DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC14

1. (c)
$$CH_3OH(l) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

$$\Delta G_r = \Delta G_f(CO_2, (g)) + 2\Delta G_f(H_2O, (l)) - \Delta G_f(CH_3OH, (l)) - \frac{3}{2}\Delta G_f(O_2, (g))$$

$$= -394.4 + 2(-237.2) - (-166.2) - 0$$

$$= -394.4 - 474.4 + 166.2 = -702.6 \text{ kJ}$$

% efficiency =
$$\frac{702.6}{726} \times 100 = 97\%$$

2. (a) Given for 0.2 M solution

$$R = 50 \Omega$$

 $\kappa = 1.4 \text{ S m}^{-1} = 1.4 \times 10^{-2} \text{ S cm}^{-1}$

Now,
$$R = \rho \frac{1}{a} = \frac{1}{\kappa} \times \frac{1}{a}$$

$$\Rightarrow \frac{1}{a} = R \times \kappa = 50 \times 1.4 \times 10^{-2}$$

For 0.5 M solution

$$R = 280 \Omega$$

$$\kappa = ?$$

$$\frac{1}{a} = 50 \times 1.4 \times 10^{-2}$$

$$\Rightarrow$$
 $R = \rho \frac{1}{a} = \frac{1}{\kappa} \times \frac{1}{a}$

$$\Rightarrow \kappa = \frac{1}{280} \times 50 \times 1.4 \times 10^{-2}$$

$$=\frac{1}{280}\times70\times10^{-2}$$

$$= 2.5 \times 10^{-3} \,\mathrm{S \, cm^{-1}}$$

Now,
$$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm M} = \frac{2.5 \times 10^{-3} \times 1000}{0.5}$$

= 5 S cm² mol⁻¹ = 5 × 10⁻⁴ S m² mol⁻¹

3. (b) Given

$$Fe^{3+} + 3e^{-} \rightarrow Fe$$
,
 $E^{\circ}_{Fe^{3+}/Fe} = -0.036 V$...(i)

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$
,

$$E^{\circ}_{Fe^{2+}/Fe} = -0.439 \text{ V}$$
 ... (ii)

we have to calculate

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
, $\Delta G = ?$

To obtain this equation subtract equ (ii) from (i) we get

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
 ...(iii)

As we know that $\Delta G = -nFE$

Thus for reaction (iii)

$$\Delta G = \Delta G_1 - \Delta G_2$$

$$-nFE^{\circ} = -nFE_1 - (-nFE_2)$$

$$-nFE^{\circ} = nFE_2 - nFE_1$$

$$-1FE^{\circ} = 2 \times 0.439F - 3 \times 0.036F$$

$$-1 \, \text{FE}^{\circ} = 0.770 \, \text{F}$$

$$\therefore E^{\circ} = -0.770 V$$

4. (a) (i) Mnⁿ⁺ + ne⁻ \(\sum_{\text{ind}}\) M, for this reaction, high negative value of E° indicates lower reduction potential, that means M will be a good reducing agent.

Stronger reducing agent ⇒ Easy to oxidise

 $\downarrow \downarrow$

 $Lower\ reduction\ potential \Leftarrow higher\ oxidation\ potential$

(ii) Element F Cl Br I Reduction potential +2.87 +1.36 +1.06 +0.54

As reduction potential decreases from fluorine to iodine, oxidising nature also decreases from fluorine to iodine.

- (iii) The size of halide ions increases from F to I -. The bigger ion can loose electron easily. Hence the reducing nature increases from HF to HI.
- 5. (c) According to Faraday's first law of electrolysis

$$W = \frac{E \times i \times t}{96500}$$

Where E = equivalent weight

$$= \frac{\text{mol. mass of metal (M)}}{\text{oxidation state of metal (x)}}$$

Substituting the value in the formula

$$W = \frac{M}{x} \times \frac{i \times t}{96500}$$

or
$$x = \frac{M}{W} \times \frac{i \times t}{96500} = \frac{10 \times 2 \times 60 \times 60}{96500 \times 0.250} = 3$$

Given : no. of moles =
$$\frac{M}{W}$$
 = 0.250

Hence oxidation state of metal is (+3)

