 2I^- + 4CH_3COOH \rightarrow I_2^- + 2NO\uparrow + 4CH_3COO^- + 2H_2O$
13.	SO_3^{2-} + Zn + 8H ⁺ \longrightarrow H ₂ S \uparrow + 3Zn ²⁺ + 3H ₂ O
	$Pb^{2+} + S^{2-} \longrightarrow PbS \downarrow (black)$
	$Ag^{+} + S^{2-} \longrightarrow Ag_2S \downarrow (black)$
14.	SO_3^{2-} + Ba(OH) ₂ \longrightarrow BaSO ₃ \downarrow (white) + 2OH ⁻ .
	$3SO_2 + Cr_2O_7^{2-} + 2H^+ \longrightarrow 2Cr^{3+}$ (green colour solution) + $3SO_4^{2-} + H_2O$.
16.	NH ₃ is basic
17.	E_{SRP}^{0} of Ag = 0.80 V , E_{SRP}^{0} of Cl ⁻ = 1.36 V , E_{SRP}^{0} of H ⁺ = 0.00 V , So Ag can not oxidize Cl ⁻ and can not reduce H ⁺ .

- **18.** $S_2O_3^{2-} + dil.H_2SO_4 \longrightarrow SO_2^{\uparrow}$ (Suffocating gas) $2Cl^- + S \downarrow$ (yellow turbidity or white turbidity) + $H_2O_3^{-1}$
- **19.** HCO_3^- + $\operatorname{Mg}^{2+} \rightarrow \operatorname{Mg}(\operatorname{HCO}_3)_2$ (No PPt) $\xrightarrow{\Lambda}$ $\operatorname{Mg}\operatorname{CO}_3^{\downarrow}$

SECTION-II

23. $3I^- + MnO_2 + H_2SO_4 \longrightarrow I_3^- \uparrow + Mn^{2+} + SO_4^{-2-} + H_2S$ $I_3^- + \text{starch} \rightarrow \text{Blue color due to starch lodine complex}$

24. $NH_4NO_3 \xrightarrow{\Delta} N_2O^{\uparrow} + 2H_2O^{\uparrow}$ $NH_4HCO_3 \xrightarrow{\Delta} NH_3^{\uparrow} + H_2O^{\uparrow} + CO_2^{\uparrow}$ $N_2H_5HSO_3 \xrightarrow{\Delta} N_2H_4^{\uparrow} + H_2O^{\uparrow} + SO_2^{\uparrow}$ $AICI_3 \xrightarrow{\Delta} AICI_3(g) \text{ (sublimes)}$ 25. $A = Ne_2IEe(CN) NOS1$

25. $A = Na_4[Fe(CN)_5NOS]$ ambidentate ligand [a] = CN^- , NOS⁻ a = 2Hybridisation $\Rightarrow d^2sp^3 \Rightarrow b = 2$ 7a + 8b = 30

PART- 2

SECTION-I

1. $Cl^- + H_2SO_4 \longrightarrow HCl^{\uparrow} (colourless) + HSO_4^ MnO(OH)_2 + 2H_2SO_4 + 2Cl^- \longrightarrow Mn^{2+} + Cl_2^{\uparrow} (yellowish green) + 2SO_4^{2-} + 3H_2O$ $Cl_2 + H_2O \longrightarrow 2HCl + [O]$ Litmus + [O] \longrightarrow colourless oxidised form Cl_2 is a yellowish green gas which bleaches litmus paper by oxidation.

- 2. $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$ $H_2CrO_4 + (CH_3COO)_2Ba \longrightarrow BaCrO_4 \downarrow (Yellow) + 2CH_3COOH$
- 3. $5Cl_2 + l_2 + 6H_2O \longrightarrow 2HIO_3 \text{ (colourless)} + 10HCl$ Br₂ + Cl₂ \implies 2BrCl (pale yellow)
- Ag₃PO₄ is yellow precipitate which is soluble in both dilute ammonia solution and dilute HNO₃. HPO₄²⁻ + 3Ag⁺ → Ag₃PO₄↓ + H⁺ Ag₃PO₄ + 2H⁺ → H₂PO₄⁻↓ + 3Ag⁺; Ag₃PO₄↓ + 6NH₃ → 3[Ag(NH₃)₂]⁺ + PO₄³⁻ Pale yellow precipitate of AgBr is not soluble in dilute HNO₃; bright yellow precipitate of AgI is not soluble in both; Ag₂CrO₄ is obtained as red precipitate.

