

The s-Block Elements

GROUP 1 - ALKALI METALS

Property	Li	Na	K	Rb	Cs
Atomic number (Z)	3	11	19	37	55
Electronic configuration	[He] 2s1	[Ne] 3s ¹	[Ar] 4s ¹	[Kr] 5s ¹	[Xe] 6s ¹
Ion	Li ⁺	Na⁺	K ⁺	Rb⁺	Cs ⁺
Atomic radius (Å)	1.34	1.54	1.96	2.11	2.25
Flame colouration	Crimson red	Golden yellow	Violet	Violet	Violet

 The group 1 elements are called 'alkali metals' because they form water soluble hydroxides.

Common Properties

- Lower densities than other metals.
- Low ionization energies results in their metallic properties and high reactivities.
- They react readily with non-metals, particularly halogens.

Chemical Properties

 Reaction with oxygen: The alkali metals tarnish in air due to the formation of oxide (M₂O) or hydroxide on the surface.

 $4M + O_2 \rightarrow 2M_2O$ (where, M = Li, Na, K, Rb, Cs) When heated with excess of air:

 $4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O}$ (Lithium oxide)

 $2Na + O_2 \xrightarrow{575 \text{ K}} Na_2O_2$ (Sodium peroxide)

Potassium, rubidium and caesium form superoxides having general formula (MO₂).

· Reaction with hydrogen:

 $2M + H_2 \xrightarrow{\Delta} 2MH \ (M = Li, Na, K, Rb, Cs)$

 Reaction with water and other compounds containing acidic hydrogen atoms like HX, C₂H₂, etc.
 2Na + 2H₂O → 2NaOH + H₂

 Reaction with halogens: Form metal halides of MX type, which are ionic crystalline solids.

 $2M + X_2 \rightarrow 2MX$

where, M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I.

- Reactivity of alkali metals with particular halogens increases from Li to Cs. On the other hand, reactivity of halogens decreases from F₂ to I₂.
- The alkali metals are soluble in liquid NH₃ giving a solution which is paramagnetic, highly conducting, reducing and deep blue in colour (due to the presence of ammoniated or solvated electrons).

$$M^+ + (x + y)NH_3 \longrightarrow [M(NH_3)_x]^+ + [e(NH_3)_y]^-$$
Ammoniated cation causes conductivity Ammoniated electron responsible for blue colour and paramagnetism

Exceptional Behaviour of Lithium

	All alkali Metals	Except
1.	do not react directly with N or C	Li ₃ N
2.	nitrates are thermally stable	LiNO ₃
3.	carbonates are thermally stable	Li ₂ CO ₃
4.	form double salts (alums) from their sulphates	Li ₂ SO ₄

Diagonal Relationship

 Certain elements of 2nd period show similarity with their diagonal elements in the 3rd period as shown below:

This is due to the reason that these pairs of elements have almost identical ionic radii and polarizing power (i.e. charge/size ratio). Elements of second period are known as bridge elements.

Anomalous Behaviour of the First Element of a Group

This is due to (i) small size (ii) high electronegativity and (iii) non-availability of d-orbitals for bonding. Anomalous behaviour is observed among the second row elements (i.e. Li to F). The s-Block Elements

Some Important Compounds of Sodium

1. Sodium hydroxide (NaOH) or Caustic soda

- **Preparation**: By electrolysis of NaCl solution (brine). $2\text{NaCl}_{(aq)} + 2\text{H}_2\text{O}_{(l)} \longrightarrow \text{H}_{2(g)} + \text{Cl}_{2(g)} + 2\text{NaOH}_{(aq)}$
- Properties:

2. Sodium carbonate (Na₂CO₃·10H₂O) or Washing soda

Preparation: By Solvay process, 2NH₃ + H₂O + CO₂ → (NH₄)₂CO₃ (NH₄)₂CO₃ + H₂O + CO₂ → 2NH₄HCO₃ NH₄HCO₃ + NaCl → NH₄Cl + NaHCO₃↓ 2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O

