17. STRAIGHT LINES & PAIR OF STRAIGHT LINES

1. DISTANCE FORMULA:

The distance between the points $A(x_1,y_1)$ and $B(x_2,y_2)$ is $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

2. SECTION FORMULA:

If P(x, y) divides the line joining $A(x_1, y_1)$ & $B(x_2, y_2)$ in the ratio m:n, then;

$$x = \frac{mx_2 + nx_1}{m + n}$$
; $y = \frac{my_2 + ny_1}{m + n}$ If $\frac{m}{n}$ is positive, the division is internal, but if $\frac{m}{n}$ is negative, the

division is external.

Note: If P divides AB internally in the ratio m:n & Q divides AB externally in the ratio m:n then P & Q are said to be harmonic conjugate of each other w.r.t. AB.

Mathematically ; $\frac{2}{AB} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P.

3. CENTROID AND INCENTRE:

If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of triangle ABC, whose sides BC, CA, AB are of lengths a, b, c respectively, then the

coordinates of the centroid are
$$: \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) & \text{the}$$

coordinates of the incentre are :

$$\left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)$$
 Note that incentre divides

the angle bisectors in the ratio (b+c): a; (c+a): b & (a+b): c.

REMEMBER:(i) Orthocentre, Centroid & circumcentre are always collinear & centroid divides the line joining orthocentre & cercumcentre in the ratio 2:1.

(ii) In an isosceles triangle G, O, I & C lie on the same line.

x=a

x=b

4. SLOPE FORMULA:

If θ is the angle at which a straight line is inclined to the positive direction of x-axis, & $0^{\circ} \le \theta < 180^{\circ}$, $\theta \ne 90^{\circ}$, then the slope of the line, denoted by m, is defined by $m = \tan \theta$. If θ is 90° , m does not exist, but the line is parallel to the y-axis. If $\theta = 0$, then m = 0 & the line is parallel to the x-axis. If $A(x_1, y_1)$ & $B(x_2, y_2)$, $x_1 \ne x_2$, are points on a straight line, then the slope m of the line is given by: m = 0

$$\left(\frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}\right)$$

5. CONDITION OF COLLINEARITY OF THREE POINTS – (SLOPE FORM) :Points A

$$(x_1, y_1)$$
, B (x_2, y_2) , C (x_3, y_3) are collinear if $\left(\frac{y_1 - y_2}{x_1 - x_2}\right) = \left(\frac{y_2 - y_3}{x_2 - x_3}\right)$

6. EQUATION OF A STRAIGHT LINE IN VARIOUS FORMS:

(i) Slope – intercept form: y = mx + c is the equation of a straight line whose slope is m & which makes an intercept c on the y-axis.

- (ii) Slope one point form: $y y_1 = m(x x_1)$ is the equation of a straight line whose slope is m & which passes through the point (x_1, y_1) .
- (iii) Parametric form: The equation of the line in parametric form is given by $\frac{x-x_1}{\cos\theta} = \frac{y-y_1}{\sin\theta} = r \text{ (say)}. \text{ Where 'r' is the distance of any point } (x, y) \text{ on the line from the fixed point } (x_1, y_1) \text{ on the line. r is positive if the point } (x, y) \text{ is on the right of } (x_1, y_1) \text{ and negative if } (x, y) \text{ lies on the left of } (x_1, y_1) \text{ .www.MathsBySuhag.com}, \text{ www.TekoClasses.com}$
- (iv) Two point form: $y y_1 = \frac{y_2 y_1}{x_2 x_1}$ (x x₁) is the equation of a straight line which passes through the points (x_1, y_1) & (x_2, y_2) .
- (v) Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a straight line which makes intercepts a & b on OX & OY respectively.
- (vi) **Perpendicular form:** $x\cos\alpha + y\sin\alpha = p$ is the equation of the straight line where the length of the perpendicular from the origin O on the line is p and this perpendicular makes angle α with positive side of x-axis.
- (vii) General Form: ax + by + c = 0 is the equation of a straight line in the general form
- **POSITION OF THE POINT** $(\mathbf{x}_1, \mathbf{y}_1)$ **RELATIVE TO THE LINE ax + by + c = 0 :** If $a\mathbf{x}_1 + b\mathbf{y}_1 + c$ is of the same sign as c, then the point $(\mathbf{x}_1, \mathbf{y}_1)$ lie on the origin side of $a\mathbf{x} + b\mathbf{y} + c = 0$. But if the sign of $a\mathbf{x}_1 + b\mathbf{y}_1 + c$ is opposite to that of c, the point $(\mathbf{x}_1, \mathbf{y}_1)$ will lie on the non-origin side of $a\mathbf{x} + b\mathbf{y} + c = 0$.
- 8. THE RATIO IN WHICH A GIVEN LINE DIVIDES THE LINE SEGMENT JOINING TWO POINTS:

