The s-Block Elements ### **GROUP 1 - ALKALI METALS** | Property | Li | Na | K | Rb | Cs | |--------------------------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------| | Atomic
number (Z) | 3 | 11 | 19 | 37 | 55 | | Electronic configuration | [He]
2s1 | [Ne]
3s ¹ | [Ar]
4s ¹ | [Kr]
5s ¹ | [Xe]
6s ¹ | | Ion | Li ⁺ | Na⁺ | K ⁺ | Rb⁺ | Cs ⁺ | | Atomic
radius (Å) | 1.34 | 1.54 | 1.96 | 2.11 | 2.25 | | Flame
colouration | Crimson
red | Golden
yellow | Violet | Violet | Violet | The group 1 elements are called 'alkali metals' because they form water soluble hydroxides. #### **Common Properties** - Lower densities than other metals. - Low ionization energies results in their metallic properties and high reactivities. - They react readily with non-metals, particularly halogens. #### **Chemical Properties** Reaction with oxygen: The alkali metals tarnish in air due to the formation of oxide (M₂O) or hydroxide on the surface. $4M + O_2 \rightarrow 2M_2O$ (where, M = Li, Na, K, Rb, Cs) When heated with excess of air: $4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O}$ (Lithium oxide) $2Na + O_2 \xrightarrow{575 \text{ K}} Na_2O_2$ (Sodium peroxide) Potassium, rubidium and caesium form superoxides having general formula (MO₂). · Reaction with hydrogen: $2M + H_2 \xrightarrow{\Delta} 2MH \ (M = Li, Na, K, Rb, Cs)$ Reaction with water and other compounds containing acidic hydrogen atoms like HX, C₂H₂, etc. 2Na + 2H₂O → 2NaOH + H₂ Reaction with halogens: Form metal halides of MX type, which are ionic crystalline solids. $2M + X_2 \rightarrow 2MX$ where, M = Li, Na, K, Rb, Cs and X = F, Cl, Br, I. - Reactivity of alkali metals with particular halogens increases from Li to Cs. On the other hand, reactivity of halogens decreases from F₂ to I₂. - The alkali metals are soluble in liquid NH₃ giving a solution which is paramagnetic, highly conducting, reducing and deep blue in colour (due to the presence of ammoniated or solvated electrons). $$M^+ + (x + y)NH_3 \longrightarrow [M(NH_3)_x]^+ + [e(NH_3)_y]^-$$ Ammoniated cation causes conductivity Ammoniated electron responsible for blue colour and paramagnetism #### **Exceptional Behaviour of Lithium** | | All alkali Metals | Except | |----|---|---------------------------------| | 1. | do not react directly with N or C | Li ₃ N | | 2. | nitrates are thermally stable | LiNO ₃ | | 3. | carbonates are thermally stable | Li ₂ CO ₃ | | 4. | form double salts (alums) from
their sulphates | Li ₂ SO ₄ | #### **Diagonal Relationship** Certain elements of 2nd period show similarity with their diagonal elements in the 3rd period as shown below: This is due to the reason that these pairs of elements have almost identical ionic radii and polarizing power (i.e. charge/size ratio). Elements of second period are known as bridge elements. # Anomalous Behaviour of the First Element of a Group This is due to (i) small size (ii) high electronegativity and (iii) non-availability of d-orbitals for bonding. Anomalous behaviour is observed among the second row elements (i.e. Li to F). The s-Block