RACE # 25

ATOMIC STRUCTURE

CHEMISTRY

Rutherford model

Atomic radius is of the order of 10⁻⁸ cm and nuclear radius is of the order of 10⁻¹³ cm. The fraction of atom that is 1. occupied by nucleus is : $(\Delta) 10^{-5}$ (B) 10^5 $(C) 10^{-15}$ (D) None of these

- 2. (A) β -particles, which impinged on a metal foil & got absorbed.
 - (B) γ -rays, which impinged on a metal foil & ejected electrons.
 - (C) helium atoms, which impinged on a metal foil & got scattered.
 - (D) helium nuclei, which impinged on a metal foil & got scattered.
- 3. The potential energy of the electron present in the ground state of Li^{2+} ion is represented by : (r = Radius of ground state)

(A)
$$+\frac{3e^2}{4\pi \in_0 r}$$
 (B) $-\frac{3e}{4\pi \in_0 r}$ (C) $-\frac{3e^2}{4\pi \in_0 r^2}$ (D) $-\frac{3e^2}{4\pi \in_0 r}$

- 4. As an electron is brought from an infinite distance close to the nucleus of an atom, the potential energy of the electron-nucleus system :
 - (A) Increases to a greater positive value (B) Decreases to a smaller positive value
 - (C) Decrease to a greater negative value (D) Increases to a smaller negative value
- If the diameter of two different nuclei are in the ratio 1 : 2, then their mass number are in the ratio : 5.
 - (A) 1 : 2 (B) 8 : 1 (C) 1 : 8 (D) 1:4 Select the correct graph :
- 6.

- 7. In Rutherford experiment, minimum number of α -particles will be deflected on using the thin foil of same thickness of which of the following metals?
 - (A) Ag

(D) Al

In Rutherford formula, maximum number of α -particles deflecting is for which among the following angles

(A) 30° (B) 45° (C) 60° (D) 90°

Select the correct graph : 9.

8.

COMPREHENSION: Read the following passage carefully and answer the questions : **RUTHERFORD MODEL:**

(B) Au

The approximate size of the nucleus can be calculated by using energy conservation theorem in Rutherford's α -scattering experiment. If an α -particle is projected from infinity with speed v, towards the nucleus having Z protons, then the α -particle which is reflected back or which is deflected by 180° must have approached closest to

the nucleus. It can be approximated that α-particle collides with the nucleus and gets back. Now, if we apply the energy conservation equation at initial point and collision point, then :

$$(\text{Total Energy})_{\text{initial}} = (\text{Total Energy})_{\text{fina}}$$
$$(\text{K.E.})_{i} + (\text{P.E.})_{i} = (\text{K.E.})_{f} + (\text{P.E.})_{f}$$

 $(P.E.)_i = 0$, since P.E. of two charge system separated by infinite distance is zero. Finally the particle stops and then starts coming back.

$$\Rightarrow \frac{1}{2} m_{\alpha} v_{\alpha}^{2} + 0 = 0 + \frac{Kq_{1}q_{2}}{R}$$
$$\Rightarrow \frac{1}{2} m_{\alpha} v_{\alpha}^{2} = K \frac{2e \times Ze}{R}$$
$$\Rightarrow R = \frac{4KZe^{2}}{m_{\alpha} v_{\alpha}^{2}}$$

Thus the radius of nucleus can be calculated using above equation. The nucleus is so small a particle that we can't define a sharp boundary for it.

10. An α -particle with initial speed v_0 is projected from infinity and it approaches up to r_0 distance from a nuclie. Then, the initial speed of α -particle, which approaches up to $2r_0$ distance from the nucleus, is :

(A)
$$\sqrt{2}v_0$$
 (B) $\frac{v_0}{\sqrt{2}}$ (C) $2v_0$ (D) $\frac{v_0}{2}$

11. Radius of a particular nucleus is calculated by the projection of α -particle from infinity at a particular speed. Let this radius is the true radius. If the radius calculation for the same nucleus is made by another α -particle with half of the earlier speed, then the percentage error involved in the radius calculation is :

Electromagnetic wave

12.	Match the following with respect to waves :											
	Column-I	Column-I	Column-II									
	(1) Frequency	(p) Linear	distance travelled by a wa	ve per unit time.								
	(2) Wavelength (q) Number of waves passing through a point per unit time.											
	(3) Wave number	(r) Linear	distance between starting	and end point of one complete wave.								
	(4) Speed	(s) Numbe	er of waves contained in a	unit length.								
	(A) $[1 - q]$; $[2 - p]$; $[3-s]$; $[4-r]$	(B) $[1-s]$; $[2-r]$;	[3-q]; [4-p]								
	(C) $[1-q]$; $[2-r]$; [3 – s] ; [4 – p]	(D) $[1-s]$; $[2-p]$; $[3-q]$; $[4-r]$									
13.	If the frequency of violet radiation is 7.5×10^{14} Hz, find the value of wavenumber (\overline{v}) (in m ⁻¹) for it :											
	(A) 2.5×10^{6}	(B) 4×10^{-7}	(C) 1.33×10^{-15}	(D) Data insufficient								
14.	Visible spectrum contains light of following colours "Violet - Indigo - Blue - Green - Yellow - Orange - Red (VIBGYOR).											
	Its frequency range	s from Violet $(7.5 \times 10^{\circ})$	¹⁴ Hz) to Red (4 \times 10 ¹⁴ Hz	2). Find out the maximum wavelength in th	nis							
	range :											
	(A) 400 Å	(B) 750 Å	(C) 4000 Å	(D) 7500 Å								
15.	Select the incorrect statement :											
	(A) Cathode rays are electromagnetic waves, but anode rays are not.											
	(B) Electromagnetic waves need a material medium for their propagation.											
	(C) Electromagnetic waves may have different frequencies.											
	(D) Electromagnetic	(D) Electromagnetic waves consist of some material particles travelling with the speed of light.										

- **16.** A wavelength of 400 nm of an electromagnetic radiation corresponds to :
 - (A) frequency = 7.5×10^{14} Hz (B) wave number = 2.5×10^{6} m⁻¹.
 - (C) velocity = $3 \times 10^8 \,\text{ms}^{-1}$ (D) $\lambda = 40 \,\text{\AA}$
- 17. For a wave, frequency is 10 Hz and wavelength is 2.5 m. How much linear distance will it travel in 40 seconds:

Answers

RACE # 25

1.	(C)	2.	(D)	3.	(D)	4.	(C)	5.	(C) 6.	(A)	7.	(D) 8.	(A)	9.	(B) 10.	(B)
11.	(C)	12.	(C)	13.	(A)	14.	(D)	15.	(ABD)		16.	(ABC)		17.	(1000m)	