CHAPTER

Straight Lines and **Pair of Straight Lines**

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

- 1. The area enclosed within the curve |x|+|y|=1 is (1981 - 2 Marks)
- $y = 10^x$ is the reflection of $y = \log_{10} x$ in the line whose 2. equation is (1982 - 2 Marks)
- 3. The set of lines ax+by+c=0, where 3a+2b+4c=0 is concurrent at the point (1982 - 2 Marks)
- Given the points A(0, 4) and B(0, -4), the equation of the 4. locus of the point P(x, y) such that |AP - BP| = 6 is (1983 - 1 Mark)
- If a, b and c are in A.P., then the straight line ax + by + c = 05. will always pass through a fixed point whose coordinates (1984 - 2 Marks)
- The orthocentre of the triangle formed by the lines 6. x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lies in quadrant (1985 - 2 Marks)
- Let the algebraic sum of the perpendicular distances from 7. the points (2,0), (0,2) and (1,1) to a variable straight line be zero; then the line passes through a fixed point whose (1991 - 2 Marks) cordinates are
- The vertices of a triangle are A(-1, -7), B(5, 1) and C(1, 4). The equation of the bisector of the angle $\angle ABC$ is (1993 - 2 Marks)

В True / False

- 1. The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0. (1983 - 1 Mark)
- The lines 2x + 3y + 19 = 0 and 9x + 6y 17 = 0 cut the 2. (1988 - 1 Mark) coordinate axes in concyclic points.

MCQs with One Correct Answer

- 1. The points (-a, -b), (0, 0), (a, b) and (a^2, ab) are : (1979)
 - Collinear (a)
 - Vertices of a parallelogram (b)
 - Vertices of a rectangle
 - (d) None of these
- The point (4, 1) undergoes the following three transformations successively.
 - Reflection about the line y = x.
 - Translation through a distance 2 units along the positive direction of x-axis.
 - Rotation through an angle p/4 about the origin in the counter clockwise direction.

Then the final position of the point is given by the coordinates.

- (a) $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (b) $(-\sqrt{2}, 7\sqrt{2})$
- (c) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (d) $(\sqrt{2}, 7\sqrt{2})$
- The straight lines x + y = 0, 3x + y 4 = 0, x + 3y 4 = 0 form 3. a triangle which is (1983 - 1 Mark)
 - (a) isosceles
- (b) equilateral
- (c) right angled
- (d) none of these
- If P = (1, 0), Q = (-1, 0) and R = (2, 0) are three given points, then locus of the point S satisfying the relation $SQ^2 + SR^2 = 2SP^2$, is (a) a straight line parallel to x-axis (1988 - 2 Marks)

 - (b) a circle passing through the origin
 - (c) a circle with the centre at the origin
 - (d) a straigth line parallel to y-axis.
- Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q, then

- (a) $a^2 + b^2 = p^2 + q^2$ (b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$
- (c) $a^2 + p^2 = b^2 + q^2$ (d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$
- If the sum of the distances of a point from two perpendicular (1992 - 2 Marks) lines in a plane is 1, then its locus is
 - (a) square
- (b) circle
- (c) straight line
- (d) two intersecting lines
- The locus of a variable point whose distance from (-2, 0) is

2/3 times its distance from the line $x = -\frac{9}{2}$ is (1994)

- (a) ellipse
- (c) hyperbola
- (d) none of these
- 8. The equations to a pair of opposite sides of parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$, the equations to its diagonals are
 - (a) x+4y=13, y=4x-7
 - (b) 4x + y = 13, 4y = x 7
 - (c) 4x+y=13, y=4x-7 (d) y-4x=13, y+4x=7
- The orthocentre of the triangle formed by the lines xy = 09. and x + v = 1 is

(a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 (b) $\left(\frac{1}{3}, \frac{1}{3}\right)$ (c) $(0, 0)$ (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

Let POR be a right angled isosceles triangle, right angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is

(1999 - 2 Marks)

- (a) $3x^2 3y^2 + 8xy + 20x + 10y + 25 = 0$
- (b) $3x^2 3y^2 + 8xy 20x 10y + 25 = 0$
- (c) $3x^2 3y^2 + 8xy + 10x + 15y + 20 = 0$
- (d) $3x^2 3y^2 8xy 10x 15y 20 = 0$
- 11. If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_3 , are in G.P. with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . (1999 - 2 Marks)
 - (a) lie on a straight line
- (b) lie on an ellipse
- (c) lie on a circle
- (d) are vertices of a triangle
- 12. Let PS be the median of the triangle with vertices P(2, 2), Q(6,-1) and R(7,3). The equation of the line passing through (2000S)(1,-1) and parallel to PS is
 - (a) 2x-9y-7=0
- (b) 2x-9y-11=0
- (c) 2x + 9y 11 = 0
- (d) 2x + 9y + 7 = 0
- 13. The incentre of the triangle with vertices $(1, \sqrt{3})$, (0, 0) and (2,0) is (2000S)

(a)
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{3}}\right)$

- 14. The number of integer values of m, for which the x-coordinate of the point of intersection of the lines 3x + 4y = 9 and y = mx + 1 is also an integer, is (2001S)
 - (a) 2

- (d) 1
- 15. Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals
 - (a) $|m+n|/(m-n)^2$
- (b) 2/|m+n|
- (c) 1/(|m+n|)
- (d) 1/(|m-n|)
- 16. Let $0 < \alpha < \frac{\pi}{2}$ be fixed angle. If

 $P = (\cos \theta, \sin \theta)$ and $Q = (\cos(\alpha - \theta), \sin(\alpha - \theta))$,

then Q is obtained from P by

(2002S)

