ACID-BASE TITRATION

PROBLEM 45 A 1.5 g sample containing oxalic acid and some inert impurity was dissolved in enough water and volume made up to 250 mL. A 20 mL portion of this solution was then mixed with 30 mL of an alkali solution. The resulting solution was then treated with stoichiometric amount of $CaCl_2$ just needed for precipitation of oxalate as CaC_2O_4 . Solution was filtered off and filtrate was finally titrated against 0.1 M HCl solution. 8.0 mL of acid was required to reach the equivalence point. At last, the above neutral solution was treated with excess of AgNO₃ solution and AgCl obtained was washed, dried and weighed to be 0.4305 g. Determine mass percentage of oxalic acid in the original sample.

PROBLEM 46 A 1.5 g sample containing P_2O_3 and some inert impurity was dissolved in enough water and boiled gently where P_2O_3 disproportionated quantitatively into PH_3 and H_3PO_4 . The solution was further boiled for some time to let-off all $PH_3(g)$ and finally cooled to room temperature and diluted to 100 mL. A 10 mL portion of this solution was then mixed with 20 mL 0.3 M NaOH solution. Excess alkali required 11.0 mL 0.05 M H_2SO_4 solution for back titration. Determine mass percentage of P_2O_3 in the original sample.

PROBLEM 47 2.5 g of a mixture containing CaCO₃, Ca(HCO₃)₂ and NaCl was dissolved in 100 mL water and its 10 mL portion required 10 mL 0.05 M H₂SO₄ solution to reach the phenolphthalein end point. An another 10 mL portion of the same stock solution required 32.35 mL of the same acid solution to reach the methyl orange end point. Determine mass percentage of CaCO₃ and Ca(HCO₃)₂ in the original mixture.

PROBLEM 48 A solution contain both Na_2CO_3 and $NaHCO_3$. 10 mL portion of this solution is mixed with few drops of phenolphthalein indicator and titrated against 0.08 M H_2SO_4 solution. 7.0 mL of acid was required to reach the end point A 5.0 mL portion of this solution was then taken for further analysis and a few drops of methyl orange was added to it and finally titrated against same acid solution. 3.53 mL of acid was required to reach the end point. Determine mass of Na_2CO_3 and $NaHCO_3$ per litre of solution. Ignore volume change due to addition of indicator.

PROBLEM 49 A mixture was known to contain both KNO₃ and K_2SO_3 . To 0.486 g of the mixture, dissolved in enough water to give 50 mL solution, was added 50 mL of 0.15 M HCl solution. The reaction mixture was heated to expel all SO₂ and then 25 mL of the reaction mixture was titrated with 0.1 M KOH. The titration required 13.11 mL of the base. Calculate mass percentage of K_2SO_3 in the mixture.

PROBLEM 50 An amino acid isolated from a piece of animal tissue was believed to be glycine. A 0.05 g sample was treated in such a way that all nitrogen in it was converted into ammonia. This ammonia was added to 50 mL of 0.05 M HCl solution. The excess acid remaining in the solution required 30.57 mL 0.06 M NaOH solution for complete neutralization. What was the percentage by mass of nitrogen? How does this mass compare with percentage mass of nitrogen calculated from glycine (H_2NCH_2COOH)?

PROBLEM 51 In a reaction, calcium orthophosphate on heating with magnesium produced calcium phosphide, magnesium metaphosphate, calcium oxide and oxygen gas. Phosphide on hydrolysis produces PH_3 gas. The PH_3 gas is burnt completely to P_2O_5 using air, which contains 21%, by volume of oxygen. Calculate the volume of air at STP required for combustion, if 2.4 g Mg was initially reacted with calcium orthophosphate. All volumes are measured at STP.

PROBLEM 52 9.3 g of a mixture containing Li_2CO_3 , NaHCO₃, Na₂CO₃ on strong heating produced 7.37 g of solid residue. The residue is dissolved in 200 mL water.

A 10 mL portion of this solution is mixed with 15 mL of a normal HCl solution. The excess acid required 12 mL 0.5 N NaOH solution to reach the equivalence point. Determine the mass percentage of NaHCO₃ and Na₂CO₃ in the original mixture. Li = 7, Na = 23.

PROBLEM 53 4.0 g of a monobasic, saturated carboxylic acid is dissolved in 100 mL water and its 10 mL portion required 8.0 mL 0.27 M NaOH to reach the equivalence point. In an another experiment, 5.0 g of the same acid is burnt completely and CO_2 produced is absorbed completely in 500 mL of a 2.0 N NaOH solution. A 10 mL portion of the resulting solution is treated with excess of BaCl₂ to precipitate all carbonate and finally titrated with 0.5 N H₂SO₄ solution. Determine the volume of the acid solution that would be required to make this solution neutral.

PROBLEM 54 5.0 g of a mixture containing NaHCO₃, NaCl and Na₂CO₃ is dissolved in 500 mL water and its 10 mL portion required 12.4 mL 0.1 M HCl solution to reach the equivalence point. In an another

experiment, 10 mL portion of the same stock solution is mixed with 10 mL 0.15 M NaOH solution. Excess NaOH required 12.6 mL 0.1 M HCl solution for back titration. Determine the mass percentage of each component in the original mixture.