Properties:

$$2NaHCO_{3} \leftarrow CO_{2} \rightarrow Na_{2}CO_{3} + 10H_{2}O$$

$$Na_{2}SiO_{3} + SiO_{2} \rightarrow Na_{2}CO_{3} \rightarrow 2NaOH + H_{2}CO_{3} \rightarrow NaCI + H_{2}O + CO_{2}$$

$$CaCO_{3} + Ca(OH)_{2} \rightarrow NaCI + H_{2}O + CO_{2}$$

$$2NaOH \rightarrow NaCI + H_{2}O + CO_{2}$$

$$SO_{2} / H_{2}O, S \rightarrow Na_{2}S_{2}O_{3}$$

3. Sodium bicarbonate (NaHCO₃) or Baking soda

 Preparation: Obtained as an intermediate product in the solvay process.

$$NaCl + NH_3 + CO_2 + H_2 \rightarrow NaHCO_3 + NH_4Cl$$

Properties:

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2^+ + H_2O$$

· Uses:

Sodium hydroxide	Sodium carbonate	Sodium bicarbonate
O In the manufacture of sodium metal, soap, rayon, paper, dyes, drugs, etc. O As a laboratory reagent.	 In laundries and in softening of water as washing soda. In the manufacture of glass, caustic soda, etc. In textile industry and petroleum refining. 	 In the preparation of baking powder, effervescent drinks, etc. In medicines to remove acidity of the stomach. In fire extinguishers.

GROUP 2 - ALKALINE EARTH METALS

- The group 2 elements are called "alkaline earth metals" because
 - their hydroxides form alkaline aqueous solutions.
 - their oxides are earthen i.e., soil like, means having very high melting points.

Property	Be	Mg	Ca	Sr	Ва	Ra
Atomic number (Z)	4	12	20	38	56	88
Electronic configura- tion	[He] 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²	[Rn] 7s ²
Atomic radius (Å)	0.90	1.36	1.74	1.92	1.98	-
Flame colouration	None	None	Brick red	Crimson red	Grassy green	Crimson red
Ions	Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Ra ²⁺

Gradation in properties of alkaline earth metals

 Stability of carbonates, hydroxides and 	Be n	nax •
sulphates	Mg	Solubility of
- Solubility and basic strength of oxides	Ca	carbonates
and hydroxides - Solubility of halides	Sr	bicarbonates
	Ba	
max	•	I

Properties:

Property	Group-2				
Electronic configuration	[Inert gas] ns ²				
Block	s-block				
Oxidation state	+2				
Nature of oxides	BeO is an amphoteric oxide while other MO oxides are basic in nature.				
Nature of halides	Electron - deficient BeX_2 are covalent while others (MX_2) are ionic. $MgCl_2 < CaCl_2 < SrCl_2 < BaCl_2$				
Nature of sulphates	Less soluble in water and solubility decreases down the group. BeSO ₄ > MgSO ₄ > CaSO ₄ > SrSO ₄ > BaSO ₄				
Nature of hydroxides	Solubility of hydroxide increases down the group. Be(OH) ₂ < Mg(OH) ₂ < Ca(OH) ₂ < Sr(OH) ₂ < Ba(OH) ₂				
Nature of carbonates	Solubility of carbonates decreases down the group. BeCO ₃ > MgCO ₃ > CaCO ₃ > SrCO ₃ > BaCO ₃				
Reactivity	Increases down the group. Be < Mg < Ca < Sr < Ba				

Reaction with hydrogen (formation of hydrides):

$$M + H_2 \xrightarrow{\Delta} MH_2$$
 (except Be)

- The hydride of beryllium can be obtained by the reduction of BeCl₂ with LiAlH₄. 2BeCl₂ + LiAlH₄ → 2BeH₂ + LiCl + AlCl₃
- ▶ Both BeH₂ and MgH₂ are covalent compounds having polymeric structures in which H-atoms between beryllium atoms are held together by three centre-two electron (3c-2e) bonds as shown below:

Beryllium hydride polymer

- ► The hydrides of other elements of this group i.e., CaH₂, SrH₂ and BaH₂ are ionic and contain H ions.
- All the hydrides of alkaline earth metals react with water liberating H₂ gas and thus act as reducing agents.

$$MH_2 + 2H_2O \longrightarrow M(OH)_2 + 2H_2$$

- CaH₂ is called hydrolith and is used for production of H₂ by action of water on it.
- Action of acids: They readily react with acids liberating hydrogen.