- (a) clockwise rotation around origin through an angle α
- anticlockwise rotation around origin through an angle α
- (c) reflection in the line through origin with slope $\tan \alpha$
- (d) reflection in the line through origin with slope $\tan (\alpha/2)$
- 17. Let P = (-1, 0), Q = (0, 0) and $R = (3, 3\sqrt{3})$ be three points. Then the equation of the bisector of the angle *PQR* is

(a)
$$\frac{\sqrt{3}}{2}x + y = 0$$

- (b) $x + \sqrt{3}y = 0$ (2002S)
- (c) $\sqrt{3}x + v = 0$
- (d) $x + \frac{\sqrt{3}}{2}y = 0$
- **18.** A straight line through the origin O meets the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then the point O divides the segemnt PQ in the ratio

(2002S)

- (a) 1:2
- (b) 3:4
- (c) 2:1
- (d) 4:3

- The number of intergral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices (0,0), (0,21) and (21,0), is (2003S)
 - (a) 133
 - (b) 190
- (c) 233
- Orthocentre of triangle with vertices (0,0), (3,4) and (4,0) is (2003S)
 - (a) $\left(3, \frac{5}{4}\right)$ (b) (3, 12) (c) $\left(3, \frac{3}{4}\right)$
- Area of the triangle formed by the line x + y = 3 and angle bisectors of the pair of straight lines $x^2 - y^2 + 2y = 1$ is (2004S)
 - (a) 2 sq. units
- (b) 4 sq. units
- (c) 6 sq. units
- (d) 8 sq. units
- 22. Let O(0, 0), P(3, 4), Q(6, 0) be the vertices of the triangles OPQ. The point R inside the triangle OPQ is such that the triangles *OPR*, *PQR*, *OQR* are of equal area. The coordinates
 - (a) $\left(\frac{4}{3},3\right)$ (b) $\left(3,\frac{2}{3}\right)$ (c) $\left(3,\frac{4}{3}\right)$ (d) $\left(\frac{4}{3},\frac{2}{3}\right)$
- 23. A straight line L through the point (3, -2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If L also intersects the x-axis, then the equation of L is (2011)
 - (a) $y + \sqrt{3}x + 2 3\sqrt{3} = 0$ (b) $y \sqrt{3}x + 2 + 3\sqrt{3} = 0$
 - (c) $\sqrt{3}v x + 3 + 2\sqrt{3} = 0$ (d) $\sqrt{3}v + x 3 + 2\sqrt{3} = 0$

MCQs with One or More than One Correct

- Three lines px + qy + r = 0, qx + ry + p = 0 and rx + py + q = 0 are concurrent if (1985 - 2 Marks)

 - (a) p+q+r=0(b) $p^2+q^2+r^2=qr+rp+pq$ (c) $p^3+q^3+r^3=3pqr$

 - (d) none of these
- The points $\left(0, \frac{8}{3}\right)$, (1, 3) and (82, 30) are vertices of 2.
 - (a) an obtuse angled triangle
- (1986 2 Marks)
- (b) an acute angled triangle
- a right angled triangle
- (d) an isosceles triangle
- (e) none of these.
- All points lying inside the triangle formed by the points 3. (1,3), (5,0) and (-1,2) satisfy (1986 - 2 Marks)
 - (a) $3x + 2y \ge 0$
- (b) $2x+y-13 \ge 0$
- (c) $2x-3y-12 \le 0$
- (d) -2x+y>0
- (e) none of these.
- A vector \vec{a} has components 2p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, \vec{a} has components (1986 - 2 Marks) p+1 and 1, then
 - (a) p = 0
- (b) p = 1 or $p = -\frac{1}{3}$

- (c) p = -1 or $p = \frac{1}{3}$ (d) p = 1 or p = -1
- (e) none of these.
- 5. If (P(1, 2), Q(4, 6), R(5, 7)) and S(a, b) are the vertices of a parallelogram PQRS, then (1998 - 2 Marks)
 - (a) a=2, b=4
- (b) a=3, b=4
- (c) a=2, b=3
- (d) a=3, b=5
- The diagonals of a parallelogram PQRS are along the lines x+3y=4 and 6x-2y=7. Then *PQRS* must be a.
 - (1998 2 Marks)

- (a) rectangle
- (b) square
- (c) cyclic quadrilateral
- (d) rhombus.
- If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is (are) (1998 - 2 Marks) always rational point(s)?
 - (a) centroid
- (b) incentre
- (c) circumcentre
- (d) orthocentre

(A rational point is a point both of whose co-ordinates are rational numbers.)

- Let L_1 be a strainght line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal, then which of the following equations can represent L_1 ?
 - (1999 3 Marks)
 - (a) x + y = 0
- (b) x y = 0
- (c) x + 7y = 0
- (d) x 7y = 0
- For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than $2\sqrt{2}$. Then (JEE Adv. 2013)
 - (a) a+b-c>0
- (b) a-b+c<0
- (c) a-b+c>0
- (d) a+b-c < 0

E Subjective Problems

- 1. A straight line segment of length ℓ moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio 1:2.
- 2. The area of a triangle is 5. Two of its vertices are A(2, 1) and B(3, -2). The third vertex C lies on y = x + 3. Find C.

- One side of a rectangle lies along the line 4x + 7y + 5 = 0. Two 3. of its vertices are (-3, 1) and (1, 1). Find the equations of the other three sides. (1978)
- 4. Two vertices of a triangle are (5, -1) and (-2, 3). If the orthocentre of the triangle is the origin, find the coordinates of the third point.
 - Find the equation of the line which bisects the obtuse angle between the lines x-2y+4=0 and 4x-3y+2=0.

A straight line L is perpendicular to the line 5x - y = 1. The 5. area of the triangle formed by the line L and the coordinate axes is 5. Find the equation of the line L.