SECTION-II

- 5. (A) $Cd^{2+}(aq) + H_2S(g) \longrightarrow CdS \downarrow (yellow) + 2H^+(aq)$
 - (B) Co_3^{2-} + 4Hg²⁺ + 3H₂O \longrightarrow HgCO₃. 3HgO \downarrow (reddish-brown) + 6H⁺ HCO₃⁻ (aq) does not give precipitate.
 - (C) SO_3^{2-} + 3Zn + $8H^+ \longrightarrow H_2S$ \uparrow + $3Zn^{2+}$ + $3H_2O$
 - (D) $5SO_2 + 2IO_3^- + 4H_2O \longrightarrow I_2 + 5SO_4^{2-} + 8H^+$

- 6. (A) $3AgCl \downarrow + AsO_3^{3-} \longrightarrow Ag_3AsO_3 \downarrow (yellow) + 3Cl^-$ Agl is unaffected by this treatment.
 - (B) AgCl + $2NH_3 \longrightarrow [Ag(NH_3)_2]Cl$

Agl is not soluble in dilute ammonia solution.

- (C) Both soluble in potassium cyanide, forming soluble complexes.
- (D) Both insoluble in dilute HNO_3 .
- 7. (A) $2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2^{\uparrow} + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4^{2-}$
 - (B) $2KBr + 2H_2SO_4 \longrightarrow Br_2^{\uparrow} + SO_2^{\uparrow} + SO_4^{2-} + 2K^+ + 2H_2O_4^{-}$
 - (C) KBr + $H_3PO_4 \longrightarrow HBr + H_2PO_4^- + K^+$
 - (D) $6KBr + K_2Cr_2O_7 + 7H_2SO_4 \longrightarrow 3Br_2 + 2Cr^{3+} + 2K^+ + 7SO_4^{2-} + 7H_2O_4^{2-}$
- 8. BF_3 colour the flame green; $B(OC_2H_5)_3$ burns with green edged flame; Barium chloride (volatile) gives apple green colour to flame.
- 9. $B_4O_7^{2-} + 4Ag^+ + H_2O \longrightarrow 4AgBO_2\downarrow$ (white) + 2H⁺

$$2AgBO_{2}\downarrow + 3H_{2}O \xrightarrow{Hydrolysis} Ag_{2}O\downarrow (brown) + 2H_{3}BO_{3}$$

10. $ZnCO_3 \xrightarrow{} ZnO + CO_2 \uparrow$. ZnO is yellow when hot.

(white)

15.

$$Co(NO_3)_2 \cdot 6H_2O \xrightarrow{\Lambda} CoO(black) + 2NO_2\uparrow + \frac{1}{2}O_2\uparrow + 6H_2O\uparrow$$

 $2\text{FeSO}_{4}.6\text{H}_{2}\text{O} \xrightarrow{\Delta} \text{Fe}_{2}\text{O}_{3} \text{ (brown)} + \text{SO}_{2}^{\uparrow} + \text{SO}_{3}^{\uparrow} + 6\text{H}_{2}\text{O}^{\uparrow}$ $3\text{MnSO}_{4} \xrightarrow{\Delta} \text{Mn}_{3}\text{O}_{4} + 2\text{SO}_{2}^{\uparrow} + \text{SO}_{3}^{\uparrow}$ (faint pink) (black)

11. $AgNO_{3} + NaBr \longrightarrow AgBr \downarrow (Yellow ppt.)$ $Pb^{2+} + CrO_{4}^{2-} \longrightarrow PbCrO_{4} \downarrow (Yellow ppt.)$ $AgCl + Na_{3}AsO_{3} \longrightarrow Ag_{3}AsO_{3} \downarrow (Yellow ppt.)$ $Ag^{+} + NO_{2}^{-} \longrightarrow AgNO_{2} \downarrow (White ppt.)$