 $M + 2HCl \rightarrow MCl_2 + H_2$ (M = Be, Mg, Ca, Sr, Ba)

 Reaction with ammonia: Like alkali metals, the alkaline earth metals dissolve in liquid ammonia to give deep blue-black solutions from which ammoniates $[M(NH_3)_6]^{2+}$ can be recovered.

Exceptional behaviour of beryllium :

All alkaline earth metals	Beryllium		
Less hard and low m.pt. and b.pt.	Hardest and high m.pt.		
React with water	Not even on boiling		
Ionic compounds	Covalent compounds		
Non-volatile nitrides	Volatile nitrides		
Stable carbonates	Unstable*		

^{*} Be₂CO₃ → BeO + CO₂ So, usually placed in atmosphere of CO₂.

Diagonal Relationship between Beryllium and Aluminium

- Both metals have a tendency to form covalent compounds, e.g. the chlorides of both (i.e. BeCl₂ and AlCl₃) being covalent are soluble in organic solvents.
- Both the metals dissolve in strong alkalies to form soluble complexes: beryllates [Be(OH)₄]²⁻ and aluminates [Al(OH)₄].

Industrial Uses

	Quick lime (CaO)	Limestone (CaCO ₃)			Plaster of Paris (CaSO ₄ .1/ ₂ H ₂ O)	
0	In steel industry to remove phosphates and silicates as slag.	0	As building material in the form of marble.	0	For producing moulds for pottery and ceramics and	
0	In making cement by mixing it with silica, alumina or clay.	0	In manufacture of quick lime (CaO).	0	casts of statues and busts. In surgical bandages used	
0	In making glass.	0	As a raw material for the		for plastering broken or	
0	In lime soda process for the conversion of Na ₂ CO ₃ to NaOH.		manufacture of Na ₂ CO ₃ in solvay ammonia process.	0	fractured bones. In dentistry.	
0	For softening of water, for making slaked lime, $[Ca(OH)_2]$ by treatment with water or calcium carbide (CaC_2) .	0	As a fertilizer.			

Biological Significance of Na, K, Mg and Ca

- Na⁺ and K⁺ are essential for proper functioning of human body.
 - Different ratio of Na⁺ to K⁺ inside and outside cells produces an electrical potential across the cell membrane which is essential for functioning of nerve and muscle cells.
 - These ions activate many enzymes.
 - These ions primarily help in transmission of nerve signals, in regulating the flow of water across cell membranes, transport of sugars and amino acids into the cells, etc.
- Mg²⁺ ions are concentrated in animal cells, and Ca²⁺ are concentrated in the body fluids outside the cell. Mg²⁺ ions form a complex with ATP. They are also essential for the transmission of impulse along nerve fibres. Mg²⁺ is an important constituent of chlorophyll, in the green parts of plants. Ca²⁺ is present in bones and teeth as apatite Ca₃(PO₄)₂, and the enamel on teeth as fluoroapatite [3(Ca₃(PO₄)₂)·CaF₂], Ca²⁺ ions are important in blood clotting, and are required to trigger the contraction of muscles and to maintain the regular beating of the heart.

