
PHYSICS

 Two point objects of mass 'm' performing circular motion due to each other's gravitational pull. Find the angular velocity of each object.

2. A string is vibrating in fundamental mode whose both end is fixed.

Given :

Ans.

Sol.

f = 50 Hz; $f_0 \rightarrow$ fundamental frequency

$$\mu = \frac{1}{50} \text{Kg/m}$$

$$m = \frac{18}{1000} \text{Kg}$$

$$\mu \rightarrow \text{mass per unit length of string}$$

$$m \rightarrow \text{mass of string}$$
Find speed of wave.
(1) 90 m/s
(2) 60 m/s
(3) 40 m/s
(4) 100 m/s
(1)
$$\mu = \frac{m}{\ell}$$

$$\ell = \frac{m}{\mu}$$

1

$$f_0 = \frac{v}{2\ell}$$

$$v = (2\ell)f_0$$

$$v = \frac{2m}{\mu}f_0$$

$$v = 2 \times \frac{18}{1000} \times \frac{50 \times 50}{1}$$

$$v = 90 \text{ m/s}$$

- **3.** For a particle performing SHM, mark correct options :
 - (i) Minimum acceleration is at extreme position.
 - (ii) Maximum velocity at mean position.
 - (iii) Restoring force is proportional to displacement.
 - (iv) Direction of acceleration and displacement are opposite.
 - (1) (ii), (iii), (iv) (2) (i), (ii), (iii) (3) (ii), (iii) (4) (iii), (iv)

Ans. (1)

- Sol. Basic theory.
- 4. A particle experience a force F = 5x N, find work done when particle moves from x = 2 m to x = 4 m.

Ans. 30

Sol.
$$w = \int_{2}^{4} 5x dx$$

 $w = \frac{5}{2} [x^{2}]_{2}^{4}$
 $w = \frac{5}{2} [16 - 4] = \frac{5 \times 12}{2} = 30J$

- 5. The position vector of a particle is $\vec{r} = (10\hat{i} + 15t^2\hat{j} + 7\hat{k})$ m. Direction of force.
 - (1) +x (2) +y (3) -y (4) +z

Ans. (2)

Sol.
$$\frac{d\vec{r}}{dt} = v(t) = 10\hat{i} + 30\hat{t}\hat{j}$$
$$\frac{d^2\vec{r}}{dt^2} = \frac{dv}{dt} = 30\hat{j} \text{ m/s}^2$$

6. The half life of a substance is 5yr. Find the amount of substance left after 15 yr :

(1)
$$\frac{1}{8}^{\text{th}}$$
 (2) $\frac{1}{10}^{\text{th}}$ (3) $\frac{1}{4}^{\text{th}}$ (4) $\frac{1}{20}^{\text{th}}$
Ans. (1)
Sol. $N_t = \frac{N_0}{2^3}$
 $N_t = \frac{N_0}{8}$

7. $x(t) = t^2 - 2t$, find speed of the particle at t = 2 sec.? (1) 1 m/s
(2) 2m/s
(3) 4m/s
(4) 6 m/s Ans. (2) Sol. $x(t) = t^2 - 2t$ v(t) = 2t - 2

$$v(t=2) = 4 - 2 = 2 m/s$$

8. Total charged stored in capacitor is 100 μ C. Find x ?

	2 μF
	x uF
	(3 μF (
L	10 V

(1) 2 µF	(2) 3 µF	(3) 4 µF	(4) 5 µF

Ans. (4)

Sol. $Q_1 + Q_2 + Q_3 = 100 \ \mu C$ $20 + 30 + 10x = 100 \ \mu C$ (1)