Elements #### **Some Important Compounds of Sodium** #### 1. Sodium hydroxide (NaOH) or Caustic soda - **Preparation**: By electrolysis of NaCl solution (brine). $2\text{NaCl}_{(aq)} + 2\text{H}_2\text{O}_{(l)} \longrightarrow \text{H}_{2(g)} + \text{Cl}_{2(g)} + 2\text{NaOH}_{(aq)}$ - Properties: #### 2. Sodium carbonate (Na₂CO₃·10H₂O) or Washing soda Preparation: By Solvay process, 2NH₃ + H₂O + CO₂ → (NH₄)₂CO₃ (NH₄)₂CO₃ + H₂O + CO₂ → 2NH₄HCO₃ NH₄HCO₃ + NaCl → NH₄Cl + NaHCO₃↓ 2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O #### Properties: $$2NaHCO_{3} \leftarrow CO_{2} \rightarrow Na_{2}CO_{3} + 10H_{2}O$$ $$Na_{2}SiO_{3} + SiO_{2} \rightarrow Na_{2}CO_{3} \rightarrow 2NaOH + H_{2}CO_{3} \rightarrow NaCI + H_{2}O + CO_{2}$$ $$CaCO_{3} + Ca(OH)_{2} \rightarrow NaCI + H_{2}O + CO_{2}$$ $$2NaOH \rightarrow NaCI + H_{2}O + CO_{2}$$ $$SO_{2} / H_{2}O, S \rightarrow Na_{2}S_{2}O_{3}$$ #### 3. Sodium bicarbonate (NaHCO₃) or Baking soda Preparation: Obtained as an intermediate product in the solvay process. $$NaCl + NH_3 + CO_2 + H_2 \rightarrow NaHCO_3 + NH_4Cl$$ Properties: $$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2^+ + H_2O$$ #### · Uses: | Sodium
hydroxide | Sodium carbonate | Sodium
bicarbonate | |--|---|--| | O In the manufacture of sodium metal, soap, rayon, paper, dyes, drugs, etc. O As a laboratory reagent. | In laundries and in softening of water as washing soda. In the manufacture of glass, caustic soda, etc. In textile industry and petroleum refining. | In the preparation of baking powder, effervescent drinks, etc. In medicines to remove acidity of the stomach. In fire extinguishers. | #### **GROUP 2 - ALKALINE EARTH METALS** - The group 2 elements are called "alkaline earth metals" because - their hydroxides form alkaline aqueous solutions. - their oxides are earthen i.e., soil like, means having very high melting points. | Property | Be | Mg | Ca | Sr | Ва | Ra | |----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | Atomic
number (Z) | 4 | 12 | 20 | 38 | 56 | 88 | | Electronic
configura-
tion | [He]
2s ² | [Ne]
3s ² | [Ar]
4s ² | [Kr]
5s ² | [Xe]
6s ² | [Rn]
7s ² | | Atomic
radius (Å) | 0.90 | 1.36 | 1.74 | 1.92 | 1.98 | - | | Flame
colouration | None | None | Brick
red | Crimson
red | Grassy
green | Crimson
red | | Ions | Be ²⁺ | Mg ²⁺ | Ca ²⁺ | Sr ²⁺ | Ba ²⁺ | Ra ²⁺ | #### Gradation in properties of alkaline earth metals | Stability of carbonates, hydroxides and | Be n | nax
• | |--|------|---------------| | sulphates | Mg | Solubility of | | - Solubility and basic
strength of oxides | Ca | carbonates | | and hydroxides - Solubility of halides | Sr | bicarbonates | | | Ba | | | max | • | I | #### Properties: | Property | Group-2 | | | | | |--------------------------|---|--|--|--|--| | Electronic configuration | [Inert gas] ns ² | | | | | | Block | s-block | | | | | | Oxidation state | +2 | | | | | | Nature of oxides | BeO is an amphoteric oxide while other MO oxides are basic in nature. | | | | | | Nature of
halides | Electron - deficient BeX_2 are covalent
while others (MX_2) are ionic.