SECTION-III

- 13. Cr, Mn, Fe, Co, Ni, Cu give Borax bead test.
- **14.** NaCl-Golden yellow ; KCl-Lilac ; CuCl₂-bluish-green, BaCl₂-Apple green ; SrCl₂-Crimson ; CaCl₂-Brick red.
 - (i) $4Cl^{-} + Cr_{2}O_{7}^{2-} + 6H^{+} \longrightarrow 2CrO_{2}Cl_{2}^{\uparrow}$ (deep red) + $3H_{2}O_{7}^{2-}$
 - (ii) $NO_2^- + H^+ \longrightarrow HNO_2$; $3HNO_2 \longrightarrow HNO_3^+ NO^+ + H_2O_2$ $2NO^+ + O_2^+ \longrightarrow NO_2^+ (brown)$
 - (iii) $3I^- + 2H_2SO_4 \longrightarrow I_3^- \uparrow (violet) + SO_4^{2-} + 2H_2O + SO_2$
 - (iv) $2KBr + 2H_2SO_4 \longrightarrow Br_2 \uparrow (reddish brown) + SO_2 \uparrow + NO_4^{2-} + 2K^+ + 2H_2O_4$
 - (v) $CI^- + H_2SO_4^- \longrightarrow HCI^+ (colourless) + HSO_4^-$
 - (vi) $2KBr + MnO_2 + 2H_2SO_4 \longrightarrow Br_2 \uparrow (reddish-brown) + 2K^+ + Mn^{2+} + 2SO_4^{2-} + 2H_2O_4^{2-})$
 - (vii) $4NO_3^- + 2H_2SO_4 \longrightarrow Br_2^{\uparrow}$ (reddish-brown) + 2K⁺ + Mn²⁺ + 2SO₄²⁻ + 2H₂O
 - (viii) $\text{KCI} + \text{MnO(OH)}_2 + 2\text{H}_2\text{SO}_4 + 2\text{CI}^- (\text{brown}) \longrightarrow \text{Mn}^{2+} + \text{CI}_2 \uparrow (\text{yellowish green}) + 2\text{SO}_4^{-2-} + 3\text{H}_2\text{O}_4^{-2-} + 3\text{H}_2\text{O}_4^{-2-}$
 - (ix) $SO_3^{2-} + 2H^+ \longrightarrow SO_2^{\uparrow}$ (colourless) + H_2O

			PART - 3	
18.	÷	a = 0 b = 1 a + b = 1	H₂O, NO⁺ are not ambidentate ligand Fe⁺¹	
17.	Na ₂ B ₄	O ₇ .10H ₂ O cor	tains 5 B–O–B bonds ; Borax	
	(V)	NaCl + K_2C	$Cr_2O_7 + H_2SO_4 \longrightarrow CrO_2Cl_2^{\uparrow} + Cr^{3+} + SO_4^{2-}$	
	(III) (IV)	Stability of Borax beac	carbonate ∞ metallic character I test is responded by d-block metal salt.	
	(II)	Zn + H ₂ SO	$_{4}$ + SO ₃ \longrightarrow H ₂ S [↑] + Zn ²⁺	
		$Cd^{+2} + H_2S$	black → CdS↓ yellow	
16.	(I)	$Pb^{+2} + H_2S$	$\longrightarrow PbS_{\checkmark}$	

- 1. $MgCO_3 \rightarrow MgO+CO_2$ because Mg^{2+} have polarizing power.
- 2. $Na \rightarrow Golden \ yellow$, $Ba \rightarrow apple \ red$, $Sr \rightarrow Crimson$, $Ca \rightarrow Brick \ red$
- 3. AgCl + 2NH₄OH \rightarrow [Ag (NH₃)₂] Cl (Soluble) + 2 H₂O

4. Borax Bead test :

On heating borax forms a colourless glassy bead of NaBO₂ and B_2O_3 .

 $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$ On heating with a coloured salt, the glassy bead forms a coloured metaborate in oxidising flame. For example, in oxidising flame copper salts give blue bead.

 $CuSO_4 \longrightarrow CuO + SO_3$; $CuO + B_2O_3 \longrightarrow Cu(BO_2)_2$ (blue bead) However, in reducing flame the colours may be different due to different reactions. $2Cu(BO_2)_2 + C \longrightarrow 2CuBO_2 + B_2O_3 + CO$

 $2Cu(BO_2)_2 + 2C \longrightarrow 2Cu$ (brown red/red and opaque bead) + $2B_2O_3 + 2CO$.

