RA	CE # 50		CIRCLE	MATHEMATICS	
1.	Sum of the abscissa and ordinate of the centre of the circle touching the line $3x + y + 2 = 0$ at the point (-1,1) and passing through the point (3,5) is-				
	(A) 2	(B) 3	(C) 4	(D) 5	
2.	Consider 3 non collinear points A, B, C with coordinates $(0, 6)$, $(5, 5)$ and $(-1, 1)$ respectively. Equation of a line tangent to the circle circumscribing the triangle ABC and passing through the origin is				
	(A) 2x - 3y = 0	(B) 3x + 2y = 0	(C) 3x - 2y = 0	(D) $2x + 3y = 0$	
3.	In the xy-plane, the length of the shortest path from (0, 0) to (12, 16) that does not go inside the circle $(x - 6)^2 + (y - 8)^2 = 25$ is				
	(A) $10\sqrt{3}$	(B) 10√5	(C) $10\sqrt{3} + \frac{5\pi}{3}$	(D) $10 + 5\pi$	
4.	The line $2x - y + 1 = 0$ is tangent to the circle at the point (2, 5) and the centre of the circles lies on $x - 2y = 4$. The radius of the circle is				
	(A) $3\sqrt{5}$	(B) $5\sqrt{3}$	(C) $2\sqrt{5}$	(D) $5\sqrt{2}$	
5.	If the curve $y = 1 + \sqrt{4 - x^2}$ and the line $y = (x - 2)k + 4$ has two distinct points of intersection then the range of k, is				
	(A) [1, 3]	(B) $\left[\frac{5}{12},\infty\right)$	(C) $\left[\frac{5}{12}, \frac{3}{4}\right]$	(D) $\left(\frac{5}{12},\infty\right)$	
6.	The angle between the two tangents from the origin to the circle $(x - 7)^2 + (y + 1)^2 = 25$ equals				
	(A) π/6	(B) π/3	(C) π/2	(D) π/4	
7.	The lengths of the tangents from any point of the circle $15x^2 + 15y^2 - 48x + 64y = 0$ to the two circles				
	$5x^2 + 5y^2 - 24x + 32y + 75 = 0$, $5x^2 + 5y^2 - 48x + 64y + 300 = 0$ are in the ratio :				
	(A) 1 : 2	(B) 2 : 3	(C) 3 : 4	(D) 1 : 4	
8.	Tangents are drawn to a unit circle with centre at the origin from each point on the line $2x + y = 4$. Then the equation to the locus of the middle point of the chord of contact is -				
	(A) $2(x^2 + y^2) = x + y^2$	+ y (B) $2(x^2 + y^2) = x - x^2$	+ 2y (C) $4(x^2 + y^2) = 2x$	x + y (D) none	
9.	If tangent at (1, 2) to the circle $c_1 : x^2 + y^2 = 5$ intersects the circle $c_2 : x^2 + y^2 = 9$ at A and B and tangents at A and B to the second circle meet at point C, then the co-ordinates of C are :				
	(A) (4, 5)	(B) (9/15, 18/5)	(C) (4, -5)	(D) (9/5, 18/5)	
		[MORE TH	AN ONE ANSWER T	YPE]	
10.	A circle passes through the points $(-1, 1)$, $(0, 6)$ and $(5, 5)$. The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are :				
	(A) (1, -5)	(B) (5, 1)	(C) (-5, -1)	(D) (-1, 5)	
11.	Tangents PA and PB are drawn to the circle $S \equiv x^2 + y^2 - 2y - 3 = 0$ from the point P(3,4). Which of the following alternative(s) is/are correct ?				
	(A) The power of point P(3,4) with respect to circle $S = 0$ is 14.				
	(B) The angle between tangents from P(3,4) to the circle S = 0 is $\frac{\pi}{3}$				
	(C) The equation of circumcircle of $\triangle PAB$ is $x^2 + y^2 - 3x - 5y + 4 = 0$				
	(D) The area of qua	(D) The area of quadrilateral PACB is $3\sqrt{7}$ square units where C is the centre of circle S = 0.			