The end A, B of a straight line segment of constant length c slide upon the fixed rectangular axes OX. OY respectively. If the rectangle *OAPB* be completed, then show that the locus of the foot of the perpendicular drawn from P to AB is

$$\frac{2}{x^3} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$$
 (1983 - 2 Marks)

- The vertices of a triangle are $[at_1t_2, a(t_1 + t_2)]$, $[at_2t_3, a(t_2+t_3)], [at_3t_1, a(t_3+t_1)]$. Find the orthocentre of the triangle. (1983 - 3 Marks)
- 8. The coordinates of A, B, C are (6, 3), (-3, 5), (4, -2)respectively, and P is any point (x, y). Show that the ratio of

the area of the triangles $\triangle PBC$ and $\triangle ABC$ is $\left| \frac{x+y-2}{7} \right|$

- 9. Two equal sides of an isosceles triangle are given by the equations 7x - y + 3 = 0 and x + y - 3 = 0 and its third side passes through the point (1, -10). Determine the equation of the third side. (1984 - 4 Marks)
- One of the diameters of the circle circumscribing the rectangle ABCD is 4y = x + 7. If A and B are the points (-3, 4) and (5, 4) respectively, then find the area of rectangle. (1985 - 3 Marks)
- 11. Two sides of a rhombus ABCD are parallel to the lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on the y-axis, find possible co-ordinates of A. (1985 - 5 Marks)
- 12. Lines $L_1 \equiv ax + by + c = 0$ and $L_2 \equiv Ix + my + n = 0$ intersect at the point P and make an angle θ with each other. Find the equation of a line L different from L_2 which passes through P and makes the same angle θ with L_1 . (1988 - 5 Marks)
- 13. Let ABC be a triangle with AB = AC. If D is the midpoint of BC, E is the foot of the perpendicular drawn from D to AC and F the mid-point of DE, prove that AF is perpendicular to BE. (1989 - 5 Marks)
- Straight lines 3x + 4y = 5 and 4x 3y = 15 intersect at the point A. Points B and C are chosen on these two lines such that AB = AC. Determine the possible equations of the line BC passing through the point (1, 2). (1990 - 4 Marks)
- A line cuts the x-axis at A(7, 0) and the y-axis at B(0, -5). A variable line PQ is drawn perpendicular to AB cutting the xaxis in P and the y-axis in Q. If AQ and BP intersect at R, find (1990 - 4 Marks)
- Find the equation of the line passing through the point (2, 3) and making intercept of length 2 units between the lines y + 2x = 3 and y + 2x = 5. (1991 - 4 Marks)

Show that all chords of the curve $3x^2 - y^2 - 2x + 4y = 0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.

(1991 - 4 Marks)

$$2x+3y-1=0$$
 (1992 - 6 Marks)
 $x+2y-3=0$
 $5x-6y-1=0$

19. Tagent at a point P_1 {other than (0, 0)} on the curve $y = x^3$ meets the curve again at P_2 . The tangent at P_2 meets the curve at P_3 , and so on. Show that the abscissae of $P_1, P_2, P_3, \dots, P_n$, form a G.P. Also find the ratio.

[area $(\Delta P_1, P_2, P_3)$]/[area (P_2P_3, P_4)] (1993 - 5 Marks)

- A line through A(-5, -4) meets the line x + 3y + 2 = 0, 2x + y + 4 = 0 and x - y - 5 = 0 at the points B, C and D respectively. If $(15/AB)^2 + (10/AC)^2 = (6/AD)^2$, find the equation of the line. (1993 - 5 Marks)
- 21. A rectangle *PORS* has its side *PO* parallel to the line y = mxand vertices P, Q and S on the lines y = a, x = b and x = -b, respectively. Find the locus of the vertex R. (1996 - 2 Marks)
- Using co-ordinate geometry, prove that the three altitudes 22. of any triangle are concurrent. (1998 - 8 Marks)
- For points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ of the co-ordinate plane, a new distance d(P, Q) is defined by $d(P,Q) = |x_1 - x_2| + |y_1 - y_2|$. Let O = (0,0) and A = (3,2). Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.

(2000 - 10 Marks)

- 24. Let ABC and PQR be any two triangles in the same plane. Assume that the prependiculars from the points A, B, C to the sides QR, RP, PQ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from P, Q, R to BC, CA, AB respectively are also concurrent. (2000 - 10 Marks)
- 25. Let a, b, c be real numbers with $a^2 + b^2 + c^2 = 1$. Show that

the equation
$$\begin{vmatrix} ax - by - c & bx + ay & cx + a \\ bx + ay & -ax + by - c & cy + b \\ cx + a & cy + b & -ax - by + c \end{vmatrix} = 0$$

represents a straight line.

(2001 - 6 Marks)

26. A straight line L through the origin meets the lines x + y = 1and x + y = 3 at P and Q respectively. Through P and Q two straight lines L_1 and L_2 are drawn, parallel to 2x - y = 5 and 3x + y = 5 respectively. Lines L_1 and L_2 intersect at R. Show that the locus of R, as L varies, is a straight line.

(2002 - 5 Marks)

- A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. Find the absolute minimum value of OP + OQ, as L varies, where O is the origin. (2002 - 5 Marks)
- The area of the triangle formed by the intersection of a line 28. parallel to x-axis and passing through P(h, k) with the lines y = x and x + y = 2 is $4h^2$. Find the locus of the point P.

(2005 - 2 Marks)

Assertion & Reason Type Questions H

Lines $L_1: y-x=0$ and $L_2: 2x+y=0$ intersect the line $L_3: y$ +2 = 0 at P and Q, respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R.