EXAM DRILL

- Magnesium burns in air to give
 - (a) MgO
- (b) Mg_3N_2
- MgCO₃
- (d) MgO and Mg₃N₂
- The correct arrangement of increasing order of atomic radii among Na, K, Mg, Rb is
 - (a) Mg < K < Na < Rb
 - (b) Mg < Na < K < Rb
 - Mg < Na < Rb < K
 - (d) Na < K < Rb < Mg
- Which of the following salts does not impart colour to the flame?
 - (a) MgCl₂
- (b) SrCl₂ (c) BaCl₂
- (d) LiCl
- Which among the following has the tendency to form covalent compounds?
 - (a) Calcium
- (b) Beryllium
- Strontium
- (d) Magnesium
- MgSO₄ on reaction with NH₄OH and Na₂HPO₄ forms a white crystalline precipitate. What is its formula?
 - Mg(NH₄)PO₄
- (b) $Mg_3(PO_4)_2$
- MgCl₂·MgSO₄
- (d) MgSO₄
- In all oxides, peroxides and superoxides, the oxidation state of alkali metals is
 - (a) +1 and -1
- (b) +1 and +2
- (c) +1 only
- (d) +1, -1 and +2
- The first ionisation potential of Na, Mg, Al and Si are in the order
 - (a) Na < Mg > Al < Si
 - (b) Na > Mg > Al > Si
 - Na < Mg < Al < Si
 - (d) Na > Mg > Al < Si
- Which of the following metal carbonate is decomposed on heating?
 - (a) Na₂CO₃
- (b) MgCO₃
- (c) K_2CO_3
- (d) Rb₂CO₃
- Which of the following sulphates have the highest solubility?
 - (a) BeSO₄
- (b) MgSO₄
- (c) BaSO₄
- (d) CaSO₄
- 10. Which of the following can be extracted from sea water?
 - (a) Li
- (b) K
- (c) Mg
- (d) Ca
- 11. Several blocks of magnesium are fixed to the bottom of a ship to
 - (a) prevent puncturing by under sea rocks
 - (b) keep away the sharks

- (c) prevent action of water and salt
- (d) make the ship lighter
- 12. Be + 2NH₃ + 4HF $\longrightarrow A \xrightarrow{\Delta}$ BeF₂ + 2NH₄F The compound (*A*) in the reaction is
 - (a) NF₃
- (b) $NH_3 BeF_2$
- (c) $(NH_4)_2[BeF_4]$
- (d) NF₃NH₃

- 13. The decomposition temperature is maximum for
 - (a) MgCO₃
- (b) SrCO₃
- CaCO₃
- (d) BaCO₃
- 14. For two ionic solids CaO and KI, identify the wrong statement among the following:
 - (a) Lattice energy of CaO is much higher than that of KI.
 - (b) KI is soluble in benzene.
 - (c) CaO is sparingly soluble in water.
 - (d) KI has high melting point.
- 15. Which one of the following pairs do not impart colour to the flame?
 - (a) BeCl₂ and SrCl₂
- (b) BeCl₂ and MgCl₂
- CaCl₂ and BaCl₂
- (d) BaCl₂ and SrCl₂
- 16. Sodium on heating with moist air produces
 - (a) NaO
- (b) NaO₂
- (c) Na₂O
- (d) Na₂CO₃
- 17. Which is used in the treatment of manic depression disorders?
 - (a) Na₂CO₃
- (b) Li₂CO₃
- (c) K₂CO₃
- (d) MgCO₃
- **18.** A compound *X* on heating gives a colourless gas which is not supporter of combustion. The residue is dissolved in water and excess of CO₂ is passed through it. Compound Y is formed, which is recovered in the solid form. Y on gentle heating gives back X. The compound X can be
 - (a) CaCO₃
- (b) NaNO₃
- (c) CaSO₄·2H₂O
- (d) K_2CO_3
- 19. Which oxide is formed when potassium is heated in excess of oxygen?
 - (a) K_2O
- (b) KO
- (c) K_2O_2
- (d) KO₂

- 20. Oxone is
 - (a) KO₂
- (b) Na_2O_2 (c) Li_2O
- (d) CaO
- 21. Na₂O₂ has light yellow colour. This is due to
 - (a) presence of unpaired electron in the molecule
 - (b) presence of trace of NaO₂
 - presence of KO₂ as an impurity
 - (d) none of these.

- **22.** When a substance A reacts with water it produces a combustible gas B and a solution of a substance C in water. When another substance D reacts with this solution of C, it also produces the same gas B on warming, but D can produce B on reaction with dilute sulphuric acid at room temperature. A imparts a deep golden yellow colour to a smokeless flame of Bunsen burner. A, B, C and D are respectively
 - (a) Na, H₂, NaOH and Zn
 - (b) K, H2, KOH and Al
 - (c) Ca, H₂, Ca(OH)₂ and Sn
 - (d) CaC₂, C₂H₂, Ca(OH)₂ and Sn.
- **23.** Match (*X*) with (*Y*) and select the correct alternative.