$$x = 5 \mu F$$

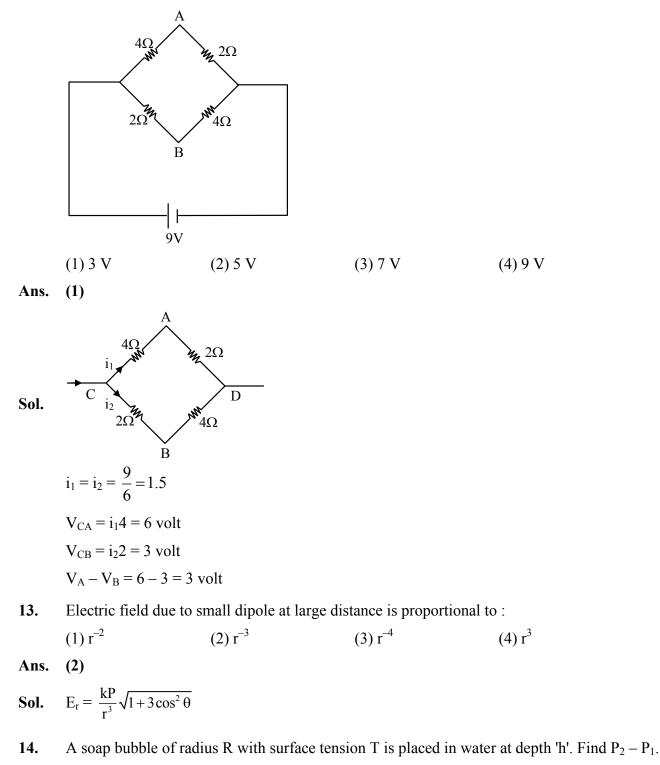
9. The de-broglie wavelength ' λ ' when kinetic energy E, the de-broglie wavelength when kinetic energy $\frac{E}{4}$.

(1) 2λ (2) 3λ (3) 4λ (4) 6λ

Ans. (1)

Sol.
$$\lambda = \frac{h}{\sqrt{2mK}}$$
$$\lambda = \frac{1}{\sqrt{k}}$$
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{K_2}{K_1}}$$
$$\frac{\lambda}{\lambda_2} = \sqrt{\frac{E/4}{E}} = \frac{1}{2}$$
$$\lambda_2 = 2\lambda$$

10. Find the ratio of radius of gyration of solid sphere to solid cylinder, if mass and radius of both objects are same. Axis is passing through centre of mass:


(1)
$$\sqrt{\frac{4}{5}}$$
 (2) $\sqrt{\frac{6}{5}}$ (3) $\sqrt{\frac{7}{5}}$ (4) $\sqrt{\frac{5}{6}}$

Ans. (1)

- Sol. $\frac{K_{S}}{K_{C}} = \sqrt{\frac{I_{S}}{I_{C}}} = \sqrt{\frac{4}{5} \frac{mR^{2}}{mR^{2}}}$ $\frac{K_{S}}{K_{C}} = \sqrt{\frac{4}{5}}$
- Height of receiving and transmitting antenna in communication of a signal are 245 m and 180 m.
 Find the maximum distance between the two antenna for proper communication:
 - (1) 104 km (2) 106 km (3) 110 km (4) 112 km
- Ans. (1)

Sol.
$$d = \sqrt{2Rh_{t}} + \sqrt{2Rh_{R}}$$
$$d = \sqrt{2R} \left[\sqrt{R_{t}} + \sqrt{h_{R}} \right]$$
$$d = \sqrt{2 \times 6400 \times 10^{3}} \left[\sqrt{180} + \sqrt{245} \right]$$
$$d = 800 \ [60 + 70]$$
$$d = 104000 \ \text{meter}$$
$$d = 104 \ \text{km}$$

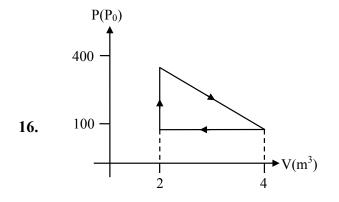
12. Find the potential difference between A and B?

Given :

 P_1 = Atmospheric pressure

 P_2 = Pressure inside the bubble

(1)
$$\rho gh + \frac{4T}{R}$$
 (2) $\rho gh - \frac{4T}{R}$ (3) ρgh (4) $\frac{4T}{R}$


Ans. (1)

Sol. $P_1 + \rho gh + \frac{4T}{R} = P_2$ $P_2 - P_1 = \rho gh + \frac{4T}{R}$

15. Find out the ratio of average translational kinetic energy of H_2 and Argon at temp 30°C.

- (1) 1 : 4 (2) 1 : 1 (3) 3 : 5 (4) 5 : 3 Ans. (2)
- **Sol.** $\frac{\text{K.E.}}{\text{molecule}} = \frac{3}{2} \text{KT}$

So ratio is 1 : 1

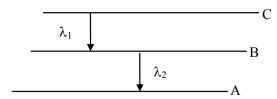
Work done by gas?