STATEMENT-1: The ratio PR: RQ equals $2\sqrt{2}: \sqrt{5}$.

because

STATEMENT-2: In any triangle, bisector of an angle divides the triangle into two similar triangles. (2007 - 3 marks)

- Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False
- Statement-1 is False, Statement-2 is True.

Integer Value Correct Type

For a point P in the plane, let $d_1(P)$ and $d_2(P)$ be the distance of the point P from the lines x - y = 0 and x + y = 0respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying

$$2 \le d_1(P) + d_2(P) \le 4$$
, is (JEE Adv. 2014)

Section-B **JEE Main/**

- A triangle with vertices (4, 0), (-1, -1), (3, 5) is
 - (a) isosceles and right angled

[2002]

- (b) isosceles but not right angled
- (c) right angled but not isosceles
- (d) neither right angled nor isoceles
- 2. Locus of mid point of the portion between the axes of x $\cos \alpha + y \sin \alpha = p$ whre p is constant is [2002]

(a)
$$x^2 + y^2 = \frac{4}{p^2}$$
 (b) $x^2 + y^2 = 4p^2$

(c)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$$
 (d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$

- If the pair of lines $ax^2+2hxy+by^2+2gx+2fy+c=0$ intersect on 3. the y-axis then [2002]
 - (a) $2fgh = bg^2 + ch^2$
- (b) $bg^2 \neq ch^2$
- (c) abc = 2fgh
- (d) none of these
- The pair of lines represented by

$$3ax^2 + 5xy + (a^2 - 2)y^2 = 0$$

are perpendicular to each other for [2002]

- (a) two values of a (b)
- for one value of a (d) for no values of a

- A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4} \right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
 - [2003] $y(\cos\alpha + \sin\alpha) + x(\cos\alpha - \sin\alpha) = a$
 - $y(\cos \alpha \sin \alpha) x(\sin \alpha \cos \alpha) = a$
 - (c) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha \cos \alpha) = a$
 - (d) $y(\cos \alpha + \sin \alpha) + x(\sin \alpha + \cos \alpha) = a$.
- If the pair of straight lines $x^2 2pxy y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, then (a) pq = -1 (b) p = q (c) p = -q (d) pq = 1.
- Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t), (b\sin t, -b\cos t)$ and (1, 0), where t is a parameter, is [2003]
 - (a) $(3x+1)^2 + (3y)^2 = a^2 b^2$
 - (b) $(3x-1)^2 + (3y)^2 = a^2 b^2$
 - (c) $(3x-1)^2 + (3y)^2 = a^2 + b^2$
 - (d) $(3x+1)^2 + (3y)^2 = a^2 + b^2$
- If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) [2003]
 - (a) are vertices of a triangle
 - (b) lie on a straight line
 - (c) lie on an ellipse
 - (d) lie on a circle.
- 9. If the equation of the locus of a point equidistant from the point (a_1, b_1) and (a_2, b_2) is
 - $(a_1 b_2)x + (a_1 b_2)y + c = 0$, then the value of 'c' is
 - (a) $\sqrt{a_1^2 + b_1^2 a_2^2 b_2^2}$ [2003]
 - (b) $\frac{1}{2}(a_2^2 + b_2^2 a_1^2 b_1^2)$
 - (c) $a_1^2 a_2^2 + b_1^2 b_2^2$
 - (d) $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$.
- 10. Let A(2, -3) and B(-2, 3) be vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line
 - (a) 3x 2y = 3
- (b) 2x-3y=7
- [2004]

- (c) 3x + 2y = 5
- (d) 2x + 3v = 9

- The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose
 - (a) $\frac{x}{2} \frac{y}{2} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
 - (b) $\frac{x}{2} \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
 - (c) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
 - (d) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
- 12. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product c has the
 - (a) -2(b) -1
- (c) 2
- (d) 1
- 13. If one of the lines given by $6x^2 xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals [2004]
 - (a) -3
- (b) -1
- (c) 3
- (d) 1
- The line parallel to the x- axis and passing through the intersection of the lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0, where $(a, b) \neq (0, 0)$ is [2005]
 - (a) below the x axis at a distance of $\frac{3}{2}$ from it
 - (b) below the x axis at a distance of $\frac{2}{3}$ from it
 - (c) above the x axis at a distance of $\frac{3}{2}$ from it
 - (d) above the x axis at a distance of $\frac{2}{3}$ from it
- If a vertex of a triangle is (1, 1) and the mid points of two sides through this vertex are (-1, 2) and (3, 2) then the centroid of the triangle is

 - (a) $\left(-1, \frac{7}{3}\right)$ (b) $\left(\frac{-1}{3}, \frac{7}{3}\right)$

 - (c) $\left(1, \frac{7}{3}\right)$ (d) $\left(\frac{1}{3}, \frac{7}{3}\right)$
- 16. A straight line through the point A (3, 4) is such that its intercept between the axes is bisected at A. Its equation is
 - (a) x + y = 7
- (b) 3x-4y+7=0
- [2006]

[2006]

- (c) 4x + 3y = 24
- (d) 3x + 4y = 25
- 17. If (a,a^2) falls inside the angle made by the lines $y = \frac{x}{2}$,
 - x > 0 and y = 3x, x > 0, then a belong to

(a)
$$\left(0,\frac{1}{2}\right)$$

(b) (3,∞)

(c)
$$\left(\frac{1}{2},3\right)$$

(c)
$$\left(\frac{1}{2}, 3\right)$$
 (d) $\left(-3, -\frac{1}{2}\right)$

18. Let A (h, k), B(1, 1) and C (2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is 1 square unit, then the set of values which 'k' can take is given by [2007]

- (a) $\{-1,3\}$ (b) $\{-3,-2\}$ (c) $\{1,3\}$
- (d) $\{0,2\}$
- 19. Let P = (-1, 0), Q = (0, 0) and $R = (3, 3\sqrt{3})$ be three point. The equation of the bisector of the angle PQR is [2007]

(a)
$$\frac{\sqrt{3}}{2}x + y = 0$$
 (b) $x + \sqrt{3y} = 0$

$$(b) \quad x + \sqrt{3y} = 0$$

$$(c) \quad \sqrt{3}x + y = 0$$

(d)
$$x + \frac{\sqrt{3}}{2}y = 0$$
.