Y X CaH₂ Sorel cement Anhydrone $BaSO_4 + ZnS$ Q. Hydrolith 3. $MgCl_2 \cdot 5MgO \cdot xH_2O$ R. Lithopone $Mg(ClO_4)_2$ S. 4. (a) (b)

- 24. Among KO₂, AlO₂, BaO₂ and NO₂, unpaired electron is present in
 - (a) NO_2^+ and BaO_2^-
- (b) KO₂ and AlO₂
- KO₂ only (c)

3

(c)

(d) 4

- (d) BaO₂ only.
- 25. The name and formula of the compound of magnesium, chlorine and oxygen used as a drying agent is
 - (a) magnesium oxychlorite, Mg(OCl)₂

2

- (b) magnesium chlorate, Mg(ClO₃)₂
- (c) magnesium perchlorate, Mg(ClO₄)₂
- (d) none of the above.
- 26. $Be_2C + H_2O \longrightarrow BeO + X$ $CaC_2 + H_2O \longrightarrow Ca(OH)_2 + Y$ $Mg_2C_3 + H_2O \longrightarrow Mg(OH)_2 + Z$ X, Y and Z are respectively
 - (a) CH_4 , C_2H_2 , C_3H_8
 - (b) CH₄, C₂H₆, C₃H₈
 - (c) CH₄, C₂H₂, C₃H₄
 - (d) C₂H₂, C₂H₆, C₃H₄.
- 27. What is the heat of solution of sodium chloride from following data?

Hydration energy of $Na^+ = -389.4 \text{ kJ mol}^{-1}$ Hydration energy of $Cl^- = -382.3 \text{ kJ mol}^{-1}$ Lattice energy of $NaCl = -776 \text{ kJ mol}^{-1}$

- (a) $+ 8.6 \text{ kJ mol}^{-1}$
- (b) $+4.3 \text{ kJ mol}^{-1}$
- (c) -4.3 kJ mol^{-1}
- (d) -8.6 kJ mol^{-1} .
- 28. The carbide of which of the following metals on hydrolysis gives allylene or propyne?
 - (a) Be
- (b) Ca
- (c) Al
- (d) Mg

- 29. Property of all the alkaline earth metals that increases with their atomic number is
 - (a) ionisation energy
 - solubility of their hydroxides
 - solubility of their sulphates
 - electronegativity.
- Carnallite is the mineral of
 - (a) Mg
- (b) Na
- Zn (c)
- (d) Ca
- 31. The radius of which ion (hydrated) is lowest?
 - (a) [Li_(aq)]⁺
- (b) $[Na_{(aq)}]^{\dagger}$
- $[K_{(aq)}]^{\dagger}$ (c)
- $[Cs_{(aq)}]^{\dagger}$ (d)
- 32. An ingredient of baking powder is
 - (a) NaHCO₃
- (b) Na₂CO₃
- Na₂SO₄
- (d) NaCl
- 33. Which of the bicarbonates does not exist in solid state?
 - (a) NaHCO₃
- (b) KHCO₃
- Ca(HCO₃)₂
- RbHCO₃ (d)
- 34. Strongest reducing agent amongst alkali metals in solutions is
 - (a) Li
- (b) Na
- (c) K
- (d) Cs
- 35. Sodium carbonate can be manufactured by Solvay's process but potassium carbonate cannot be prepared because
 - (a) K₂CO₃ is more soluble
 - (b) K₂CO₃ is less soluble
 - (c) KHCO₃ is more soluble than NaHCO₃
 - (d) KHCO₃ is less soluble than NaHCO₃.
- 36. Which of the following statements is/are true for IIA group elements?
 - (a) Except beryllium halides, all other halides are ionic in nature.
 - (b) All form nitrides in air.
 - (c) The solubility of the hydroxides increases from Be to Ba.
 - (d) All are correct.
- 37. The correct sequence of increasing covalent character is represented by
 - (a) BeCl₂ < NaCl < LiCl
 - (b) NaCl < LiCl < BeCl₂
 - (c) BeCl₂ < LiCl < NaCl</p>
 - (d) LiCl < NaCl < BeCl₂
- 38. Which is least thermally stable?
 - (a) Li_2CO_3
- (b) MgCO₃
- (c) BaCO₃
- (d) BeCO₃
- 39. The element which does not directly combine with carbon on strong heating is
 - (a) Li
- (b) Be
- (c) K
- (d) Ca
- **40.** Sodium metal reacts with Al₂O₃ at high temperature to give a sodium compound X. X reacts with carbon dioxide in water to form Y. Y is