PROBLEM 55 6.4 g of a pure monobasic organic acid is burnt completely in excess of oxygen and CO_2 evolved is absorbed completely in one litre of an aqueous solution of NaOH. A 10 mL portion of this solution required 14.5 mL of a normal HCl solution to reach the phenolphthalein end point. An another 10 mL portion of the same solution required 18 mL of the same HCl solution to reach the methyl orange end point. If the organic acid contains 25% oxygen by weight, deduce the empirical formula of this acid and strength of original NaOH solution.

PROBLEM 56 A complex of cobalt with ammonia is analyzed for determining its formula, by titrating it against a standardized acid as follows:

 $\operatorname{Co}(\operatorname{NH}_3)_x \operatorname{Cl}_3(aq) + \operatorname{HCl} \longrightarrow \operatorname{NH}_4^+(aq) + \operatorname{Co}^{3+}(aq) + \operatorname{Cl}^-(aq)$

A 1.58 g complex required 23.63 mL 1.5 M HCl to reach the equivalence point. Determine formula. If the reaction mixture at equivalence point is treated with excess of $AgNO_3$ solution, what mass of AgCl will precipitate out?

PROBLEM 57 One litre solution of alkali is prepared by dissolving impure solid of alkali which contain $5\% \text{ Na}_2\text{CO}_3$ and $8\% \text{ CaCO}_3$ and 10% NaCl. A 10 mL portion of this solution required 9.8 mL of a 0.5 M H₂SO₄ solution for neutralization. Calculate weight of alkali dissolved initially.

PROBLEM 58 40 g of a sample of caustic soda containing NaOH, Na₂CO₃ and inert impurity is dissolved in water to prepare 1.0 litre solution. A 25 mL portion of this solution required 23.15 mL 1.022 N HCl for complete neutralization. To 25 mL another solution, excess of BaCl₂ is added, and resulting solution required 22.55 mL HCl of same strength to reach the end point. Calculate mass percentage of NaOH and Na₂CO₃ in the original sample.

PROBLEM 59 1.5 g of a sample containing Na₂CO₃ and NaHCO₃ is dissolved in 100 mL of water. A 25 mL portion of this solution required 22.45 mL 0.202 N HCl using methyl orange as indicator. In a separate analysis, 25 mL portion of the same stock solution is mixed with 30 mL 0.204 N NaOH and then excess of BaCl₂ is added resulting in precipitation of all carbonate as BaCO₃. Filtrate required 9.98 mL HCl of same strength. Calculate mass percentage of Na₂CO₃ and NaHCO₃ in the mixture.

PROBLEM 60 One gram sample of a saturated hydrocarbon is burned completely and liberated CO_2 was absorbed in a 1.0 L 0.2 N NaOH solution. To the resulting solution, excess of $BaCl_2$ crystals was added and the solution was filtered off to free from $BaCO_3$. A 10 mL portion of the extract required 12 mL 0.025 M H₂SO₄ solution for neutralization. Determine molecular formula of the hydrocarbon.

PROBLEM 61 2.0 g of a saturated, monobasic carboxylic acid was burned and liberated CO_2 was passed through a concentrated solution of NaOH. The resulting solution was separated into two equal half and analyzed. One half required 71.72 mL 1.0 N HCl to reach the end point in presence of phenolphthalein indicator. The other half required 123.44 mL 1.0 N HCl to reach the end point in presence of methyl orange indicator. Deduce formula of acid and determine mass of NaOH present initially.

PROBLEM 62 2.5 g of a mixture containing NaHCO₃, Na₂CO₃ and NaCl is dissolved in 100 mL water and its 50 mL portion required 13.33 mL 1.0 N HCl solution to reach the equivalence point. On the other hand its other 50 mL portion required 19 mL 0.25 M NaOH solution to reach the equivalence point. Determine mass percentage of each component.

PROBLEM 63 2.0 g of a crystal of CaCO₃ is dissolved in 50 mL water and then mixed with 50 mL of a HCl solution. The resulting solution is boiled to remove all CO₂ and its 10 mL portion required 8.0 mL of a NaOH solution to make the solution neutral. Also 20 mL of original HCl solution is equivalent to 96 mL of NaOH solution. Determine molarity of both NaOH and HCl solution.

PROBLEM 64 2.725 g of a mixture of $K_2C_2O_4$, KHC₂O₄ and $H_2C_2O_4 \cdot 2H_2O$ is dissolved in 100 mL H_2O and its 10 mL portion is titrated with 0.1 N HCl solution.

20 mL acid was required to reach the equivalence point. In another experiment, 10 mL portion of the same stock solution is titrated with 0.1 N KOH solution. 20 mL of base was required to reach the equivalence point. Determine mass percentage of each component in the mixture.

PROBLEM 65 A 1.0 g sample containing NH_4NO_3 , $(NH_4)_3PO_4$ and some inert impurity was dissolved in 100 mL water its 10 mL portion required 15 mL 0.1 M NaOH solution to reach the equivalence point. In a separate experiment, 10 mL of the same stock solution was treated with excess of BaCl₂ solution and 0.077 g of barium phosphate precipitate was obtained. Determine mass percentage of ammonium nitrate in the original sample.