20. If one of the lines of $my^2 + (1-m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is [2007]

(a) 1

- (b) 2
- (c) -1/2
- -2(d)
- The perpendicular bisector of the line segment joining P (1, 4) and Q(k, 3) has y-intercept –4. Then a possible value of k is [2008]

- (b) 2
- (c) -2
- The shortest distance between the line y x = 1 and the curve $x = y^2$ is: [2009]

(a) $\frac{2\sqrt{3}}{8}$ (b) $\frac{3\sqrt{2}}{5}$ (c) $\frac{\sqrt{3}}{4}$ (d) $\frac{3\sqrt{2}}{8}$

- The lines $p(p^2+1)x-y+q=0$ and $(p^2+1)^2x+(p^2+1)y+2q$ = 0 are perpendicular to a common line for: 120091
 - (a) exactly one values of p
 - (b) exactly two values of p
 - (c) more than two values of p
 - (d) no value of p
- 24. Three distinct points A, B and C are given in the 2-dimensional coordinates plane such that the ratio of the distance of any one of them from the point (1, 0) to the

distance from the point (-1, 0) is equal to $\frac{1}{3}$. Then the circumcentre of the triangle ABC is at the point:

(a) $\left(\frac{5}{4}, 0\right)$ (b) $\left(\frac{5}{2}, 0\right)$ (c) $\left(\frac{5}{3}, 0\right)$ (d) (0, 0)

- 25. The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is [2010]

(a)
$$\sqrt{17}$$
 (b) $\frac{17}{\sqrt{15}}$ (c) $\frac{23}{\sqrt{17}}$ (d) $\frac{23}{\sqrt{15}}$

- **26.** The lines $L_1: y-x=0$ and $L_2: 2x+y=0$ intersect the line $L_3: y + 2 = 0$ at P and Q respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R.

Statement-1: The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$

Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles. [2011]

- Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- Statement-1 is true, Statement-2 is false.
- Statement-1 is false, Statement-2 is true.
- Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- If the line 2x + y = k passes through the point which divides 27. the line segment joining the points (1,1) and (2,4) in the ratio 3:2, then k equals:

(a)
$$\frac{29}{5}$$

- (a) $\frac{29}{5}$ (b) 5 (c) 6 (d) $\frac{11}{5}$
- A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected ray is

[JEE M 2013]

- (a) $y = x + \sqrt{3}$ (b) $\sqrt{3}y = x \sqrt{3}$
- (c) $y = \sqrt{3}x \sqrt{3}$
- (d) $\sqrt{3}v = x 1$
- The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1)(1, 1) and (1, 0)[JEE M 2013]

(a)
$$2+\sqrt{2}$$
 (b) $2-\sqrt{2}$ (c) $1+\sqrt{2}$

- 30. Let PS be the median of the triangle with vertices P(2, 2), Q(6,-1) and R(7,3). The equation of the line passing through (1,-1) and parallel to PS is: [JEE M 2014]
 - (a) 4x + 7y + 3 = 0
- (b) 2x-9y-11=0
- (c) 4x-7y-11=0
- (d) 2x+9y+7=0
- 31. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0lies in the fourth quadrant and is equidistant from the two axes then [JEE M 2014]
 - (a) 3bc 2ad = 0
- (b) 3bc + 2ad = 0
- (c) 2bc 3ad = 0
- (d) 2bc + 3ad = 0
- 32. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices (0, 0), (0,41) and (41,0) is: [JEE M 2015] (a) 820 (b) 780 (c) 901 (d) 861
 - Two sides of a rhombus are along the lines, x y + 1 = 0 and 7x-y-5=0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus?

[JEE M 2016]

- (a) $\left(\frac{1}{3}, -\frac{8}{3}\right)$ (b) $\left(-\frac{10}{3}, -\frac{7}{3}\right)$
- (c) (-3, -9)

Straight Lines and **Pair of Straight Lines**

Section-A: JEE Advanced/ IIT-JEE

$$2. \quad y = x$$

3.
$$\left(\frac{3}{4}, \frac{1}{2}\right)$$

2 sq. units 2.
$$y=x$$
 3. $\left(\frac{3}{4}, \frac{1}{2}\right)$ 4. $\frac{y^2}{9} - \frac{x^2}{7} = 1$ 5. $(1,-2)$ 6. first quadrant

8.
$$x-7y+2=0$$

 \mathbf{C}

(a)

E 1.
$$9x^2 + 36y^2 = 4\ell^2$$

2.
$$\left(\frac{-3}{2}, \frac{3}{2}\right)$$
 or $\left(\frac{7}{2}, \frac{13}{2}\right)$

3.
$$4x+7y-11=0$$
, $7x-4y-3=0$; $7x-4y+25=0$ 4. (a) $(-4,-7)$ (b) $(4-\sqrt{5})x+(2\sqrt{5}-3)y-(4\sqrt{5}-2)=0$

5.
$$x+5y-5\sqrt{2}=0$$
 or $x+5y+5\sqrt{2}=0$ 7. $(-a, a(t_1+t_2+t_3)+at_1t_2t_3)$