$MgCl_2 < CaCl_2 < SrCl_2 < BaCl_2$ | | | | | | Nature of sulphates | Less soluble in water and solubility decreases down the group. BeSO ₄ > MgSO ₄ > CaSO ₄ > SrSO ₄ > BaSO ₄ | | | | | | Nature of
hydroxides | Solubility of hydroxide increases down the group. Be(OH) ₂ < Mg(OH) ₂ < Ca(OH) ₂ < Sr(OH) ₂ < Ba(OH) ₂ | | | | | | Nature of carbonates | Solubility of carbonates decreases down the group. BeCO ₃ > MgCO ₃ > CaCO ₃ > SrCO ₃ > BaCO ₃ | | | | | | Reactivity | Increases down the group. Be < Mg < Ca < Sr < Ba | | | | | #### Reaction with hydrogen (formation of hydrides): $$M + H_2 \xrightarrow{\Delta} MH_2$$ (except Be) - The hydride of beryllium can be obtained by the reduction of BeCl₂ with LiAlH₄. 2BeCl₂ + LiAlH₄ → 2BeH₂ + LiCl + AlCl₃ - ▶ Both BeH₂ and MgH₂ are covalent compounds having polymeric structures in which H-atoms between beryllium atoms are held together by three centre-two electron (3c-2e) bonds as shown below: Beryllium hydride polymer - ► The hydrides of other elements of this group i.e., CaH₂, SrH₂ and BaH₂ are ionic and contain H ions. - All the hydrides of alkaline earth metals react with water liberating H₂ gas and thus act as reducing agents. $$MH_2 + 2H_2O \longrightarrow M(OH)_2 + 2H_2$$ - CaH₂ is called hydrolith and is used for production of H₂ by action of water on it. - Action of acids: They readily react with acids liberating hydrogen. $M + 2HCl \rightarrow MCl_2 + H_2$ (M = Be, Mg, Ca, Sr, Ba) Reaction with ammonia: Like alkali metals, the alkaline earth metals dissolve in liquid ammonia to give deep blue-black solutions from which ammoniates $[M(NH_3)_6]^{2+}$ can be recovered. #### Exceptional behaviour of beryllium : | All alkaline earth metals | Beryllium | | | |--------------------------------------|------------------------|--|--| | Less hard and low m.pt.
and b.pt. | Hardest and high m.pt. | | | | React with water | Not even on boiling | | | | Ionic compounds | Covalent compounds | | | | Non-volatile nitrides | Volatile nitrides | | | | Stable carbonates | Unstable* | | | ^{*} Be₂CO₃ → BeO + CO₂ So, usually placed in atmosphere of CO₂. ## Diagonal Relationship between Beryllium and Aluminium - Both metals have a tendency to form covalent compounds, e.g. the chlorides of both (i.e. BeCl₂ and AlCl₃) being covalent are soluble in organic solvents. - Both the metals dissolve in strong alkalies to form soluble complexes: beryllates [Be(OH)₄]²⁻ and aluminates [Al(OH)₄]. #### **Industrial Uses** | | Quick lime (CaO) | Limestone (CaCO ₃) | | | Plaster of Paris (CaSO ₄ .1/ ₂ H ₂ O) | | |---|---|--------------------------------|---|---|--|--| | 0 | In steel industry to remove phosphates and silicates as slag. | 0 | As building material in the form of marble. | 0 | For producing moulds for pottery and ceramics and | | | 0 | In making cement by mixing it with silica, alumina or clay. | 0 | In manufacture of quick lime (CaO). | 0 | casts of statues and busts. In surgical bandages used | | | 0 | In making glass. | 0 | As a raw material for the | | for plastering broken or | | | 0 | In lime soda process for the conversion of Na ₂ CO ₃ to NaOH. | | manufacture of Na ₂ CO ₃ in solvay ammonia process. | 0 | fractured bones. In dentistry. | | | 0 | For softening of water, for making slaked lime, $[Ca(OH)_2]$ by treatment with water or calcium carbide (CaC_2) . | 0 | As a fertilizer. | | | | ## Biological Significance of Na, K, Mg and Ca - Na⁺ and K⁺ are essential for proper functioning of human body. - Different ratio of Na⁺ to K⁺ inside and outside cells produces an electrical potential across the cell membrane which is essential for functioning of nerve and muscle cells. - These ions activate many enzymes. - These ions primarily help in transmission of nerve signals, in regulating the flow of water across cell membranes, transport of sugars and amino acids into the cells, etc. - Mg²⁺ ions are concentrated in animal cells, and Ca²⁺ are concentrated in the body fluids outside the cell. Mg²⁺ ions form a complex with ATP. They are also essential for the transmission of impulse along nerve fibres. Mg²⁺ is an important constituent of chlorophyll, in the green parts of plants. Ca²⁺ is present in bones and teeth as apatite Ca₃(PO₄)₂, and the enamel on teeth as fluoroapatite [3(Ca₃(PO₄)₂)·CaF₂], Ca²⁺ ions are important in blood clotting, and are required to trigger the contraction of muscles and to maintain the regular beating of the heart. ## EXAM DRILL - Magnesium burns in air to give - (a) MgO - (b) Mg_3N_2 - MgCO₃ - (d) MgO and Mg₃N₂ - The correct arrangement of increasing order of atomic radii among Na, K, Mg, Rb is - (a) Mg < K < Na < Rb - (b) Mg < Na < K < Rb - Mg < Na < Rb < K - (d) Na < K < Rb < Mg - Which of the following salts does not impart colour to the flame? - (a) MgCl₂ - (b) SrCl₂ (c) BaCl₂ - (d) LiCl - Which among the following has the tendency to form covalent compounds? - (a) Calcium - (b) Beryllium - Strontium - (d) Magnesium - MgSO₄ on reaction with NH₄OH and Na₂HPO₄ forms a white crystalline precipitate. What is its formula? - Mg(NH₄)PO₄ - (b) $Mg_3(PO_4)_2$ - MgCl₂·MgSO₄ - (d) MgSO₄ - In all oxides, peroxides and superoxides, the oxidation state of alkali metals is - (a) +1 and -1 - (b) +1 and +2 - (c) +1 only - (d) +1, -1 and +2 - The first ionisation potential of Na, Mg, Al and Si are in the order - (a) Na < Mg > Al < Si - (b) Na > Mg > Al > Si - Na < Mg < Al < Si - (d) Na > Mg > Al < Si - Which of the following metal carbonate is decomposed on heating? - (a) Na₂CO₃ - (b) MgCO₃ - (c) K_2CO_3 - (d) Rb₂CO₃ - Which of the following sulphates have the highest solubility? - (a) BeSO₄ - (b) MgSO₄ - (c) BaSO₄ - (d) CaSO₄ - 10. Which of the following can be extracted from sea water? - (a) Li - (b) K - (c) Mg - (d) Ca - 11. Several blocks of magnesium are fixed to the bottom of a ship to - (a) prevent puncturing by under sea rocks - (b) keep away the sharks - (c) prevent action of water and salt - (d) make the ship lighter - 12. Be + 2NH₃ + 4HF $\longrightarrow A \xrightarrow{\Delta}$ BeF₂ + 2NH₄F The compound (*A*) in the reaction is - (a) NF₃ - (b) $NH_3 BeF_2$ - (c) $(NH_4)_2[BeF_4]$ - (d) NF₃NH₃ - 13. The decomposition temperature is maximum for - (a) MgCO₃ - (b) SrCO₃ - CaCO₃ - (d) BaCO₃ - 14. For two ionic solids CaO and KI, identify the wrong statement among the following: - (a) Lattice energy of CaO is much higher than that of KI. - (b) KI is soluble in benzene. - (c) CaO is sparingly soluble in water. - (d) KI has high melting point. - 15. Which one of the following pairs do not impart colour to the flame? - (a) BeCl₂ and SrCl₂ - (b) BeCl₂ and MgCl₂ - CaCl₂ and BaCl₂ - (d) BaCl₂ and SrCl₂ - 16. Sodium on heating with moist air produces - (a) NaO - (b) NaO₂ - (c) Na₂O - (d) Na₂CO₃ - 17. Which is used in the treatment of manic depression disorders? - (a) Na₂CO₃ - (b) Li₂CO₃ - (c) K₂CO₃ - (d) MgCO₃ - **18.