PROBLEM 66 10.38 mg of a diprotic acid (containing (C, H and O) is burned completely and all CO₂ was absorbed in 100 mL of alkali solution. The resulting solution is separated into two-half and one-half required 55 mL 0.005 M H_2SO_4 solution to reach the phenolphthalein end point. Other half was titrated in presence of methyl orange indicator and 80 mL H_2SO_4 solution of same strength was required to reach the end point. In a separate analysis, 0.168 g of the same acid required 16.18 mL 0.125 M NaOH solution to reach the end point. Deduce formula of the acid and determine molarity of alkali solution used initially.

PROBLEM 67 A 3.0 g sample containing Na_2CO_3 , NaHCO₃, NaCl and some inert impurity was dissolved in 100 mL of water and its 10 mL portion was titrated against 0.1 M HCl solution using phenolphthalein indicator. 11.32 mL of acid solution was required to reach the end point. The resulting solution was then mixed with excess of AgNO₃ solution resulting in formation of 0.306 g of AgCl precipitate. The solution was filtered-off and filtrate was again titrated, but now against 0.05 M NaOH solution. 42.64 mL of alkali was required to reach the end point. Determine mass percentage of Na_2CO_3 , $NaHCO_3$ and NaCl in the original sample.

PROBLEM 68 In neutralization titration of Na_3PO_4 , if phenolphthalein is used as indicator, end point is indicated only when Na_3PO_4 is converted into Na_2HPO_4 while, if methyl orange is used as indicator, end point appear only when Na_3PO_4 is converted into H_3PO_4 . In an experiment a 4.0 g mixture containing Na_3PO_4 , Na_2HPO_4 and NaH_2PO_4 is dissolved in 50 mL water and its 10 mL portion required 24.4 mL 0.1 M HCl solution to reach the end point using phenolphthalein indicator. In a separate analysis, 10 mL portion of the same stock solution required 23.572 mL 0.5 M HCl solution to reach the end point using methyl orange as indicator. Determine mass percentage of all components in the mixture.

PROBLEM 69 A mixture containing LiHCO₃, NaCl and Na₂CO₃ on gentle heating loses 26.5% of its weight. 5.0 g of this mixture was heated gently and residue was dissolved in 100 mL water. A 10 mL portion of this solution was then treated with 20 mL 0.2 M H_2SO_4 solution. A 10 mL portion of the resulting solution required 3.86 mL 0.1 M NaOH solution to reach the end point. Determine mass percentage of each component in the mixture.

PROBLEM 70 A mixture containing LiHCO₃, NaHCO₃ and CaCO₃ on gentle heating loses 48.4% of its weight. In an experiment, 5.0 g of this mixture was dissolved in 100 mL water and its 10 mL portion was treated with 10 mL 0.5 M NaOH solution. The resulting solution was then treated with excess of

 $BaCl_2$ solution resulting in precipitation of all carbonates as $BaCO_3$. Precipitate was separated out by filtration and filtrate required 15.3 mL 0.1 N HCl solution to reach the end point. Determine mass percentage of all components present in the mixture.

PROBLEM 71 5.0 g of a mixture containing NaCl, NaHCO₃, Na₂CO₃ and CaCO₃ on gentle heating reduces to 4.25 g of solid residue. In a separate experiment, 1.0 g of the same mixture required 10 mL 0.2 M NaOH to reach the end point. In a 3rd experiment, 1.0 g of the same mixture was dissolved in 100 mL water and required 10 mL 1.053 M HCl solution to reach the end point. Determine mass percentage of each component in the mixture.

PROBLEM 72 2.0 g of a sample of $CaCO_3$, $NaHCO_3$ and some volatile, inert impurity, was heated strongly where $CaCO_3$ and $NaHCO_3$, were decomposed into CaO and Na_2CO_3 respectively and $all CO_2$ gas produced in decomposition was absorbed in a 50 mL NaOH solution. NaOH was little less than the stoichiometric requirement therefore, CO_2 during reaction with NaOH, produced Na_2CO_3 and some $NaHCO_3$. The resulting solution was titrated first in presence of phenolphthalein indicator and 5.0 mL 1.0 M HCl was required to reach the phenolphthalein end point. Methyl orange was then added and titration continued with HCl of same strength where 15 mL HCl was required to reach the final end point.

On the other hand, the residue obtained after heating of the original sample was dissolved in water and treated with excess of $BaCl_2$, giving 0.985 g of $BaCO_3$ precipitate. Determine mass percentage of $CaCO_3$ and $NaHCO_3$ in the original sample.

PROBLEM 73 A one gram sample containing NaOH as the only basic substance and some inert impurity was left exposed to atmosphere for a very long time so that part of NaOH got converted into Na₂CO₃ by absorbing CO₂ from atmosphere. The resulting sample was dissolved in water and volume made upto 100 mL. A 100 mL portion of this solution required 16 mL 0.25 M HCl solution to reach the equivalence point when methyl orange was used as indicator. In a separate analysis, 20 mL portion of the same solution. An additional 9.00 mL 0.1 M Ba(OH)₂ solution was required to just restore the pink colour of solution. Determine mass percentage of NaOH in the original sample and mass percentage of Na₂CO₃ in the sample after exposure to atmosphere.