Motal	Colour in o	xidising flame	Colour in reducing flame			
Weta	When Hot	When Cold	When Hot	When Cold		
Copper	Green	Blue	Colourless	Brown red		
Iron	Brown yellow	Pale yellow/Yellow	Bottle green	Bottle green		
Chromium	Yellow	Green	Green	Green		
Cobalt	Blue	Blue	Blue	Blue		
Manganese	Violet/Amethyst	Red/Amethyst	Grey/Colourless	Grey/Colourless		
Nickel	Violet	Brown/Reddish brown	Grey	Grey		

5.
$$NO_3^- + \text{con.HCl} \rightarrow NO^\uparrow$$

 $\Rightarrow \text{Fe}^{2+} \text{NO} + 5H_2O \rightarrow [\text{Fe}(\text{H}_2\text{O})_5\text{NO}]^{2+}$

6.
$$NO_2^- / NO_3^- + \text{dil. HCl/con.HCl} \rightarrow NO^{\uparrow}$$

 $\Rightarrow Fe^{2+}NO + 5H_2O \rightarrow [Fe(H_2O)_5NO]^{2+}$

7.
$$MgSO_4 + NH_4OH + Na_2HPO_4 \longrightarrow Mg(NH_4)PO_4 + Na_2SO_4 + \cdots + white crystalline ppt.$$

8. Cl₂ is oxidising agent.

PART - 4

- 1. $2Mg(HCO_3)_2 \rightarrow 2MgCO_3 + CO_2 + H_2O$
- NaHCO₃ + HCI \longrightarrow NaCl + H₂O + CO₂ \uparrow 2. (Ý) (NaX) $2NaHCO_{3} \xrightarrow{\Lambda} Na_{2}CO_{3} + H_{2}O + CO_{2} \uparrow CO_{2} + 2KOH \longrightarrow K_{2}CO_{3} + H_{2}O$ CO₂ is colourless & odourless gas.

- $2 \text{ AgCl} \xrightarrow{h_{V}} 2 \text{ Ag} \downarrow (\text{black}) + \text{Cl}_{2} \uparrow$. 3.
- $NO_2^- + H^+ \longrightarrow HNO_2$; $CO(NH_2)_2 + HNO_2 \longrightarrow 2N_2^+ + CO_2^+ + 3H_2O_2^-$ 4.
- $Na_2B_4O_7.10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{\Delta} 2NaBO_2 + B_2O_3$ 5. glassy bead
- 6. All nitrate are water soluble.
- H₂S, SO₂ both are acidic so turns blue litmus red but SO₂ is a bleaching agent which turns red litmus 7. cólourless. MnO -/H+ oxidising agent, so SO, is oxidised to SO, 2- & H, S is oxidized to sulphur

$$2MnO_4^- + 5SO_2 + 2H_2O \rightarrow 2Mn^{+2} + 5SO_4^{-2} + 4H^+$$

$$2MnO_4^- + 5H_2S + 6H^+ \rightarrow 2Mn^{+2} + 5S_{(yellow)} + 8H_2O$$

 $Pb^{2+} + S^{2-} \longrightarrow PbS - (black ppt.), SO_2 will not give black precipitate so can be distinguished.$

 $CuCO_{_3} \xrightarrow{~~\Delta} CuO \downarrow + CO_2 \uparrow$ 8. (A) (B) (X) $CuO + \underbrace{NaBO_2 + B_2O_3}_{\text{B orax bead}} \longrightarrow \underbrace{Cu(BO_2)_2}_{\text{(C) B lue bead}} + NaBO_2$

 $Cr_2(SO_4)_3 \xrightarrow[Bead test]{Borax}$ Green colored metaborate

- $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$ 9-11) (A) $2HNO_{3} \longrightarrow H_{2}O + 2NO_{2} \uparrow + [O]$ $2C_{6}H_{5}NHC_{6}H_{5} + [O] \xrightarrow{(B)} (C_{6}H_{5})_{2}N-N(C_{6}H_{5})_{5} + H_{2}O$ blue ring (D) This testing also given by various oxidizing agent like CrO₄²⁻, Cr₂O₇²⁻, ClO₃⁻ etc.
- NaCl + AgNO₃ \longrightarrow AgCl \downarrow (white) + NaNO₃; Ag₂S \downarrow (black). Ag₂CO₃ and Ag₂SO₃ dissolves in dilute HNO₃ liberating CO₂ and SO₂ respectively. Both Ag₂CO₃ and Ag₂SO₃ are white. AgCl is white but insoluble in dilute HNO₃. NaCl solution is neutral to 12. litmus as it is a salt of strong acid and strong base.

 $1 \rightarrow IO_3^- + SO_2^- \rightarrow I_2^- + SO_4^{2-}$; $I_2^- + Starch \rightarrow deep blue colour$ 16. $2 \rightarrow$ SO₂ + MnO₄⁻ \longrightarrow MnSO₄ + SO₄²⁻ $2 \rightarrow Coc_{2} \rightarrow$ $4 \rightarrow \text{CO}_2 + \text{Ca(OH)}_2 \longrightarrow \text{CaCO}_3 \downarrow \text{(milky)}$