** A compound *X* on heating gives a colourless gas which is not supporter of combustion. The residue is dissolved in water and excess of CO₂ is passed through it. Compound Y is formed, which is recovered in the solid form. Y on gentle heating gives back X. The compound X can be - (a) CaCO₃ - (b) NaNO₃ - (c) CaSO₄·2H₂O - (d) K_2CO_3 - 19. Which oxide is formed when potassium is heated in excess of oxygen? - (a) K_2O - (b) KO - (c) K_2O_2 - (d) KO₂ - 20. Oxone is - (a) KO₂ - (b) Na_2O_2 (c) Li_2O - (d) CaO - 21. Na₂O₂ has light yellow colour. This is due to - (a) presence of unpaired electron in the molecule - (b) presence of trace of NaO₂ - presence of KO₂ as an impurity - (d) none of these. - **22.** When a substance A reacts with water it produces a combustible gas B and a solution of a substance C in water. When another substance D reacts with this solution of C, it also produces the same gas B on warming, but D can produce B on reaction with dilute sulphuric acid at room temperature. A imparts a deep golden yellow colour to a smokeless flame of Bunsen burner. A, B, C and D are respectively - (a) Na, H₂, NaOH and Zn - (b) K, H2, KOH and Al - (c) Ca, H₂, Ca(OH)₂ and Sn - (d) CaC₂, C₂H₂, Ca(OH)₂ and Sn. - **23.** Match (*X*) with (*Y*) and select the correct alternative. Y X CaH₂ Sorel cement Anhydrone $BaSO_4 + ZnS$ Q. Hydrolith 3. $MgCl_2 \cdot 5MgO \cdot xH_2O$ R. Lithopone $Mg(ClO_4)_2$ S. 4. (a) (b) - 24. Among KO₂, AlO₂, BaO₂ and NO₂, unpaired electron is present in - (a) NO_2^+ and BaO_2^- - (b) KO₂ and AlO₂ - KO₂ only (c) 3 (c) (d) 4 - (d) BaO₂ only. - 25. The name and formula of the compound of magnesium, chlorine and oxygen used as a drying agent is - (a) magnesium oxychlorite, Mg(OCl)₂ 2 - (b) magnesium chlorate, Mg(ClO₃)₂ - (c) magnesium perchlorate, Mg(ClO₄)₂ - (d) none of the above. - 26. $Be_2C + H_2O \longrightarrow BeO + X$ $CaC_2 + H_2O \longrightarrow Ca(OH)_2 + Y$ $Mg_2C_3 + H_2O \longrightarrow Mg(OH)_2 + Z$ X, Y and Z are respectively - (a) CH_4 , C_2H_2 , C_3H_8 - (b) CH₄, C₂H₆, C₃H₈ - (c) CH₄, C₂H₂, C₃H₄ - (d) C₂H₂, C₂H₆, C₃H₄. - 27. What is the heat of solution of sodium chloride from following data? Hydration energy of $Na^+ = -389.4 \text{ kJ mol}^{-1}$ Hydration energy of $Cl^- = -382.3 \text{ kJ mol}^{-1}$ Lattice energy of $NaCl = -776 \text{ kJ mol}^{-1}$ - (a) $+ 8.6 \text{ kJ mol}^{-1}$ - (b) $+4.3 \text{ kJ mol}^{-1}$ - (c) -4.3 kJ mol^{-1} - (d) -8.6 kJ mol^{-1} . - 28. The carbide of which of the following metals on hydrolysis gives allylene or propyne? - (a) Be - (b) Ca - (c) Al - (d) Mg - 29. Property of all the alkaline earth metals that increases with their atomic number is - (a) ionisation energy - solubility of their hydroxides - solubility of their sulphates - electronegativity. - Carnallite is the mineral of - (a) Mg - (b) Na - Zn (c) - (d) Ca - 31. The radius of which ion (hydrated) is lowest? - (a) [Li_(aq)]⁺ - (b) $[Na_{(aq)}]^{\dagger}$ - $[K_{(aq)}]^{\dagger}$ (c) - $[Cs_{(aq)}]^{\dagger}$ (d) - 32. An ingredient of baking powder is - (a) NaHCO₃ - (b) Na₂CO₃ - Na₂SO₄ - (d) NaCl - 33. Which of the bicarbonates does not exist in solid state? - (a) NaHCO₃ - (b) KHCO₃ - Ca(HCO₃)₂ - RbHCO₃ (d) - 34. Strongest reducing agent amongst alkali metals in solutions is - (a) Li - (b) Na - (c) K - (d) Cs - 35. Sodium carbonate can be manufactured by Solvay's process but potassium carbonate cannot be prepared