PROBLEM 74 The monochloroacetic acid (ClCH₂COOH) preservative in a 100 mL of carbonated beverage was extracted by shaking with dimethyl ether and then returned to aqueous solution as ClCH₂COO⁻ by extraction with 1.0 M NaOH. This solution was acidified and treated with 50 mL 0.0452 M AgNO₃ solution where the following reaction occurred:

 $ClCH_2COOH + AgNO_3 + H_2O \longrightarrow HOCH_2COOH + H^+ + NO_3^- + AgCl(s)$

After filtering the AgCl, titration of filtrate required 10.43 mL of an NH_4SCN solution. Titration of a blank taken through the entire procedure used 22.98 mL of same NH_4SCN solution. Calculate weight in mg, of ClCH₂COOH in the beverage sample.

PROBLEM 75 2.0 g of a sample containing sodium oxalate, oxalic acid dihydrate and some inert impurity was dissolved in 100 mL water and its 20 mL portion required 23.34 mL 0.04 M acidified permanganate solution to reach the equivalence point. In a separate analysis, 20 mL portion of the same stock solution required 26.67 mL 0.1 N NaOH solution to reach the end point. Determine mass percentage of Na₂C₂O₄ and H₂C₂O₄·2H₂O in the original sample.

PROBLEM 76 A 1.5 g sample containing $(NH_4)_2SO_4$, NH_4NO_3 and some inert impurity was dissolved in water and volume made upto 100 mL. A 20 mL portion of this solution was mixed with 50 mL 0.1 M NaOH solution. A 30 mL aliquot of this resulting solution required 9.00 mL 1/28 M H₂SO₄ solution for complete neutralization. In a separate analysis, 32 mL of the original stock solution on

treatment with excess of $BaCl_2$ solution produced 0.466 g $BaSO_4$ precipitate. Determine mass percentage of NH_4NO_3 and $(NH_4)_2SO_4$ in the original sample.

PROBLEM 77 A 1.0 g impure sample containing $[Zn(NH_4)_4]Cl_2$ and some inert impurity was treated with 15 mL of 1 M NaOH solution where all complex is converted into $Na_2[Zn(OH)_4]$. The excess base required 10 mL $\frac{1}{2}$ M HCl solution for back titration.

(a) Determine percentage purity.

(b) If the last solution obtained after neutralization was treated with excess of AgNO₃, what weight of AgCl would have been produced?

PROBLEM 78 1.2 g of a salt with their empirical formula $K_x H_y (C_2 O_4)_z$ was dissolved in 50 mL of water and its 10 mL portion required 11.00 mL of a 0.1 M HCl solution to reach the equivalence point. In a separate analysis, 15 mL of the stock solution required 20 mL 0.2475 M KOH to reach the equivalence point. Determine empirical formula of the salt.

PROBLEM 79 Impure phosphoric acid for use in the manufacture of fertilizer is produced by the reaction of sulphuric acid on phosphate rock of which a principal component is $Ca_3(PO_4)_2$ and rest are silica and other inert impurity. In an analysis, 2.0 g of a sample of rock salt was dissolved in 100 mL H_2SO_4 solution. Excess sulphuric acid left in 20 mL of this solution required 40 mL 0.02 M NaOH for back titration. In a separate analysis 20 mL of the above solution required 50 mL 0.04 M NaOH for complete neutralization. Determine mass percentage of $Ca_3(PO_4)_2$ in rock-sample.

PROBLEM 80 A 10 g sample of ammonium perchlorate containing some inert impurity was mixed with 3 g Al powder where all perchlorate reacted to produce Al_2O_3 , N_2 , HCl and H₂O. All HCl was absorbed in 100 mL 1 M NaOH solution. Determine percentage purity of perchlorate sample and volume of 0.5 M HCl required to neutralize the above solution.

PROBLEM 81 Potassium superoxide (KO₂) is utilized in closed system breathing apparatus to remove CO₂ and water from exhaled air. The removal of H₂O generate oxygen gas and KOH and this KOH in the subsequent step remove CO₂ as KHCO₃. 5.0 kg of an impure sample of KO₂ is just sufficient to remove all CO₂ and H₂O from a closed room of dimension 10 m × 5 m × 3m. Determine mass of this KO₂ required to neutralize a 100 mL 0.1 M H₂SO₄ solution in a separate analysis. Assume room conditions to be at 1.0 atmosphere and 300 K and mole fraction of CO₂ in that room is 0.01.

PROBLEM 82 3.25 g of a saturated, tribasic carboxylic acid required 68.4 mL of a 0.750 M NaOH solution to reach the equivalence point. Determine molecular formula of acid.

Solutions

ACID-BASE TITRATION

45.

Total mmol of AgCl from 20 mL solution $=\frac{0.4305 \times 1000}{143.5} = 3$

m moles of AgCl from HCl = 0.8 \Rightarrow m moles of AgCl from CaCl₂ = 2.2

 \Rightarrow 1.1 m mole of CaCl₂ was consumed for precipitation of oxalate from 20 mL solution.