- (a) Na_2O_2
- (b) Na₂O
- (c) Na₂CO₃
- (d) NaAlO₂.
- On heating quick lime with coke in an electric furnace, we get
 - (a) Ca and CO₂
- (b) CaCO₃
- (c) CaO
- (d) CaC₂
- 42. What are the products formed when Li₂CO₃ undergoes decomposition?
 - (a) $\text{Li}_2\text{O}_2 + \text{CO}$
- (b) $Li_2O + CO$
- (c) $\text{Li}_2\text{O} + \text{CO}_2$
- (d) $LiO_2 + CO$

18. @ b c d

For every correct answer award yourself 4 marks. For every incorrect answer deduct 1 mark.

- **43.** In Solvay ammonia process, sodium bicarbonate is precipitated due to
 - (a) presence of NH₃

9. abcd

(1) Number of questions attempted

(2) Number of questions correct

(b) reaction with CO₂

- (c) reaction with brine solution
- (d) reaction with NaOH.
- 44. Select the correct statement
 - (a) Solubility of alkali hydroxides is in order LiOH > NaOH > KOH > RbOH
 - (b) Solubility of alkali carbonates is in order Li₂CO₃ > Na₂CO₃ > K₂CO₃ > Rb₂CO₃
 - (c) Both are correct
- (d) None is correct.
- **45.** The pair of compounds which cannot exist together in solution is
 - (a) NaHCO₃ and NaOH
 - (b) Na₂CO₃ and NaHCO₃
 - (c) Na₂CO₃ and NaOH
 - (d) NaHCO₃ and NaCl

	D	AY TO UMR SHEE		
		INSTRUCTIONS		Time: 45 min
Use HB pencil only	and darken each circl			
If you wish to chang appropriate circle.	ge your answer, erase	the already darkened	circle completely and t	nen darken the
	ce for each question a	c indicated	Correct mai	rking bcd
Mark offig one choi	ce for each question a	o mulcateu.	Wrong mark	king ⊗ 🕑 🕦 💿
1. <a>a <a>b <a>c <a>d	10. (a) (b) (c) (d)	19.@ 6 0 0	28. (a) (b) (c) (d)	37. a b c d
2. @ b © d	11. (a) (b) (c) (d)	20. (a) (b) (c) (d)	29. (a) (b) (c) (d)	38. @ 6 © С
3. @ 6 © 6	12. (a) (b) (c) (d)	21. (a) (b) (c) (d)	30. (a) (b) (c) (d)	39. @ 6 © С
4. @ b © d	13. (a) (b) (c) (d)	22. (a) (b) (c) (d)	31. (a) (b) (c) (d)	40. @ 6 © 6
5. abcd	14.@ b © d	23. a b c d	32. @ 6 © Ф	41.@ b © d
6. abcd	15.@ b © d	24. (a) (b) (c) (d)	33. @ 6 © Ф	42. a b c d
7. abcd	16. a b c d	25. a b c d	34. (a) (b) (c) (d)	43. (a) (b) (c) (d)
8. a bca	17.0000	26. (a) (b) (c) (d)	35. (a) (b) (c) (d)	44.@b@d

27. (a) (b) (c) (d)

36. a b c d

Marks scored

HINTS & SOLUTIONS

1. (d): Magnesium burns in air to form both MgO and Mg_3N_2 .

$$2Mg + O_2 \xrightarrow{\Delta} 2MgO$$
; $3Mg + N_2 \xrightarrow{\Delta} Mg_3N_2$

- **2. (b)**: Atomic radius increases on moving down the group and decreases from left to right in a period. Thus, the correct order of increasing atomic radii is Mg < Na < K < Rb.
- **3. (a)**: Because of high *IE* of Mg, Mg²⁺ ions are easily reduced by the electrons provided by the flame. As a result, a large amount of energy is released. The light corresponding to this large energy falls in the ultraviolet region of the electromagnetic spectrum. Consequently, MgCl₂ does not impart any colour to the flame.
- 4. (b): Beryllium has a tendency to form covalent salts due to its smaller size and higher ionization enthalpy.