because - (a) K₂CO₃ is more soluble - (b) K₂CO₃ is less soluble - (c) KHCO₃ is more soluble than NaHCO₃ - (d) KHCO₃ is less soluble than NaHCO₃. - 36. Which of the following statements is/are true for IIA group elements? - (a) Except beryllium halides, all other halides are ionic in nature. - (b) All form nitrides in air. - (c) The solubility of the hydroxides increases from Be to Ba. - (d) All are correct. - 37. The correct sequence of increasing covalent character is represented by - (a) BeCl₂ < NaCl < LiCl - (b) NaCl < LiCl < BeCl₂ - (c) BeCl₂ < LiCl < NaCl</p> - (d) LiCl < NaCl < BeCl₂ - 38. Which is least thermally stable? - (a) Li_2CO_3 - (b) MgCO₃ - (c) BaCO₃ - (d) BeCO₃ - 39. The element which does not directly combine with carbon on strong heating is - (a) Li - (b) Be - (c) K - (d) Ca - **40.** Sodium metal reacts with Al₂O₃ at high temperature to give a sodium compound X. X reacts with carbon dioxide in water to form Y. Y is - (a) Na_2O_2 - (b) Na₂O - (c) Na₂CO₃ - (d) NaAlO₂. - On heating quick lime with coke in an electric furnace, we get - (a) Ca and CO₂ - (b) CaCO₃ - (c) CaO - (d) CaC₂ - 42. What are the products formed when Li₂CO₃ undergoes decomposition? - (a) $\text{Li}_2\text{O}_2 + \text{CO}$ - (b) $Li_2O + CO$ - (c) $\text{Li}_2\text{O} + \text{CO}_2$ - (d) $LiO_2 + CO$ 18. @ b c d For every correct answer award yourself 4 marks. For every incorrect answer deduct 1 mark. - **43.** In Solvay ammonia process, sodium bicarbonate is precipitated due to - (a) presence of NH₃ 9. abcd (1) Number of questions attempted (2) Number of questions correct (b) reaction with CO₂ - (c) reaction with brine solution - (d) reaction with NaOH. - 44. Select the correct statement - (a) Solubility of alkali hydroxides is in order LiOH > NaOH > KOH > RbOH - (b) Solubility of alkali carbonates is in order Li₂CO₃ > Na₂CO₃ > K₂CO₃ > Rb₂CO₃ - (c) Both are correct - (d) None is correct. - **45.** The pair of compounds which cannot exist together in solution is - (a) NaHCO₃ and NaOH - (b) Na₂CO₃ and NaHCO₃ - (c) Na₂CO₃ and NaOH - (d) NaHCO₃ and NaCl | | D | AY TO UMR SHEE | | | |--|------------------------|----------------------|-------------------------|---------------------| | | | INSTRUCTIONS | | Time: 45 min | | Use HB pencil only | and darken each circl | | | | | If you wish to chang appropriate circle. | ge your answer, erase | the already darkened | circle completely and t | nen darken the | | | ce for each question a | c indicated | Correct mai | rking bcd | | Mark offig one choi | ce for each question a | o mulcateu. | Wrong mark | king ⊗ 🕑 🕦 💿 | | | | | | | | 1. <a>a <a>b <a>c <a>d | 10. (a) (b) (c) (d) | 19.@ 6 0 0 | 28. (a) (b) (c) (d) | 37. a b c d | | 2. @ b © d | 11. (a) (b) (c) (d) | 20. (a) (b) (c) (d) | 29. (a) (b) (c) (d) | 38. @ 6 © С | | 3. @ 6 © 6 | 12. (a) (b) (c) (d) | 21. (a) (b) (c) (d) | 30. (a) (b) (c) (d) | 39. @ 6 © С | | 4. @ b © d | 13. (a) (b) (c) (d) | 22. (a) (b) (c) (d) | 31. (a) (b) (c) (d) | 40. @ 6 © 6 | | 5. abcd | 14.@ b © d | 23. a b c d | 32. @ 6 © Ф | 41.@ b © d | | 6. abcd | 15.@ b © d | 24. (a) (b) (c) (d) | 33. @ 6 © Ф | 42. a b c d | | 7. abcd | 16. a b c d | 25. a b c d | 34. (a) (b) (c) (d) | 43. (a) (b) (c) (d) | | 8. a bca | 17.0000 | 26. (a) (b) (c) (d) | 35. (a) (b) (c) (d) | 44.