Hence, total *m* mol of oxalic acid in 250 mL solution $=\frac{1.1}{20} \times 250 = 13.75$

m% of oxalic acid =
$$\frac{13.75 \times 10^{-3} \times 90}{1.5} \times 100 = 82.5$$

46. The balanced disproportionation reaction is:

$$2P_2O_3 + 6H_2O \longrightarrow PH_3 + 3H_3PO_4$$

meq of NaOH added = 6
meq of H₂SO₄ required for back titration = 1.1

$$\Rightarrow 4.9$$
 meq of NaOH neutralized 4.9 meq of H₃PO₄
 \Rightarrow Total meq of H₃PO₄ produced = $49 = \frac{49}{3}$ m mol H₃PO₄
m mol of P₂O₃ present originally = $\frac{2}{3} \times \frac{49}{3}$
 \Rightarrow Mass % of P₂O₃ = $\frac{98 \times 10^{-3}}{9 \times 1.5} \times 110 \times 100 = 79.85$

47. m mol of CO_3^{2-} in 10 mL = $10 \times 0.05 \times 2 = 1$

In presence of methyl orange 3.235 m mol H^+ is consumed in which 2 m mol H^+ would be required for CO_3^{2-} , hence 1.235 m mol H^+ for HCO_3^- ion.

$$\Rightarrow \qquad m \% CaCO_3 = \frac{10 \times 10^{-3} \times 100}{2.5} \times 100 = 40$$
$$m \% Ca(HCO_3)_2 = \frac{6.175 \times 10^{-3} \times 162}{2.5} \times 100 = 40$$

48. m mol of H^+ required to reach the phenolphthalein end point = 1.12

 \Rightarrow 1.12 m mol Na₂CO₃ is present per 10 mL of solution.

Now, V = 17 mL and it contain 1.12 m mol of NaHCO₃ produced in titration in association with original NaHCO₃.

: 5 mL of this solution required 3.53 mL acid to reach the methyl orange end point.

 $\therefore 17 \text{ mL would require} = \frac{3.53}{5} \times 17 = 12 \text{ mL acid} = 1.92 \text{ m mol H}^+$

 \Rightarrow m mol of H⁺ consumed for neutralization of original bicarbonate = 0.8

m (Na₂CO₃)/litre =
$$112 \times 10^{-3} \times 106 = 11.872$$
 g

m (NaHCO₃)/litre = $80 \times 10^{-3} \times 84 = 6.72$ g

49. m mol of HCl taken = 7.5

m mol of HCl left unreacted = 5.244m mol of HCl reacted = $2.256 \equiv 1.128$ m mol K₂SO₃ = 0.178 g K₂SO₃ m% K₂SO₃ = **36.6\%**

50. m mol of NH₃ from glycine = 2.5 - 1.8342 = 0.6658 = m mol of nitrogen.

mass of nitrogen = 9.3212×10^{-3} g = **18.64%**

Theoretical mass% = 18.66

51. Chemical reactions involved in the entire process are :

$$2Ca_{3}(PO_{4})_{2} + Mg \longrightarrow Ca_{3}P_{2} + Mg (PO_{3})_{2} + 3CaO + \frac{7}{2}O_{2}$$
$$Ca_{3}P_{2} + 6H_{2}O \longrightarrow 3Ca(OH)_{2} + 2PH_{3}$$
$$2PH_{3} + 4O_{2} \longrightarrow P_{2}O_{5} + 3H_{2}O$$

 \Rightarrow 2.4 g (0.1 mol) Mg will produce 0.2 mol PH₃ which would require 0.4 mol of oxygen.

 \Rightarrow Vol. of O₂ needed = 8.96 L, hence vol. of air needed = 42.66 L. at S. T. P.

52. Let the mixture contain x g of Li₂CO₃, y g of NaHCO₃.

$$\Rightarrow \text{ After heating} \qquad \frac{30x}{74} + \frac{106y}{168} + 9.3 - (x + y) = 7.37$$
$$\frac{44x}{74} + \frac{62y}{168} = 1.93 \qquad \dots(i)$$

From titration information :

$$\frac{2x}{74} + \frac{2y}{168} + \frac{9.3 - (x + y)}{106} \times 2 = 0.18$$
$$\frac{32x}{74} - \frac{62y}{168} = 0.24$$
...(ii)

 \Rightarrow

Solving, Eqs. (i) and (ii) gives x = 2.11 g, y = 1.825 g and Na₂CO₃ = 5.365 g \Rightarrow NaHCO₃ = **19.62%**, Na₂CO₃ = **57.7% 53.** $M (\text{acid}) = \frac{4}{8 \times 0.27 \times 10} \times 1000 = 185.2$ Formula of acid = C_nH_{2n}O₂ $\Rightarrow M = 14n + 32 = 185.2 \Rightarrow n = 11$ Now 5g acid will produce $\frac{5}{186} \times 11 = \frac{55}{186} \text{ molCO}_2$ after complete combustion. Total moles of NaOH available = 1.0

$$\frac{1}{2} \times 55 = 76$$

Moles of NaOH left unreacted
$$= 1 - \frac{2 \times 55}{186} = \frac{76}{186}$$
 in 500 mL

$$\Rightarrow$$
 Molarity of NaOH after precipitation of Na₂CO₃ = 0.817

Therefore,
$$0.817 \times 10 = 0.5 \times V \implies V = 16.34 \text{ mL}$$

54. Let 10 mL solution contain x m mol NaHCO₃ and y m mol Na₂CO₃ :

$$\Rightarrow x + 2y = 1.24 \text{ and } x = 1.5 - 1.26 \Rightarrow y = 0.5$$

$$\Rightarrow m(\text{NaHCO}_3) = 0.24 \times 50 \times 10^{-3} \times 84 = 1.008 \text{g} = 20.16\%$$