6. (c)

- 7. **(a)**: First ionisation energy of Mg (Z = 12) is higher than that of Na (Z = 11) because of increased nuclear charge on Mg. The first ionisation energy of Mg is higher than that of Al because in case of Mg ($1s^2 2s^2 2p^6 3s^2$) the electron has to be removed from 3s-orbital while in Al ($1s^2 2s^2 2p^6 3s^2 3p^1$) it has to be removed from 3p-orbital.
- The *I.E.* of Si (Z = 14) is higher than those of Mg and Al because of increase in nuclear charge on Si. The correct order is Na < Mg > Al < Si.
- 8. (b): $MgCO_3 \xrightarrow{heat} MgO + CO_2$

That metal carbonate will be unstable whose oxide is stable.

9. (a): BeSO₄ is most soluble because hydration energy is more than lattice energy.

$$\frac{\text{BeSO}_4 > \text{MgSO}_4 > \text{CaSO}_4 > \text{SrSO}_4 > \text{BaSO}_4}{\text{Hydration energy decreases hence, solubility decreases}}$$

10. (c): Sea water contains about 0.13% Mg²⁺ ions. Mg is extracted from sea water as follows:

$$Ca(OH)_2 + MgCl_2 \longrightarrow Mg(OH)_2 + CaCl_2$$

 $Mg(OH)_2 + HCl \longrightarrow MgCl_2 \xrightarrow{Electrolysis} Mg$

11. (c): Mg does not react with cold water but it decomposes with hot water.

$$Mg + H_2O \longrightarrow MgO + H_2$$

Mg forms a protective layer of oxide.

12. (c): Be + 2NH₃ + 4HF
$$\longrightarrow$$
 (NH₄)₂[BeF₄] $\xrightarrow{\Delta}$

(A) BeF₂ + 2NH₄F

- 13. (d): Thermal stability of carbonates increases down the group.
- **14. (d)**: Due to lower lattice energy of KI as compared to that of CaO, the melting point of KI is much lower than that of CaO.
- **15. (b):** BeCl₂ and MgCl₂ do not impart colour to the flame due to high ionization enthalpies of Be and Mg.

18. (a):
$$CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$$

$$X$$

$$CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2(aq)}$$

$$Ca(OH)_{2(aq)} + 2CO_{2(g)} \longrightarrow Ca(HCO_3)_{2(aq)}$$

$$excess$$

$$Ca(HCO_3)_{2(aq)} \xrightarrow{\Delta} CaCO_{3(s)} + CO_{2(g)} + H_2O_{(l)}$$

22. (a): Na + H₂O
$$\longrightarrow$$
 NaOH + H₂;
(A) (C) (B) $+ Zn \uparrow$
(D) \to
 $Zn + H_2SO_{4(dil.)} \longrightarrow ZnSO_4 + H_2$

23. (c): Sorel cement is a mixture of magnesium oxide and magnesium chloride.

Anhydrone is magnesium perchlorate.

Hydrolith is calcium hydride.

Lithopone is a mixture of barium sulphate and zinc sulphide.

- **24. (c)**: NO₂ contains three electron bond and in NO₂⁺ odd (unpaired) electron is removed. Peroxides (O₂²⁻) do not possess unpaired electrons as the antibonding π M.O.'s acquired one more electron each for pairing. AlO₂⁻ is obtained by the interaction of Al³⁺ (2 s^2p^6 configuration) and 2 oxide (O²⁻) ions each of which does not contain unpaired electron. Superoxide O₂⁻ has one unpaired electron in π antibonding M.O. and is therefore paramagnetic.
- **25. (c)**: Magnesium perchlorate (anhydrone) has strong affinity for water giving $Mg(ClO_4)_2 \cdot 6H_2O$. It loses whole of water when heated at 250°C and drying property is regenerated.