@b@d | 27. (a) (b) (c) (d) 36. a b c d Marks scored ## **HINTS & SOLUTIONS** 1. (d): Magnesium burns in air to form both MgO and Mg_3N_2 . $$2Mg + O_2 \xrightarrow{\Delta} 2MgO$$; $3Mg + N_2 \xrightarrow{\Delta} Mg_3N_2$ - **2. (b)**: Atomic radius increases on moving down the group and decreases from left to right in a period. Thus, the correct order of increasing atomic radii is Mg < Na < K < Rb. - **3. (a)**: Because of high *IE* of Mg, Mg²⁺ ions are easily reduced by the electrons provided by the flame. As a result, a large amount of energy is released. The light corresponding to this large energy falls in the ultraviolet region of the electromagnetic spectrum. Consequently, MgCl₂ does not impart any colour to the flame. - 4. (b): Beryllium has a tendency to form covalent salts due to its smaller size and higher ionization enthalpy. 6. (c) - 7. **(a)**: First ionisation energy of Mg (Z = 12) is higher than that of Na (Z = 11) because of increased nuclear charge on Mg. The first ionisation energy of Mg is higher than that of Al because in case of Mg ($1s^2 2s^2 2p^6 3s^2$) the electron has to be removed from 3s-orbital while in Al ($1s^2 2s^2 2p^6 3s^2 3p^1$) it has to be removed from 3p-orbital. - The *I.E.* of Si (Z = 14) is higher than those of Mg and Al because of increase in nuclear charge on Si. The correct order is Na < Mg > Al < Si. - 8. (b): $MgCO_3 \xrightarrow{heat} MgO + CO_2$ That metal carbonate will be unstable whose oxide is stable. 9. (a): BeSO₄ is most soluble because hydration energy is more than lattice energy. $$\frac{\text{BeSO}_4 > \text{MgSO}_4 > \text{CaSO}_4 > \text{SrSO}_4 > \text{BaSO}_4}{\text{Hydration energy decreases hence, solubility decreases}}$$ **10. (c)**: Sea water contains about 0.13% Mg²⁺ ions. Mg is extracted from sea water as follows: $$Ca(OH)_2 + MgCl_2 \longrightarrow Mg(OH)_2 + CaCl_2$$ $Mg(OH)_2 + HCl \longrightarrow MgCl_2 \xrightarrow{Electrolysis} Mg$ 11. (c): Mg does not react with cold water but it decomposes with hot water. $$Mg + H_2O \longrightarrow MgO + H_2$$ Mg forms a protective layer of oxide. 12. (c): Be + 2NH₃ + 4HF $$\longrightarrow$$ (NH₄)₂[BeF₄] $\xrightarrow{\Delta}$ (A) BeF₂ + 2NH₄F - 13. (d): Thermal stability of carbonates increases down the group. - **14. (d)**: Due to lower lattice energy of KI as compared to that of CaO, the melting point of KI is much lower than that of CaO. - **15. (b):** BeCl₂ and MgCl₂ do not impart colour to the flame due to high ionization enthalpies of Be and Mg. 18. (a): $$CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$$ $$X$$ $$CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2(aq)}$$ $$Ca(OH)_{2(aq)} + 2CO_{2(g)} \longrightarrow Ca(HCO_3)_{2(aq)}$$ $$excess$$ $$Ca(HCO_3)_{2(aq)} \xrightarrow{\Delta} CaCO_{3(s)} + CO_{2(g)} + H_2O_{(l)}$$ 22. (a): Na + H₂O $$\longrightarrow$$ NaOH + H₂; (A) (C) (B) $+ Zn \uparrow$ (D) \to $Zn + H_2SO_{4(dil.)} \longrightarrow ZnSO_4 + H_2$ 23. (c): Sorel cement is a mixture of magnesium oxide and magnesium chloride. Anhydrone is magnesium perchlorate. Hydrolith is calcium hydride. Lithopone is a mixture of barium sulphate and zinc sulphide. - **24. (c)**: NO₂ contains three electron bond and in NO₂⁺ odd (unpaired) electron is removed. Peroxides (O₂²⁻) do not possess unpaired electrons as the antibonding π M.O.'s acquired one more electron each for pairing. AlO₂⁻ is obtained by the interaction of Al³⁺ (2 s^2p^6 configuration) and 2 oxide (O²⁻) ions each of which does not contain unpaired electron. Superoxide O₂⁻ has one unpaired electron in π antibonding M.O. and is therefore paramagnetic. - **25. (c)**: Magnesium perchlorate (anhydrone) has strong affinity for water giving $Mg(ClO_4)_2 \cdot 6H_2O$. It loses whole of water when heated at 250°C and drying property is regenerated. 