(1) 100 J (2) 200 J (3) 300 J (4) 350 J

Sol. Work done by gas = area under curve of P - V

$$=\frac{1}{2} \times 300 \times 2 = 300 \text{ J}$$

17. A body of mass m is released from height R from surface of earth. Find velocity of body when it reaches the surface of earth ?


(1)
$$\sqrt{\frac{\text{GM}}{4\text{R}}}$$
 (2) $\sqrt{\frac{2\text{GM}}{\text{R}}}$ (3) $\sqrt{\frac{\text{GM}}{\text{R}}}$ (4) $\sqrt{\frac{\text{GM}}{2\text{R}}}$

Ans. (3)

Sol. M.E. conservation

$$-\frac{GMm}{2R} = -\frac{GMm}{R} + \frac{1}{2}mv^{2}$$
$$\frac{1}{2}mv^{2} = \frac{GMm}{2R}$$
$$v = \sqrt{\frac{GM}{R}}$$

18. In hydrogen spectrum ratio of wavelength $\lambda_2 : \lambda_1$ is $\frac{7}{4n}$ then the value of n is :

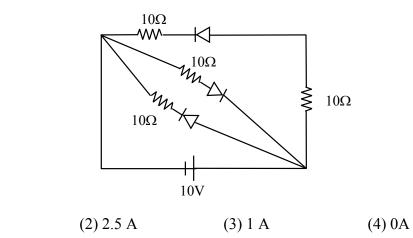
A : 1st excited state

B: 3nd excited state

 $C: 3^{rd}$ excited state

Ans. 5

Sol. For A, x = 2
B, x = 3
C, x = 4


$$\frac{1}{\lambda_1} = Rz^2 \left[\frac{1}{9} - \frac{1}{16} \right]$$

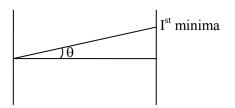
$$\frac{1}{\lambda_1} = Rz^2 \frac{7}{16 \times 9}$$

$$\frac{1}{\lambda_2} = Rz^2 \left[\frac{1}{4} - \frac{1}{9} \right] = Rz^2 \frac{5}{9 \times 4}$$

$$\frac{\lambda_2}{\lambda_1} = \frac{7}{5 \times 4} \implies n = 5$$

19. Find current given by battery?

Ans. (1)


Sol.
$$R_{eq} = \frac{20 \times 10}{20 + 10} = \frac{20}{3}$$

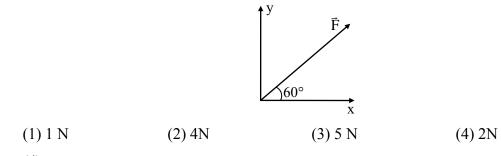
 $I = \frac{10}{\left(\frac{20}{3}\right)} = \frac{3}{2} = 1.5A$

(1) 1.5 A

20. Light of $\lambda = 600$ nm is diffracted using a single slit of width d. Find d (in μ m) if Ist minima is formed at 30°?

Ans. 1.2

Sol.


 I^{st} minima is at $\sin\theta = \frac{\lambda}{d}$

$$\therefore \qquad \sin 30^\circ = \frac{600 \times 10^{-9}}{d}$$

$$\therefore \qquad d = 1200 \times 10^{-9} \,\mathrm{m}$$

= 1.2 µm

21. y-component of force \vec{F} is $2\sqrt{3}$ newton. What will be the x-component of \vec{F} .

Ans. (4)

Sol. $\tan 60^\circ = \frac{F_y}{F_x}$

$$F_{x} = \frac{F_{y}}{\tan 60^{\circ}}$$
$$F_{x} = \frac{2\sqrt{3}}{5} = 2 \text{ Newton}$$

Statement-2 : Bohr's model does not obey Heisenberg uncertainty principle.