7.
$$(-a, a(t_1 + t_2 + t_3) + at_1t_2t_3$$

9.
$$x-3y-31=0$$
 or $3x+y+7=0$

11.
$$(0,0)$$
 or $(0,5/2)$

12.
$$(a^2+b^2)(lx+my+n)-2(al+bm)(ax+by+c)=0$$

14.
$$x-7y+13=0$$
 or $7x+y-9=0$

15.
$$x^2 + y^2 - 7x + 5y = 0$$

16.
$$3x + 4y - 18 = 0$$
 or $x - 2 = 0$

18.
$$\alpha \in \left(-\frac{3}{2}, -1\right) \cup \left(\frac{1}{2}, 1\right)$$

19.
$$\frac{1}{64}$$
 sq units

20.
$$2x + 3y + 22 = 0$$

21.
$$x(m^2-1)-ym+(m^2+1)b+am=0$$

28.
$$y = 2x + 1$$
 or $y = -2x + 1$

Section-B : JEE Main/ AIEEE

JEE Advanced/ IIT-JEE

A. Fill in the Blanks

1. |x| + |y| = 1

The curve represents four lines

$$x+y=1, x-y=1, -x+y=1,$$

$$-x-y=1$$

which enclose a square of side = distance between opp. sides x + y = 1 and

$$x + y = -1$$

Side =
$$\frac{1+1}{\sqrt{1+1}} = \sqrt{2}$$

 \therefore Req. area = (side)² = 2 sq. units.

- 2. As $y = \log_{10} x$ can be obtained by replacing x by y and y by $x \text{ in } y = 10^x$
 - \therefore The line of reflection is y = x.
- Given that $3a + 2b + 4c = 0 \implies \frac{3}{4}a + \frac{1}{2}b + c = 0$ 3.

 \Rightarrow The set of lines ax + by + c = 0 passes through the point (3/4, 1/2).

|AP-BP|=6

We know that locus of a point, difference of whose distances from two fixed points is constant, is hyperbola with the fixed points as focii and the difference of distances as length of transverse axis.

Thus, ae = 4 and $2a = 6 \implies a = 3$, e = 4/3

$$\Rightarrow b^2 = 9\left(\frac{16}{9} - 1\right) = 7 \quad \therefore \text{ Equation is } \frac{y^2}{9} - \frac{x^2}{7} = 1$$

(foci being on y-axis, it is vertical hyperbola)

5. If a, b, c are in A.P. then

$$a+c=2b \implies a-2b+c=0$$

$$\Rightarrow$$
 $ax + by + c = 0$ passes through $(1,-2)$.

First quadrant.

The equations of sides of triangle ABC are

AB : x + y = 1

BC : 2x + 3y = 6

CA : 4x - y = -4

Solving these pairwise we get the vertices of Δ as follows A(-3/5, 8/5) B(-3, 4) C(-3/7, 16/7)

Now AD is line \perp^{lar} to BC and passes through A. Any line perpendicular to BC is $3x - 2y + \lambda = 0$

As it passes through A(-3/5, 8/5)

$$\therefore \quad \frac{-9}{5} - \frac{16}{5} + \lambda = 0 \implies \lambda = 5$$

 \therefore Equation of altitude AD is 3x-2y+5=0

Any line perpendicular to side AC is $x + 4y + \mu = 0$ As it passes through point B(-3, 4)

- $-3 + 16 + \mu = 0 \implies \mu = -13$
- Equation of altitude BE is x + 4y 13 = 0 ...(2)

Now orthocentre is the point of intersection of equations (1) and (2) (AD and BE)

Solving (1) and (2), we get x = 3/7, y = 22/7

As both the co-ordinates are positive, orthocentre lies in first quadrant.

7. Let the variable line be ax + by + c = 0

Then \perp^{lar} distance of line from $(0,2) = \frac{2a+c}{\sqrt{c^2+b^2}} = p_1$

 \perp lar distance of line from $(0,2) = \frac{2b+c}{\sqrt{a^2+b^2}} = p_2$

 \perp^{lar} distance of line from $(1, 1) = \frac{a+b+c}{\sqrt{a^2+b^2}} = p_3$

ATQ $p_1 + p_2 + p_3 = 0$

$$\Rightarrow \frac{2a+c+2b+c+a+b+c}{\sqrt{a^2+b^2}} = 0$$

- \Rightarrow 3a+3b+3c=0
- $\Rightarrow a+b+c=0$

From (1) and (2), we can say variable line (1) passes through the fixed point (1, 1).

.....(2)

A(-1,-7)

C(1, 4)

8. Let BD be the bisector of $\angle ABC$.

NOTE THIS STEP:

Then AD:DC=AB:BC

$$AB = \sqrt{(5+1)^2 + (1+7)^2} = 10$$
 $B = (5, 1)$

 $BC = \sqrt{(5-1)^2 + (1-4)^2} = 5$

- $\therefore AD:DC=2:1$
- \therefore By section formula $D\left(\frac{1}{2}, \frac{1}{2}\right)$

Therefore equation of BD is

$$y-1 = \frac{1/3-1}{1/3-5}(x-5) \implies y-1 = \frac{-2/3}{-14/3}(x-5)$$

 $\Rightarrow 7y-7=x-5 \Rightarrow x-7y+2=0$

B. True / False

- Intersection point of x + 2y 10 = 0 and 2x + y + 5 = 0 is 1.
 - $\left(\frac{-20}{3}, \frac{25}{3}\right)$ which clearly satisfies the line 5x + 4y = 0. Hence

the given statement is true.

GP 3480

2. The given lines cut x-axis at

$$A\left(\frac{17}{9},0\right), C\left(\frac{-19}{2},0\right)$$

and y-axis at $B\left(0,\frac{17}{6}\right)$ and $D\left(0,\frac{-19}{3}\right)$.