26. (c): $$Be_2C + 2H_2O \longrightarrow 2BeO + CH_4$$ $CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$ $Mg_2C_3 + 4H_2O \longrightarrow 2Mg(OH)_2 + C_3H_4$ 27. (b): Hydration energy of NaCl = $$-389.4 - 382.3$$ = -771.7 kJ mol⁻¹ $$\Delta H_{\text{sol.}}$$ = Hydration energy – Lattice energy = $-771.7 - (-776) = +4.3 \text{ kJ mol}^{-1}$ 28. (d): Be₂C and Al₄C₃ on reaction with water liberate methane gas while CaC₂ gives acetylene gas. Mg forms The s-Block Elements MgC₂ either when heated directly with carbon in an electric furnace or when MgO is heated with carbon. When MgC_2 is heated, it changes into Mg_2C_3 . The carbide, Mg_2C_3 reacts with H_2O to form propyne. $$Mg_2C_3 + 4H_2O \rightarrow 2Mg(OH)_2 + CH_3C \equiv CH$$ Propyne 29. (b) 30. (a): Carnallite is KCl·MgCl₂·6H₂O. 31. (d): Larger the cation, smaller is its degree of hydration. 32. (a): NaHCO3 is baking powder. **33. (c)**: Bicarbonates of alkaline earth metals do not exist in solid state but are known in solutions only. **34.** (a): Due to smallest size, hydration of Li⁺ is maximum hence large amount of hydration energy is released. **35. (c)**: KHCO₃ cannot be precipitated out due to higher solubility. **36. (d):** Beryllium halides are essentially covalent and soluble in organic solvents. All the alkaline earth metals burn in dinitrogen to form nitrides of the type, M_3N_2 . Down the group, decrease in lattice enthalpy is more than decrease in hydration energy therefore solubility of hydroxides increases down the group. **37. (b)**: According to Fajan's rule, smaller the cation and greater the charge on the cation, greater is the polarizing power and larger is the covalent character. Be²⁺ is smaller than Li⁺ which in turn is smaller than Na⁺. 38. (d): BeCO₃ is least stable. Thermal stability of alkaline earth metal carbonates increases down the group as the electropositive character of metal increases. Group 1 compounds are more stable to heat than group 2. **39. (c)**: Li forms dilithium acetylide when heated directly with carbon while other alkali metals do not react with carbon directly. $$2Li + 2C \xrightarrow{\Delta} Li^{\dagger}C^{-} \equiv C^{-}Li^{\dagger}$$ Dilithium acetylide All alkaline earth metals or their oxides on heating with carbon form carbides. Be₂C is prepared by heating a mixture of beryllium powder and carbon under hot pressing conditions. $$2BeO + 3C \xrightarrow{2175-2275 \text{ K}} Be_2C + 2CO$$ $$Ca + 2C \xrightarrow{1373 \text{ K}} CaC_2$$ $$Powder$$ $$CaO + 3C \xrightarrow{2273 \text{ K}} CaC_2 + CO$$ $$40. (c) : 6Na + Al_2O_3 \longrightarrow 3Na_2O + 2Al$$ $$(X)$$ $$Na_2O + CO_2 \longrightarrow Na_2CO_3$$ $$(Y)$$ 41. (d): CaO + 3C $$\xrightarrow{\Delta/\text{electric furnace}}$$ CaC₂ + CO \uparrow 42. (c): $$\text{Li}_2\text{CO}_3 \longrightarrow \text{Li}_2\text{O} + \text{CO}_2$$ **43. (c)**: In Solvay ammonia process, sodium bicarbonate is precipitated due to common ion(Na⁺) effect provided by brine (concentrated NaCl Solution). **44. (b)**: Solubility of alkali carbonates is in the order. Li₂CO₃ > Na₂CO₃ > K₂CO₃ > Rb₂CO₃. **45. (a)**: NaHCO₃ is an acidic salt and will heat with strong base NaOH. Hence, they cannot exist togethe is solution.