26. (c):
$$Be_2C + 2H_2O \longrightarrow 2BeO + CH_4$$

 $CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$
 $Mg_2C_3 + 4H_2O \longrightarrow 2Mg(OH)_2 + C_3H_4$

27. (b): Hydration energy of NaCl =
$$-389.4 - 382.3$$

= -771.7 kJ mol⁻¹

$$\Delta H_{\text{sol.}}$$
 = Hydration energy – Lattice energy
= $-771.7 - (-776) = +4.3 \text{ kJ mol}^{-1}$

28. (d): Be₂C and Al₄C₃ on reaction with water liberate methane gas while CaC₂ gives acetylene gas. Mg forms

The s-Block Elements

MgC₂ either when heated directly with carbon in an electric furnace or when MgO is heated with carbon.

When MgC_2 is heated, it changes into Mg_2C_3 . The carbide, Mg_2C_3 reacts with H_2O to form propyne.

$$Mg_2C_3 + 4H_2O \rightarrow 2Mg(OH)_2 + CH_3C \equiv CH$$
Propyne

29. (b)

30. (a): Carnallite is KCl·MgCl₂·6H₂O.

31. (d): Larger the cation, smaller is its degree of hydration.

32. (a): NaHCO3 is baking powder.

33. (c): Bicarbonates of alkaline earth metals do not exist in solid state but are known in solutions only.

34. (a): Due to smallest size, hydration of Li⁺ is maximum hence large amount of hydration energy is released.

35. (c): KHCO₃ cannot be precipitated out due to higher solubility.

36. (d): Beryllium halides are essentially covalent and soluble in organic solvents.

All the alkaline earth metals burn in dinitrogen to form nitrides of the type, M_3N_2 .

Down the group, decrease in lattice enthalpy is more than decrease in hydration energy therefore solubility of hydroxides increases down the group.

37. (b): According to Fajan's rule, smaller the cation and greater the charge on the cation, greater is the polarizing power and larger is the covalent character.

Be²⁺ is smaller than Li⁺ which in turn is smaller than Na⁺.

38. (d): BeCO₃ is least stable.

Thermal stability of alkaline earth metal carbonates

increases down the group as the electropositive character of metal increases. Group 1 compounds are more stable to heat than group 2.

39. (c): Li forms dilithium acetylide when heated directly with carbon while other alkali metals do not react with carbon directly.

$$2Li + 2C \xrightarrow{\Delta} Li^{\dagger}C^{-} \equiv C^{-}Li^{\dagger}$$

Dilithium acetylide

All alkaline earth metals or their oxides on heating with carbon form carbides.

Be₂C is prepared by heating a mixture of beryllium powder and carbon under hot pressing conditions.

$$2BeO + 3C \xrightarrow{2175-2275 \text{ K}} Be_2C + 2CO$$

$$Ca + 2C \xrightarrow{1373 \text{ K}} CaC_2$$

$$Powder$$

$$CaO + 3C \xrightarrow{2273 \text{ K}} CaC_2 + CO$$

$$40. (c) : 6Na + Al_2O_3 \longrightarrow 3Na_2O + 2Al$$

$$(X)$$

$$Na_2O + CO_2 \longrightarrow Na_2CO_3$$

$$(Y)$$

41. (d): CaO + 3C
$$\xrightarrow{\Delta/\text{electric furnace}}$$
 CaC₂ + CO \uparrow

42. (c):
$$\text{Li}_2\text{CO}_3 \longrightarrow \text{Li}_2\text{O} + \text{CO}_2$$

43. (c): In Solvay ammonia process, sodium bicarbonate is precipitated due to common ion(Na⁺) effect provided by brine (concentrated NaCl Solution).

44. (b): Solubility of alkali carbonates is in the order. Li₂CO₃ > Na₂CO₃ > K₂CO₃ > Rb₂CO₃.

45. (a): NaHCO₃ is an acidic salt and will heat with strong base NaOH. Hence, they cannot exist togethe is solution.