$$m(\text{Na}_2\text{CO}_3) = 0.5 \times 50 \times 10^{-3} \times 106 = 2.65 \text{ g} = 53\%$$

$$m(\text{NaCl}) = 1.342 \text{g} = 26.84\%$$

55.
$$C_x H_y O_2 + O_2 \longrightarrow xCO_2 \xrightarrow{2NaOH} xNa_2CO_3$$

 $\frac{6.4}{M} \xrightarrow{6.4x} M \xrightarrow{6.4x} M$

Let 10 mL solution contain a m mol NaOH and b m mol Na₂CO₃ :

$$\Rightarrow \qquad a+b=14.5$$

$$a+2b=18 \Rightarrow b=3.5 \Rightarrow \frac{6.4x}{M} = 0.35 \qquad \dots(i)$$
Also,
$$\frac{25M}{100} = 32 \Rightarrow M = 128 \Rightarrow x = \frac{0.35 \times 128}{6.4} = 7$$

Also, $12x + y + 32 = 128 \implies y = 12$ \Rightarrow Formula = C₇H₁₂O₂ M(NaOH) = 1.8

56. The balanced chemical reaction is :

$$\Rightarrow \qquad x + y = 71.72$$

$$2x + y = 123.44 \Rightarrow x = 51.72$$

$$\Rightarrow \qquad \text{Total Na}_2\text{CO}_3 = 103.44 \text{ m mol}$$

$$\Rightarrow \qquad \frac{2n}{14n + 32} = 103.44 \times 10^{-3} \Rightarrow n = 6$$

Hence, acid is $C_6H_{12}O_2$

$$m(\text{NaOH}) = 123.44 \times 2 \times 10^{-3} \times 40 = 9.87\text{g}$$

62. Moles of NaHCO₃ = $19 \times 0.25 \times 2 \times 10^{-3} = 9.5 \times 10^{-3} = m\%$ NaHCO₃ = **31.92**

 $m \% \text{Na}_2\text{CO}_3 = \frac{11.32 \times 10^{-3} \times 106}{2} \times 100 = 40$ \Rightarrow m moles of AgCl = $\frac{0.306 \times 1000}{143.5}$ = 2.13 from 10 mL stock solution. Moles of NaCl in original sample = $(21.3 - 11.32) \times 10^{-3} = 9.98 \times 10^{-3}$ \Rightarrow Mass% of NaCl = 19.46 \Rightarrow Total NaOH consumed for 10 mL stock solution = $0.05 \times 42.64 = 2.132$ NaHCO₃ in original sample = $(21.32 - 11.32) \times 10^{-3} = 10^{-2}$ mol. Mass % of NaHCO₃ = $10^{-2} \times 84 \times \frac{100}{3} = 28$ \Rightarrow **68.** m mol of Na₃PO₄ = $24.4 \times 0.1 \times 5 = 12.2$ $\Rightarrow m \% (\text{Na}_3 \text{PO}_4) = 12.2 \times 10^{-3} \times 164 \times \frac{100}{4} = 50$ Also, if the mixture contain y m mol Na₂HPO₄ and z m mol NaH₂PO₄ $12.2 \times 3 + 2y + z = 23.572 \times 0.5 \times 5 = 58.93$ Then \Rightarrow 2v + z = 22.33...(i) 142v + 120z = 2000Also, ...(ii) y = 6.9 and z = 8.53Solving; 100

$$\Rightarrow$$
 m% Na₂HPO₄ = 6.9 × 142 × 10⁻³ × $\frac{100}{4}$ = 24.5

$$m\% \text{ NaH}_2\text{PO}_4 = 25.5$$

69. Weight loss =
$$5 \times 0.265 = 1.325$$
 g

 $\therefore 106 \text{ g weight is lost from 136 g of LiHCO}_{3}$ ⇒ 1.325 g weight will be lost by $\frac{136}{106} \times 1.325 = 1.7 \text{ g}$ ⇒ $m\% \text{ LiHCO}_{3} = 34$ m moles of H₂SO₄used for neutralization of Li₂O and Na₂CO₃ = 4 - 0.579 = 3.421 ⇒ Total m mol of Li₂O + Na₂CO₃ = 34.21 Also, moles of Li₂O = 12.5 × 10⁻³ ⇒ moles of Na₂CO₃ = 21.71 × 10⁻³ ⇒ $m\% (\text{Na}_2\text{CO}_3) = 46 \Rightarrow m\% \text{ NaCl} = 20$

70. Let the mixture contain x g LiHCO₃, y g NaHCO₃

On heating :

$$2NaHCO_{3} \longrightarrow Na_{2}CO_{3} + H_{2}O + CO_{2}$$

$$168 \qquad 106$$

$$2LiHCO_{3} \longrightarrow Li_{2}O + H_{2}O + 2CO_{2}$$

$$136 \qquad 30$$

$$CaCO_{3} \longrightarrow CaO + CO_{2}$$

$$100 \qquad 56$$

Mass of residue
$$=\frac{30x}{136} + \frac{106y}{168} + (5 - x - y)\frac{56}{100} = 2.58$$