Let the given line ax + by + c = 0 divide the line segment joining $A(x_1, y_1) & B(x_2, y_2)$ in the ratio m : n, then $\frac{m}{n} = -\frac{a x_1 + b y_1 + c}{a x_2 + b y_2 + c}$. If A & B are on the same side of the given line then $\frac{m}{n}$ is negative

but if A & B are on opposite sides of the given line, then $\frac{m}{n}$ is positive

9. LENGTH OF PERPENDICULAR FROM A POINT ON A LINE:

The length of perpendicular from $P(x_1, y_1)$ on ax + by + c = 0 is $\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$.

10. ANGLE BETWEEN TWO STRAIGHT LINES IN TERMS OF THEIR SLOPES:

If $m_1 \& m_2$ are the slopes of two intersecting straight lines $(m_1 m_2 \neq -1) \& \theta$ is the acute angle

between them, then $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$.

Note: Let m_1 , m_2 , m_3 are the slopes of three lines $L_1 = 0$; $L_2 = 0$; $L_3 = 0$ where $m_1 > m_2 > m_3$ then the interior angles of the \triangle ABC found by these lines are given by,

$$\tan A = \frac{m_1 - m_2}{1 + m_1 m_2}$$
; $\tan B = \frac{m_2 - m_3}{1 + m_2 m_3}$ & $\tan C = \frac{m_3 - m_1}{1 + m_3 m_1}$

11. PARALLEL LINES:

- (i) When two straight lines are parallel their slopes are equal. Thus any line parallel to ax + by + c = 0 is of the type ax + by + k = 0. Where k is a parameter.
- (ii) The distance between two parallel lines with equations $ax + by + c_1 = 0$ & $ax + by + c_2 = 0$ is $\left| \frac{c_1 c_2}{\sqrt{a^2 + b^2}} \right|$ Note that the coefficients of x & y in both the equations must be same.
- (iii) The area of the parallelogram = $\frac{p_1 p_2}{\sin \theta}$, where $p_1 \& p_2$ are distances between two pairs of opposite sides & θ is the angle between any two adjacent sides. Note that area of the parallelogram bounded by the lines $y = m_1 x + c_1$, $y = m_1 x + c_2$ and $y = m_2 x + d_1$, $y = m_2 x + d_2$ is given by $\frac{|(c_1 c_2) (d_1 d_2)|}{|m_1 m_2|}.$

12. PERPENDICULAR LINES:

- (i) When two lines of slopes $m_1 \& m_2$ are at right angles, the product of their slopes is -1, i.e. $m_1 m_2 = -1$. Thus any line perpendicular to ax + by + c = 0 is of the form bx ay + k = 0, where k is any parameter.www.MathsBySuhag.com, www.TekoClasses.com
- (ii)St. lines ax + by + c = 0 & a'x + b'y + c' = 0 are right angles if & only if aa' + bb' = 0.
- Equations of straight lines through (x_1, y_1) making angle α with y = mx + c are: $(y y_1) = \tan(\theta \alpha)(x x_1) & (y y_1) = \tan(\theta + \alpha)(x x_1)$, where $\tan \theta = m$.