6. (b,c) Cathode: $Cu_{(aq)}^{2+} + 2e^{-} \longrightarrow Cu_{(s)}$

1 mole of Cu deposited \equiv 2 mole of electrons

$$Hg_{2(aq)}^{2+} + 2e^{-} \longrightarrow 2Hg_{(1)}$$

1 mole of $Hg_{(1)}$ deposited \equiv 1 mole of electrons Anode (each cell):

$$2H_2O_{(1)} \longrightarrow 4H_{(aq)}^+ + O_{2(g)} + 4e^-;$$

1 mole of $O_2 \equiv 4$ mole of electrons

7. (a,c)

(a) The MnO_4^{2-} is reduced to Mn^{2+} , so it must also be oxidised to Mn^{7+} MnO_4^{-} since H^+ is already in its maximum oxidation state.

$$5MnO_4^{2-} + 8H^+ \longrightarrow Mn^{2+} + 4MnO_4^- + 4H_2O$$

(c) NO_2 disproportionates to NO and NO_2^+ . (Oxidation state of N is +5)

$$3NO_2 + H_2O \longrightarrow NO + 2NO_3^- + 2H^+$$

8. (a, b, c) (a) Cell reaction:

$$2H^+(aq) + Zn(s) \longrightarrow H_2(g) + Zn^{2+}(aq)$$

Reaction quotient,

$$Q = \frac{P_{H_2} \times [Zn^{2+}]}{[H^+]^2} = \frac{1 \times 0.01}{(0.1)^2} = 1, \log Q = 0$$

(b) Cell reaction

$$2Ag^{+}(aq) + Cu(s) \longrightarrow Cu^{2+}(aq) + 2Ag(s)$$

$$Q = \frac{[Cu^{2+}]}{[Ag^{+}]^{2}} = \frac{0.25}{(0.5)^{2}} = 1$$

(c) Cell reaction:

$$2H^+(aq) + Cd(s) \longrightarrow H_2 + Cd^{2+}(aq)$$

$$Q = \frac{P_{H_2} \times [Cd^{2+}]}{[H^+]^2} = \frac{1 \times 0.01}{(0.1)^2} = 1$$

(d) Cell reaction:

$$2H^{+}(aq) + Zn(s) \longrightarrow H_2 + Zn^{2+}(aq)$$

$$Q = \frac{P_{H_2} \times [Zn^{2+}]}{[H^+]^2} = \frac{1 \times 0.1}{(0.1)^2} = 10$$

9. (b,d) It is the concentration cell in respect to Ag⁺ ions.

Hence,
$$E_{\text{cell}} = 0.0592 \log \frac{[Ag^+]_2}{[Ag^+]_1}$$

$$K_{sp}(Ag_2C_2O_4) = [Ag^+]_2^2[C_2O_4^{2-}]$$

$$= [Ag^+]_2^2 \times \frac{[Ag^+]_2}{2}$$

or
$$[Ag^+]_2 = [2K_{sp}(Ag_2C_2O_4)]^{1/3}$$

$$K_{sp} (AgI) = [Ag^+]_1 [I^-]$$

= $[Ag^+]_1^2$

or
$$[Ag^+]_1 = [K_{sp}(AgI)]^{1/2}$$

10. (5) Let x mole of O_2 is liberated and 3x mole of $H_2S_2O_8$ is formed. Reactions at cathode (reduction):

$$2\text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2 + 2\overset{\odot}{\text{OH}}$$

Reactions at anode (oxidation):

i.
$$2H_2O \rightarrow O_2 + 4H^{\oplus} + 4e^{-\begin{bmatrix} 1 \text{ mole } O_2 \equiv 4F \\ x \text{ mole } O_2 = 4xF \end{bmatrix}}$$

ii.
$$2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2e^{-} \begin{bmatrix} 1 \text{ mole } S_2O_8^{2-} = 2F \\ 3x \text{ mole } S_2O_8^{2-} = 6xF \end{bmatrix}$$

Total Faradays at anode = (4x + 6x) F = 10x F.

Total Faradays at cathode = $2F \equiv 1$ mole H_2 .