- 12. Find the equation of the tangent to the circle
 - (a) $x^2 + y^2 6x + 4y = 12$, which are parallel to the straight line 4x + 3y + 5 = 0.
 - (b) $x^2 + y^2 22x 4y + 25 = 0$, which are perpendicular to the straight line 5x + 12y + 9 = 0
 - (c) $x^2 + y^2 = 25$, which are inclined at 30° to the axis of x.
- 13. If the length of the tangent form a point (f, g) to the circle $x^2 + y^2 = 4$ be four times the length of the tangent from it to the circle $x^2 + y^2 = 4x$, find the value of $64f 15(g^2 + f^2)$.
- 14. Tangents OP and OQ are drawn from the origin O to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. Find the equation of the circumcircle of the triangle OPQ.
- 15. Find the equations of the tangents to the circle $x^2 + y^2 6x 4y + 5 = 0$, which make an angle of 45° with the axis of x.
- 16. From any point on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ tangent are drawn to the circle $x^2 + y^2 + 2gx + 2fy + c\sin^2\alpha + (g^2 + f^2)\cos^2\alpha = 0$. Find the angle between them.
- 17. Show that the line 3x 4y c = 0 will meet the circle having centre at (2, 4) and the radius 5 in real and distinct points if -35 < c < 15.
- 18. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x y 2 = 0. Then the equation of the circle is
 - (A) $x^2 + y^2 4y + 2 = 0$ (B) $x^2 + y^2 - 4y + 1 = 0$ (C) $x^2 + y^2 - 2x - 1 = 0$ (D) $x^2 + y^2 - 2x + 1 = 0$
- **19.** To which of the following circles, the line y x + 3 = 0 is normal at the point $\left(3 + \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$?

(A)
$$\left(x - 3 - \frac{3}{\sqrt{2}}\right)^2 + \left(y - \frac{3}{\sqrt{2}}\right)^2 = 9$$
 (B) $\left(x - \frac{3}{\sqrt{2}}\right)^2 + \left(y - \frac{3}{\sqrt{2}}\right)^2 = 9$
(C) $x^2 + (y - 3)^2 = 9$ (D) $(x - 3)^2 + y^2 = 9$

20. The smallest distance between the circle $(x - 5)^2 + (y + 3)^2 = 1$ and the line 5x + 12y - 4 = 0, is(A) 1/13(B) 2/13(C) 3/15(D) 4/15

- 21. If x = 3 is the chord of the contact of the circle $x^2 + y^2 = 81$, then the equation of the corresponding pair of tangents, is
 - (A) $x^2 8y^2 + 54x + 729 = 0$ (B) $x^2 8y^2 54x + 729 = 0$ (C) $x^2 8y^2 54x 729 = 0$ (D) $x^2 8y^2 = 729$
- 22. Tangents are drawn from (4, 4) to the circle $x^2 + y^2 2x 2y 7 = 0$ to meet the circle at A and B. The length of the chord AB is
 - (A) $2\sqrt{3}$ (B) $3\sqrt{2}$ (C) $2\sqrt{6}$ (D) $6\sqrt{2}$
- 23. The distance between the chords of contact of tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is

(A)
$$\sqrt{g^2 + f^2}$$
 (B) $\frac{\sqrt{g^2 + f^2 - c}}{2}$ (C) $\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$ (D) $\frac{\sqrt{g^2 + f^2 + c}}{2\sqrt{g^2 + f^2}}$

Answers

RACE # 50

1. (C) 2. (D) 3. (C) 4. (A) 5. (D) 6. (A) 7. (A) 8. (C) 9. (D) 10. (BD) 11. (AC)

12. (a) 4x + 3y + 19 = 0 and 4x + 3y - 31 = 0; (b) 12x - 5y + 8 = 0 and 12x - 5y - 252 = 0, (c) $x - \sqrt{3}y + 10 = 0$

13. 4**14.** $x^2 + y^2 + gx + fy = 0$ **15.** y = x + 3, y = x - 5**16.** 2α **18.** (C)**19.** (D)**20.** (B)**21.** (B)**22.** (B)**23.** (C)