14. CONDITION OF CONCURRENCY:

Three lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ & $a_3x + b_3y + c_3 = 0$ are concurrent if

 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$. Alternatively: If three constants A, B & C can be found such that $A(a_1x + b_1y)$

 $+c_1$) + B(a₂x + b₂y + c₂) + C(a₃x + b₃y + c₃) \equiv 0, then the three straight lines are concurrent.

15. AREA OF A TRIANGLE: If (x_i, y_i) , i = 1, 2, 3 are the vertices of a triangle, then its area

is equal to $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$, provided the vertices are considered in the counter clockwise sense. The

above formula will give a (–) ve area if the vertices (x_i, y_i) , i = 1, 2, 3 are placed in the clockwise sense.

16. CONDITION OF COLLINEARITY OF THREE POINTS-(AREA FORM):

The points (x_i, y_i) , i = 1, 2, 3 are collinear if $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$.

17. THE EQUATION OF A FAMILY OF STRAIGHT LINES PASSING THROUGH THE POINTS OF INTERSECTION OF TWO GIVEN LINES:

The equation of a family of lines passing through the point of intersection of $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ is given by $(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0$, where k is an

arbitrary real number.

Note: If $u_1 = ax + by + c$, $u_2 = a'x + b'y + d$, $u_3 = ax + by + c'$, $u_4 = a'x + b'y + d'$ then, $u_1 = 0$; $u_2 = 0$; $u_3 = 0$; $u_4 = 0$ form a parallelogram.

 $u_2 u_3 - u_1 u_4 = 0$ represents the diagonal BD.

Proof : Since it is the first degree equation in x & y it is a straight line. Secondly point B satisfies the equation because the co-ordinates of B satisfy $u_2 = 0$ and $u_1 = 0$.

Similarly for the point D. Hence the result.

On the similar lines $u_1u_2 - u_3u_4 = 0$ represents the diagonal AC.

Note: The diagonal AC is also given by $u_1 + \lambda u_4 = 0$ and $u_2 + \mu u_3 = 0$, if the two equations are identical for some λ and μ .

[For getting the values of $\lambda \& \mu$ compare the coefficients of x, y & the constant terms]

- 18. BISECTORS OF THE ANGLES BETWEEN TWO LINES:
- (i) Equations of the bisectors of angles between the lines ax + by + c = 0 &

$$a'x + b'y + c' = 0$$
 ($ab' \ne a'b$) are : $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \pm \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$

(ii) To discriminate between the acute angle bisector & the obtuse angle bisector

If θ be the angle between one of the lines & one of the bisectors, find tan θ .

If $|\tan \theta| < 1$, then $2\theta < 90^{\circ}$ so that this bisector is the acute angle bisector.

If $|\tan \theta| > 1$, then we get the bisector to be the obtuse angle bisector.

(iii) To discriminate between the bisector of the angle containing the origin & that of the angle not containing the origin. Rewrite the equations, ax + by + c = 0 & a'x + b'y + c' = 0 such that

the constant terms $\,c\,,\,c'\,$ are positive. Then;

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation

of the bisector of the angle containing the origin & $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = -\frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$ gives the equation of

the bisector of the angle not containing the origin.www.MathsBySuhag.com, www.TekoClasses.com

(iv) To discriminate between acute angle bisector & obtuse angle bisector proceed as follows

Write ax + by + c = 0 & a'x + b'y + c' = 0 such that constant terms are positive.

If aa' + bb' < 0, then the angle between the lines that contains the origin is acute and the equation of the

bisector of this acute angle is
$$\frac{ax+by+c}{\sqrt{a^2+b^2}} = +\frac{a'x+b'y+c'}{\sqrt{a'^2+b'^2}}$$

therefore $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = -\frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$ is the equation of other bisector.