- (1) Statement 1 & statement 2 are true
- (2) Statement 1 & statement 2 are false
- (3) Statement 1 is true and statement 2 is false
- (4) Statement 1 is false and statement 2 is true

Ans. (1)

- Sol. Basic theory
- 23. Velocity is represented in terms of wavelength λ , gravitational acceleration g, density ρ as $v = \lambda^a$ g^b ρ^c , then value of a, b, c is
 - (1) $1, \frac{1}{2}, \frac{1}{2}$ (2) $\frac{1}{2}, \frac{1}{2}, 0$ (3) $\frac{1}{2}, 0, \frac{1}{2}$ (4) 1, 1, 0

Ans. (2)

Sol. $[v] = [\lambda]^{a} [g]^{b} [\rho]^{c}$ $[M^{0}L^{1}T^{-1}] = [L^{\alpha}][L^{b}T^{-2b}][M^{c}L^{-3c}]$ $= M^{c}L^{a+b-3c}T^{-2b}$ c = 0 : -2b = -1 $\therefore \qquad b = \frac{1}{2}$ & a + b - 3c = 1
and $a + \frac{1}{2} = 1$ $\therefore \qquad a = \frac{1}{2}$ $\therefore \qquad [v] = [\lambda]^{1/2} [g]^{1/2} [\rho]^0$

S₁: In series combination the value of equivalent resistance is less then the smallest resistance
 S₂: Resistivity of material depends on temperature
 (1) S₁ and S₂ True

- (2) S_1 is true and S_2 is false
- (3) S_1 is False and S_2 is true
- (4) S_1 and S_2 is false.

Ans. (3)

Sol. $R_{eq.} = R_1 + R_2$

 $\mathbf{R}_{eq.}$ > Max. (R_1 and R_2)

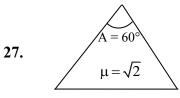
- **25.** A wire of length ℓ , radius r is stretched by force F then elongation in wire is x if another wire of same material but length 2ℓ , radius 2r is stretched by 2F force, then elongation in wire.
 - (1) 2x (2) x (3) $\frac{x}{2}$ (4) 4x

Ans. (2)

Sol. $\mathbf{y} = \frac{F\ell}{\mathbf{x} \times \pi \mathbf{r}^2}$ $\mathbf{x'} = \text{new elongation}$

$$\mathbf{y} = \frac{2Fx2\ell}{x' \times 4\pi r^2}$$
 x = old elongation

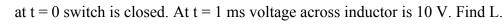
26. Match the following :

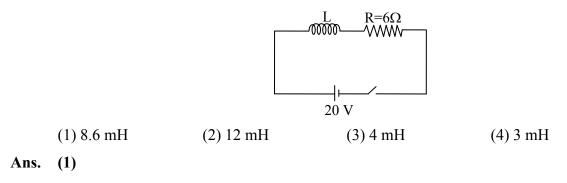

	Column-I		Column-II
(A)	Visible	(p)	400 nm - 700 nm
(B)	γ-ray	(q)	$10^{-3} \text{ nm} - 10^{-2} \text{ nm}$
(C)	Ultra-violet	(r)	1 nm – 400 nm
(D)	X-ray	(s)	0.1 nm – 10 nm
(1) A	- p, B-q, C-r, D-s	•	(2) A-q, B-p, C-r,

(3) A-q, B-p, C-s, D-r

(2) A-q, B-p, C-r, D-s (4) D-q, B-p, C-s, A-r

Ans. (1)


Sol. **Basic Theory**



Find the minimum deviation?

 $\delta_{\min} = 30^{\circ}$ Ans. $\mu = \frac{\sin\left[\frac{\delta_{\min} + A}{2}\right]}{\sin\left(\frac{A}{2}\right)}$ Sol. $\frac{1}{\sqrt{2}} = \sin\!\left(\frac{\delta_{\min}}{2} + 30\right)$ $\frac{\delta_{min}}{2} + 30^\circ = 45^\circ$ $\delta_{min} = 30^{\circ}$

28.

Sol.
$$\mathbf{i} = \frac{\varepsilon}{R} [1 - e^{\frac{-tR}{L}}]$$

 $L \frac{di}{dt} = \varepsilon e^{\frac{-t}{L}R}$
 $10 = 20 e^{\frac{-1 \times 10^{-3} \times 6}{L}}$
 $L = \frac{6 \times 10^{-3}}{\ell n 2}$
 $L = 8.6 \times 10^{-3} \text{ H}$

L = 8.6 mH