Now A, B, C, D are concyclic if for AC and BD intersecting at O we have $AO \times OC = BO \times OD$

or,
$$\frac{AO}{BO} = \frac{OD}{OC}$$
 if $\frac{17/9}{17/6} = \frac{-19/3}{-19/2}$ i.e. $\frac{2}{3} = \frac{2}{3}$ which is true.

:. The given statement is true.

C. MCQs with ONE Correct Answer

1. (a) The given points are A(-a, -b), B(0, 0), C(a, b) and $D(a^2, ab)$.

Slope of $AB = \frac{b}{a} = \text{slope of } BC = \text{slope of } BD$

 \therefore A, B, C, D are collinear.

2. (c) Reflection about the line y = x, changes the point (4, 1) to (1, 4).

On translation of (1, 4) through a distance of 2 units along +ve direction of x-axis the point becomes (1+2, 4), i.e., (3, 4).

On rotation about origin through an angle $\pi/4$ the point P takes the position P' such that

$$OP = \hat{OP}'$$

Also
$$OP = 5 = OP'$$
 and $\cos \theta = \frac{3}{5}$, $\sin \theta = \frac{4}{5}$

Now, $x = OP' \cos \left(\frac{\pi}{4} + \theta \right)$

$$=5\left(\cos\frac{\pi}{4}\cos\theta - \sin\frac{\pi}{4}\sin\theta\right) = 5\left(\frac{3}{5\sqrt{2}} - \frac{4}{5\sqrt{2}}\right) = -\frac{1}{\sqrt{2}}$$

$$y = OP'\sin\left(\frac{\pi}{4} + \theta\right) = 5\left(\sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta\right)$$

$$= 5\left(\frac{3}{5\sqrt{2}} + \frac{4}{5\sqrt{2}}\right) = \frac{7}{\sqrt{2}} \quad \therefore \quad P' = \left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$

3. (a) Solving the given equations of lines pairwise, we get the vertices of Δ as

$$A(-2,2)B(2,-2),C(1,1)$$

Then
$$AB = \sqrt{16 + 16} = 4\sqrt{2}$$

$$BC = \sqrt{1+9} = \sqrt{10}$$

$$CA = \sqrt{9+1} = \sqrt{10}$$
 $\therefore \Delta$ is isosceles.

4. (a) We have

$$P = (1, 0), Q = (-1, 0), R = (2, 0)$$

Let
$$S = (x, y)$$

ATQ
$$SQ^2 + SR^2 = 2SP^2$$

$$\Rightarrow (x+1)^2 + y^2 + (x-2)^2 + y^2 = 2[(x-1)^2 + y^2]$$

$$\Rightarrow 2x^2 + 2y^2 - 2x + 5 = 2x^2 + 2y^2 - 4x + 2$$

$$\Rightarrow$$
 2x + 3 = 0 \Rightarrow x = -3/2

Which is a straight line parallel to y-axis.

5. **(b)** As L has intercepts a and b on axes, equation of L is

$$\frac{x}{a} + \frac{y}{b} = 1 \qquad \dots \dots \dots (1)$$

Let x and y axes be rotated through an angle θ in anticlockwise direction.

In new system intercepts are p and q, therefore equation of L becomes

$$\frac{x}{p} + \frac{y}{q} = 1 \qquad \dots (2)$$

KEY CONCEPT: As the origin is fixed in rotation, the distance of line from origin in both the cases should be same.

$$\therefore \text{ We get } d = \left| \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right| = \left| \frac{1}{\sqrt{\frac{1}{p^2} + \frac{1}{q^2}}} \right|$$

$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{a^2}$$

.. (b) is the correct answer.

(a) Let the two perpendicular lines be the co-ordinate axes. Let (x, y) be the point sum of whose distances from two axes is 1 then we must have

$$|x| + |y| = 1$$
 or $\pm x \pm y = 1$

These are the four lines

$$x+y=1, x-y=1, -x+y=1, -x-y=1$$

Any two adjacent sides are perpendicular to each other. Also each line is equidistant from origin. Therefore figure formed is a square.

(a) If variable point is P and S(-2, 0) then $PS = \frac{2}{3}PM$ 7.

where PM is the perpendicular distance of point P from given line x = -9/2

- \therefore By definition *P* describes an ellipse. $\left(e = \frac{2}{3} < 1\right)$
- 8. (c) The sides of parallelogram are x = 2, x = 3, y = 1, y = 5.

 $\therefore \text{ Diagonal } AC \text{ is } \frac{y-1}{5-1} = \frac{x-2}{3-2} \text{ or } y = 4x-7$

Equation diagonal BD is $\frac{x-2}{3-2} = \frac{y-5}{1-5}$ or 4x + y = 13

The lines by which Δ is formed are x = 0, y = 0 and 9. (c) x + v = 1.

Clearly, it is right Δ and we know that in a right Δ orthocentre coincides with the vertex at which right ∠ is formed.

Orthocentre is (0, 0).

(b) Let m be the slope of PQ then **10.**

$$\tan 45^{\circ} = \left| \frac{m - (-2)}{1 + m (-2)} \right|$$

$$\Rightarrow 1 = \left| \frac{m+2}{1-2m} \right| \Rightarrow \pm 1 = \frac{m+2}{1-2m}$$

$$\Rightarrow m+2=1-2m \text{ or } -1+2m=m+2$$

$$\Rightarrow m = -1/3$$
 or $m = 3$

As PR also makes $\angle 45^{\circ}$ with RO.