If, however, aa' + bb' > 0, then the angle between the lines that contains the origin is obtuse & the equation of the bisector of this obtuse angle is:

$$\frac{a\,x + b\,y + c}{\sqrt{a^2 + b^2}} = + \; \frac{a'\,x + b'\,y + c'}{\sqrt{a'^2 + b'^2}} \; ; \; \; \text{therefore} \; \frac{a\,x + b\,y + c}{\sqrt{a^2 + b^2}} = - \; \frac{a'\,x + b'\,y + c'}{\sqrt{a'^2 + b'^2}}$$

is the equation of other bisector.

Another way of identifying an acute and obtuse angle bisector is as follows: Let $L_1 = 0 \& L_2 = 0$ are the given lines & $u_1 = 0$ and $u_2 = 0$ are the bisectors between $L_1 = 0 \& L_2 = 0$. Take a point P on any one of the lines $L_1 = 0$ or $L_2 = 0$ and drop perpendicular on $u_1 = 0 \& u_2 = 0$ as shown. If , $|p| < |q| \implies u_1$ is the acute angle bisector.

 $|p| > |q| \implies u_1$ is the obtuse angle bisector.

 $|p| = |q| \Rightarrow$ the lines L₁ & L₂ are perpendicular.

Note: Equation of straight lines passing through $P(x_1, y_1)$ & equally inclined with the lines $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ are those which are parallel to the bisectors between these two lines & passing through the point P.

19. A PAIR OF STRAIGHT LINES THROUGH ORIGIN:

(i) A homogeneous equation of degree two of the type $ax^2 + 2hxy + by^2 = 0$ always represents a pair of

straight lines passing through the origin & if:

- (a) $h^2 > ab \implies lines are real & distinct$.
- **(b)** $h^2 = ab \implies lines are coincident.$
- (c) $h^2 < ab \implies lines are imaginary with real point of intersection i.e. (0, 0)$
- (ii) If $y = m_1 x & y = m_2 x$ be the two equations represented by $ax^2 + 2hxy + by^2 = 0$, then;

$$m_1 + m_2 = -\frac{2h}{b}$$
 & $m_1 m_2 = \frac{a}{b}$.

(iii) If θ is the acute angle between the pair of straight lines represented by, $ax^2 + 2hxy + by^2 = 0$, then;

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
. The condition that these lines are:

- (a) At right angles to each other is a + b = 0. i.e. co-efficient of x^2 + coefficient of $y^2 = 0$.
- **(b)** Coincident is $h^2 = ab$.
- (c) Equally inclined to the axis of x is h = 0. i.e. coeff. of xy = 0.

Note: A homogeneous equation of degree n represents n straight lines passing through origin.

20. GENERAL EQUATION OF SECOND DEGREE REPRESENTING A PAIR OF STRAIGHT LINES:

(i) $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if:

$$abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$$
, i.e. if $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$.

- (ii) The angle θ between the two lines representing by a general equation is the same as that between the two lines represented by its homogeneous part only.
- 21. The joint equation of a pair of straight lines joining origin to the points of intersection of the line given by lx + my + n = 0(i) &

the 2nd degree curve :
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

is
$$ax^2 + 2hxy + by^2 + 2gx \left(\frac{lx + my}{-n}\right) + 2fy \left(\frac{lx + my}{-n}\right) + c \left(\frac{lx + my}{-n}\right)^2 = 0$$
 (iii)

- (iii) is obtained by homogenizing (ii) with the help of (i), by writing (i) in the form: $\left(\frac{lx+my}{-n}\right)=1$.
- 22. The equation to the straight lines bisecting the angle between the straight lines,

$$ax^2 + 2hxy + by^2 = 0$$
 is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$.www.MathsBySuhag.com, www.TekoClasses.com

23. The product of the perpendiculars, dropped from (x_1, y_1) to the pair of lines represented by the equation,

$$ax^2 + 2hxy + by^2 = 0$$
 is $\frac{ax_1^2 + 2hx_1y_1 + by_1^2}{\sqrt{(a-b)^2 + 4h^2}}$.

Any second degree curve through the four point of intersection of f(x y) = 0 & xy = 0 is given by $f(x y) + \lambda xy = 0$ where f(xy) = 0 is also a second degree curve.