 $\left(\frac{56}{100} - \frac{30}{136}\right)x + \left(\frac{56}{100} - \frac{106}{168}\right)y = 0.22$
 $\Rightarrow 0.34x - 0.07y = 0.22 ...(i)$
Also, m mol of NaOH reacted with bicarbonates = 5 - 1.53 = 3.47
 \Rightarrow Total m mol of LiHCO₃ + NaHCO₃ = 34.7
 \Rightarrow $\frac{x}{68} + \frac{y}{84} = 34.7 \times 10^{-3}$...(ii)
Solving, Eqs. (i) and (ii) gives $y = 1.686g$, $x = 1$
 \Rightarrow $m\%$ LiHCO₃ = 20, NaHCO₃ = 33.7
71. Moles of NaHCO₃ in 1.0 g mixture $= 2 \times 10^{-3} \Rightarrow m\%$ NaHCO₃ = 16.8
Also moles of HCl consumed by 1 g mixture = 10.53×10^{-3}
Out of this 2×10^{-3} mol HCl will be used up by Na₂CO₃ and CaCO₃
 \Rightarrow Moles of (Na₂CO₃ + CaCO₃) = 4.265 \times 10^{-3}/g of mixture.
Also 5 g mixture loses 0.75 g wt. and mixture contain 0.84 g NaHCO₃
 \Rightarrow 0.31 g weight is lost by NaHCO₃ and remaining 0.44 g by CaCO₃
Therefore, 5.0 g mixture = $(4.265 - 2) \times 10^{-3} = 2.265 \times 10^{-3}$
 \Rightarrow $m\%$ of Na₂CO₃ = 24 \Rightarrow $m\%$ of NaCl = 39.2
72. Let the original sample containe d' a' m mol of CaCO₃ and b m mol of NaHCO₃. Therefore,
 $CaCO_3 \longrightarrow CaO + CO_2$
 $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$
m mol of CO₂ produced = $a + \frac{h}{2}$
 $CO_2 + NaOH \longrightarrow NaHCO_3$
 $a + \frac{h}{2}$ $a + \frac{h}{2}$

$$a + \frac{b}{2} \qquad a + \frac{b}{2}$$

$$NaHCO_3 + NaOH \longrightarrow Na_2CO_3$$

$$a + \frac{b}{2} - x \qquad x$$

Till phenolphthalein end point m mol of HCl = 5 = x

After phenolphthalein end point m mol of NaHCO₃ present in solution = $a + \frac{b}{2}$

$$\Rightarrow \qquad \qquad a + \frac{b}{2} = 15 \qquad \qquad \dots (i)$$

Also, from precipitation information:

$$\frac{b}{2} = \frac{0.985 \times 1000}{197} = 5 \implies a = 10, b = 10$$

 \Rightarrow mass of CaCO₃ = 1 g, mass of NaHCO₃ = 0.84 g

m%: CaCO₃ = 50, NaHCO₃ = 42, **Impurity = 8%**

73. In presence of methyl orange, the whole NaOH and Na_2CO_3 are neutralized.

$$\Rightarrow$$
 meq of HCl = 16 × 0.25 = 4 = meq of (NaOH + Na₂CO₃) = meq. of NaOH original

 \Rightarrow Total meq of NaOH in original 1.0 g sample = $4 \times 5 = 20$

$$\Rightarrow \qquad \text{mass \% of NaOH (original)} = \frac{20 \times 40 \times 100}{1000} = 80$$

Now, let us assume that in 20 mL, x m mol of NaOH has got converted to Na₂CO₃ \Rightarrow In 20 mL, m mol of NaOH = 4 - x

m mol of Na₂CO₃ =
$$\frac{x}{2}$$

In 2nd titration, HCl used in titration of NaOH + Na₂CO₃ = 5×0.1-9×0.2 = 3.2 \Rightarrow upto phenolphthalein end point, m mol of HCl required = 4 - x + $\frac{x}{2}$ = 4 - $\frac{x}{2}$ = 3.2

$$\Rightarrow$$
 $x = 1.6$

Total Na₂CO₃ formed =
$$\frac{x}{2} \times 5 = \frac{5x}{2} = 4$$

m mol of NaOH left unreacted = $20 - 4 \times 2 = 12$

 \Rightarrow

$$\Rightarrow \text{ weight of } 1.0 \text{ g of exposed sample} = 1 - \frac{8 \times 40}{1000} + \frac{4 \times (106 + 18)}{1000} = 1.176 \text{ g}$$

$$\Rightarrow$$
 weight % of Na₂CO₃ in exposed sample = $\frac{4 \times 106}{1000 \times 1.176} \times 100 = 36.05\%$

74. Molarity (*M*) of NH₄SCN solution = $\frac{50 \times 0.0452}{22.98}$

 \Rightarrow m mol of ClCH₂COOH present in beverage = 50 × 0.0452 - 10.43 × $\frac{50 \times 0.0452}{22.98}$ = 1.234

42

 \Rightarrow mass of ClCH₂COOH = 1.234 × 94.5 = **116.6 mg**

75. Let 20 mL stock solution contain x m mol $Na_2C_2O_4$ and y m mol $H_2C_2O_4$

$$\Rightarrow \qquad 2x + 2y = 23.34 \times 0.04 \times 5 = 4.668$$

and
$$2y = 26.67 \times 0.1 = 2.667 \implies x = 1$$
 and $y = 1.3335$

Therefore,
$$m\%$$
 of Na₂C₂O₄ = $\frac{5 \times 10^{-3} \times 134}{2} \times 100 = 33.5$
 $m\%$ of H₂C₂O₄2H₂O = $\frac{1.3335 \times 5 \times 10^{-3} \times 126}{2} \times 100 =$