 $10x F \equiv \text{Total Faradays at cathode} = \text{Total Faradays at anode}$

 \therefore 2 F at cathode \equiv 1 mole of H₂.

$$10xF$$
 at cathode $\equiv \frac{1}{2F} \times 10xF = 5x$ mole of H₂.

Ratio =
$$\frac{\text{Moles of H}_2 \text{ at cathode}}{\text{Moles of H}_2\text{S}_2\text{O}_8 \text{ at anode}} = \frac{5x}{3x} = \frac{5}{3}$$

Number of moles of
$$H_2 = 3 \times \frac{5}{3} = 5$$

Alternatively

Molar ratio of
$$H_2S_2O_8$$
: O_2
(n factor = 2) (n factor = 4)
= 3:1

Equivalent ratio = $3 \times 2 : 1 \times 4 = 6 : 4$

Total equivalent of $H_2S_2O_8$ and O_2 at anode = 6 + 4 = 10 Eq

So total equivalent of H_2 at cathode = 10

$$\therefore$$
 moles of H₂ (n factor = 2) = $\frac{10}{2}$ = 5 moles

11. (3) Balance the equation.

15H₂O + 3CN⁻ → 3CO₂ + 3NO₃⁻ + 3OH⁺ + 30e⁻
∴ Number of e⁻s =
$$\frac{30}{10}$$
 = 3

12. (3) Discharging reaction:

$$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightleftharpoons PbSO_4 + 2H_2O$$

$$M_1 = \frac{\text{\% by weight} \times 10 \times d}{Mw_2} = \frac{40 \times 1.225 \times 10}{98} = 5 \text{ M}$$

$$M_2 = \frac{\% \text{ by weight} \times 10 \times d}{Mw_2} = \frac{20 \times 10 \times 0.98}{98} = 2 \text{ M}$$

Change is molarities = $M_1 - M_2 = 5 - 2 = 3 M$

13. (6) Let x % is the current efficiency of KClO₃ = Number of Faradays.

$$\frac{10g}{122.5/6} = \frac{2 \times x \times 10.941 \times 3600}{100 \times 96500}$$

$$\therefore x = 60\%$$

$$\therefore \frac{\text{Percentage current efficiency}}{10} = \frac{60}{10} = 6$$

Is-40 ----- DPP/ CC14

14. (6) Statement (a), (b) and (c) are correct.

Hence, total score = 1 + 2 + 3 = 6.

Statement (a): pH = 0, means $[H^+] = 1 M$

$$E_{\text{red}}^{\circ}$$
 of MnO₄⁻ | Mn²⁺ > E_{red}^{-} of Fe³⁺| Fe²⁺

So MnO₄ will undergo reduction and acts as strong oxidant whereas Fe²⁺ undergoes oxidation. Statement (a) is correct.

Statement (b): MnO₄⁻ titrations in the presence of HCl are unsatisfactory since Cl⁻ is oxidized to Cl₂. Statement (b) is correct.

Statement (c):

Since $E^{\circ}_{\text{red Ce}^{4+}|\text{Ce}^{3+}} > E^{\circ}_{\text{red MnO}_{4}|\text{Mn}^{2+}}$. So Ce^{4+} will reduce to Ce^{3+} . So MnO_{4}^{-} cannot oxidize Ce^{3+} to Ce^{4+} . Statement (c) is correct.

Statement (d): Fe^{2+} can be titrated against KMnO₄ in acid medium ($[H^+] = 1$ M).

Since $E_{\text{red MnO}_{4}^{-}|\text{Mn}^{2+}}^{\circ} > E_{\text{red Fe}^{3+}|\text{Fe}^{2+}}^{\circ}$

So Fe^{2+} can be oxidized to Fe^{3+} by MnO_4^- .

But Ce³⁺ will not be oxidized to Ce⁴⁺.

Since $E_{\text{red Ce}^{4+}|\text{Ce}^{3+}}^{\circ} > E_{\text{red MnO}_{4}|\text{Mn}^{2+}}^{\circ}$ So, statement (d) is wrong.

15. **(b)**
$$E_{cell} = -\frac{0.059}{1} log \frac{\left[H^{+}\right]_{a}}{\left[H^{+}\right]_{c}}$$

= -0.059(pH_c - pH_a)
= -0.059(6-3) = -0.177 V

 \therefore E_{cell} is – ve, so reaction is Non-spontaneous.