76. Let the sample contain $x \mod (NH_4)_2 SO_4$ and $y \mod NH_4 NO_3$.

In 20 mL, m mol of
$$\operatorname{NH}_4^+$$
 ion $=\frac{1}{5}(2x + y)$
m mol of NaOH reacted with $\operatorname{NH}_4^+ = 5 - 9 \times \frac{1}{14} \times \frac{70}{30} = 3.5$
 $\Rightarrow \qquad \frac{1}{5}(2x + y) = 3.5$...(i)
Also $x = \frac{466}{233} \times \frac{100}{32} = 6.25 \Rightarrow \text{ From Eq. (i)} \quad y = 5$
 $\Rightarrow \qquad \max \% \text{ of } (\operatorname{NH}_4)_2 \operatorname{SO}_4 = \frac{6.25 \times 10^{-3} \times 132}{1.5} \times 100 = 55$
 $\max \% \text{ of } \operatorname{NH}_4 \operatorname{NO}_3 = \frac{5 \times 10^{-3} \times 80}{1.5} \times 100 = 26.67$
The reaction involved is:
 $[\operatorname{Zn}(\operatorname{NH}_3)_4]\operatorname{Cl}_2 + 4\operatorname{NaOH} \longrightarrow \operatorname{Na}_2[\operatorname{Zn}(\operatorname{OH})_4] + 4\operatorname{NH}_3 + 2\operatorname{NaCl}$

$$[2n(NH_3)_4]Cl_2 + 4NaOH \longrightarrow Na_2[2n(OH)_4] + 4NH_3 + 2NaCl$$

m mol of NaOH consumed = $15 - \frac{10}{6} = 13.33$
 \implies m mol of complex present = $\frac{13.33}{4} = 3.33$
 \implies mass % = $3.33 \times 10^{-3} \times 204 \times 100 = 68$

Also total m mol of Cl⁻ ions present in final solution = $3.33 \times 2 + \frac{10}{6} = 8.33$

 \Rightarrow mass of AgCl formed = $8.33 \times 10^{-3} \times 143.5 = 1.195$ g x + y = 2z78. From charge balance:

Also if *M* be empirical formula weight then

$$\frac{1.2}{M} \times \frac{1}{5} \times 1000x = 1.1$$
 ...(ii)

$$\frac{1.2}{M} \times \frac{15}{50} \times 1000 \, y = 4.95 \qquad \dots (iii)$$

Dividing Eq. (iii) by (ii): 3x = yNow, substituting x = 1, y = 3, z = 2Empirical formula: $KH_3(C_2O_4)_2$ **79.** Normality of original H_2SO_4 solution $=\frac{50 \times 0.04}{20} = 0.1$ In 20 mL, meq. of H_2SO_4 left unreacted = $40 \times 0.02 = 0.8$

 \Rightarrow meq. of Ca₃ (PO₄) in 20 mL = 20 × 0.1 - 0.8 = 1.2

$$\Rightarrow$$
 Total meq. of Ca₃(PO₄)₂ = 1.2 × 5 = 6

$$\Rightarrow$$
 mass % of Ca₃(PO₄)₂ = $\frac{6 \times 10^{-5}}{2} \times \frac{310}{6} \times 100 = 15.5\%$

80. The chemical reaction involved is:

$$6NH_4ClO_4 + 10Al \longrightarrow 5Al_2O_3 + 3N_2 + 6HCl + 9H_2O$$
mole of Al reacted $= \frac{3}{27} = \frac{1}{9}$
mole of NH_4ClO_4 present $= \frac{1}{9} \times \frac{6}{10} = \frac{1}{15}$
 \Rightarrow mass % of NH_4ClO_4 $= \frac{117.5}{15} \times \frac{100}{10} = 78.33$
Also moles of HCl produced $= \frac{1}{15}$
moles of NaOH taken initially = 0.1
 \Rightarrow moles of HCl required to neutralize left over NaOH = $0.1 - \frac{1}{15} = 0.033$
Vol. of HCl required $= \frac{33}{0.5} = 66$ mL
81. Volume of room = 150×10^3 L
 \Rightarrow Total mole of CO₂ in the room $= \frac{150 \times 10^3}{0.082 \times 300} \times 0.01 = 60.9756$
Reaction: $4KO_2 + 2H_2O \longrightarrow 3O_2 + 4KOH$
 $KOH + CO_2 \longrightarrow KHCO_3$
 \Rightarrow moles of KO₂ in original sample = 60.9756
Reaction of KO₂ with H₂SO₄ is: $2KO_2 + H_2SO_4 \longrightarrow K_2SO_4 + H_2O + \frac{3}{2}O_2$
moles of KO₂ required to neutralize $\frac{5000}{60.9756} \times 0.02 = 1.64g$
82. Equivalent weight of acid $= \frac{3.25 \times 1000}{68.4 \times 0.75} = 63.35 \Rightarrow$ Molar mass = 190
Formula of acid = $C_n H_{2n-1}(COOH)_3 \Rightarrow 14n - 1 + 135 = 190 \Rightarrow n = 4$
Formula $= C_7 H_{10}O_6$