16. (a)
$$E_{cell} = E_{(Q,2H^+|H_2O)} - E_{SCE}$$

Where

$$E_{(Q,2H^{+}/H_{2}O)} = E_{(Q,2H^{+}/H_{2}O)}^{\circ} -0.059 \text{ pH}$$

$$\therefore E_{cell} = \left[(E_{(Q,2H^{+}/H_{2}O)}^{\circ} -0.059 \text{ pH}) - E_{SCE} \right]$$

$$= (0.7 - 0.059 \text{ pH}) - (0.24V)$$

=
$$(0.7-0.059 \times 10)-(0.24V)=-0.13 V$$

 \therefore E_{cell} is – ve, so reaction is endergonic (i.e $\Delta G=+ve$)

17. **(b)** $E_{cell} = E^{\circ} - 0.059 \, pH$ = $0.7 - 0.059 \times 2 = 0.582 \, V$

Since E_{cell} is + ve, so reaction is exergonic (i.e. $\Delta G = -Ve$)

- 18. (c) The cell reactions for the passage of 2 Faradays, are
 - (1) $Pb(s) + 2AgCl(s) \rightarrow PbCl_2(s) + 2Ag(s); \Delta H_1 = ?$
 - (2) $Pb(s) + 2Ag I(s) \rightarrow PbI_2(s) + 2Ag(s); \Delta H_2 = ?$
 - (1) (2) gives

$$PbI_{2}(s) + 2AgCl(s) \rightarrow PbCl_{2}(s) + 2AgI(s)$$

$$\Delta H = \Delta H_{1} - \Delta H_{2}$$

$$\begin{split} \Delta H_1 &= nF \bigg[T \bigg(\frac{\partial E_1}{\partial T} \bigg) - E_1 \bigg] \\ &= \frac{2 \times 96500 \bigg[298 \times \big(-0.000186 \big) - 0.4902 \bigg]}{4.18} \\ &= -25183 \text{ cal} \end{split}$$

$$\Delta H_2 = nF \left[T \left(\frac{\partial E_2}{\partial T} \right) - E_2 \right]$$

$$= \frac{2 \times 96500 \left[298 \left(-0.000127 \right) - 0.2111 \right]}{4.18}$$

$$= -11489 \text{ cal}$$

Hence, $\Delta H = \Delta H_1 - \Delta H_2 = -25183 - (-11489)$ cal = -13694 cal.

19. (a) The reaction in Daniel's cell is $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$ (n = 2) Heat of the reaction may be expressed as

$$\Delta H = nF \left[T \left(\frac{\partial E}{\partial T} \right)_{p} - E \right]$$

$$= 2 \times 96500 \left[\frac{288 \times \left(-4.28 \times 10^{-4} \right) - 1.0934}{4.18} \right]$$

$$= 56187 \text{ cal}$$

20. A-s; B-r; C-p; D-q

(A)
$$2H^+ + 2e^- \longrightarrow H_2$$

 $E_{H^+/H_2} = E^0 - \frac{0.0591}{2} log \frac{P_{H2}}{[H^+]^2}$
 $= 0 - \frac{0.0591}{2} log \frac{1}{[H^+]^2} = 0.0591 log [H^+]$

Since maximum activity of $H^+ = 1$, So $E_{H^+/H_2} = 0$

(B)
$$[H^+]_{\text{minimum}} = 10^{-14} \text{ M}$$
;
 $E_{\text{minimum}} = 0.0591 \log 10^{-14} = -0.0591 \times (-14)$
 $= -0.827 \text{ V}$

(C) For KCl(aq) [1M], pH = 7 [H⁺] =
$$10^{-7}$$
 M
Hence, E = 0.0591 log 10^{-7} = 0.0591 × (-7)
= -0.414 V

(D)
$$E = -\frac{0.0591}{2} \log \frac{P_{H2}}{[H^+]^2}$$
$$= \frac{-0.0591}{2} \log \frac{4}{1^2} = -0.0591 \log 2$$
$$= -0.0591 \times 0.301 = -0.018 \text{ V}$$