The above two values of m are for PQ and PR.

$$\therefore \quad \text{Equation of } PQ, y-1 = -\frac{1}{3}(x-2)$$

$$\Rightarrow 3y-3=-x+2 \Rightarrow x+3y-5=0$$

and equation of PR is $\Rightarrow 3x-y-5=0$

Combined equation of PO and PR is

$$(x-3y-5)(3x-y-5) = 0$$

$$\Rightarrow 3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$$

11. (a)
$$x_2 = x_1 r, x_3 = x_1 r^2$$
 and so is $y_2 = y_1 r, y_3 = y_1 r^2$

$$\begin{vmatrix} x_1 & y_1 & 1 \\ & & 2 \end{vmatrix} \begin{vmatrix} x_1 & y_1 & 1 \\ & & 2 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = r \cdot r^2 \begin{vmatrix} x_1 & y_1 & 1 \\ x_1 & y_1 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0$$

Hence the points lie on a line, i.e., they are collinear.

12. (d) S is the midpoint of Q and R

Therefore,
$$S = \left(\frac{7+6}{2}, \frac{3-1}{2}\right) = \left(\frac{13}{2}, 1\right)$$

Now slope of
$$PS = m = \frac{2-1}{2-13/2} = -\frac{2}{9}$$

Now equation of the line passing through (1, -1) and parallel to PS is

$$y+1=-\frac{2}{9}(x-1)$$
 or $2x+9y+7=0$

Here AB = BC = CA = 2. So, it is an equilaterial triangle 13. (d) and the incentre coincides with centroid. Therefore,

Incentre =
$$\left(\frac{0+1+2}{3}, \frac{0+0+\sqrt{3}}{3}\right) = \left(1, \frac{1}{\sqrt{3}}\right)$$

Intersection of 3x + 4y = 9 and y = mx + 1. 14. (a) For x co-ordinate

$$3x + 4(mx + 1) = 9 \Rightarrow (3 + 4m)x = 5$$

$$x = \frac{5}{3 + 4m}$$

For x to be an integer 3 + 4m should be a divisor of 5 i.e., 1, -1, 5 or -5.

$$3+4m=1 \implies m=-1/2 \text{ (not integer)}$$

$$3+4m=-1 \implies m=-1$$
 (integer)

$$3 + 4m = 5 \implies m = 1/2 \text{ (not an integer)}$$

$$3+4m=-5 \implies m=-2 \text{ (integer)}$$

- There are 2 integral values of m.
- (a) is the correct alternative.

D(0.1)

Now in
$$\triangle OPA$$
 and $\triangle OQC$,
 $\angle POA = \angle QOC$ (ver. opp. \angle 's)

$$\angle PAO = \angle OCO(\text{alt. int. } \angle 's)$$

$$\therefore \Delta OPA \sim \Delta OQC$$
 (by AA similarly)

$$\therefore \frac{OP}{OO} = \frac{OA}{OC} = \frac{9/4}{3} = \frac{3}{4}$$

$$\therefore$$
 Req. ratio is 3:4.

19. **(b)** Total no. of points within the square
$$OABC$$

= $20 \times 20 = 400$

Points on line
$$AB = 20 ((1, 1), (2, 2), \dots (20, 20))$$

$$\triangle$$
 Points within \triangle OBC and \triangle ABC = $400 - 20 = 380$

By symmetry points within
$$\triangle OAB = \frac{380}{2} = 190$$

20. (c) We know that orthocentre is the meeting point of altitudes of a Δ .

Equation of alt. AD

$$\Rightarrow$$
 line parallel to y-axis through (3, 4)

$$\Rightarrow x=3$$
(1)

Similarly eqⁿ of $OE \perp AB$ is

$$y = -\frac{3 - 4}{4 - 0}x$$

$$\Rightarrow y = x/4 \qquad \dots (2)$$

Solving (1) and (2), we get orthocentre as (3, 3/4).

21. (a)
$$x^2 - y^2 + 2y = 1 \implies x = \pm (y - 1)$$

Bisectors of above lines are x = 0 and y = 1.

The vertices,
$$O(0,0)$$
, $A\left(\frac{1}{m-n},\frac{m}{m-n}\right)$, $B(0,1)$

$$Ar(||^{gm} OABC = 2 Ar(\Delta OAB)$$

$$= 2\frac{1}{2} \left| \left[0 \left(\frac{m}{m-n} - 1 \right) + \frac{1}{m-n} (1-0) + 0 \left(0 - \frac{m}{m-n} \right) \right] \right|$$

$$= \frac{1}{m-n} \left(1 - \frac{m}{m-n} - \frac{m}{m-n} \right)$$

16. (d) Clearly
$$OP = OQ = 1$$
 and $\angle QOP = \alpha - \theta - \theta = \alpha - 2\theta$.

The bisector of $\angle QOP$ will be a perpendicular to PQ and also bisect it. Hence Q is reflection of P in the line OM which makes an angle $\angle MOP + \angle POX$ with x- axis,

i.e.,
$$\frac{1}{2}(\alpha - 2\theta) + \theta = \alpha/2$$
.

So that slope of OM is $\tan \alpha/2$.

17. (c)
$$\tan \theta = \sqrt{3} \Rightarrow \theta = 60^{\circ} \Rightarrow \angle PQR = 120^{\circ}$$

 \Rightarrow bisector will have slope tan 120°

$$\Rightarrow$$
 equation of bisector is $\sqrt{3}x + y = 0$

$$2x+y=9/2$$
(1)
and $2x+y=-6$ (2)

then req. ratio is OP: OQ

So area between x = 0, y = 1 and x + y = 3 is shaded region shown in figure.

Area =
$$\frac{1}{2} \times 2 \times 2 = 2$$
 sq. units.

22. (c) : $Ar(\Delta OPR) = Ar(\Delta PQR) = Ar(\Delta OQR)$

:. By simply geometry

R should be the centroid of ΔPQO

$$\Rightarrow R\left(\frac{3+6+0}{3}, \frac{4+0+0}{3}\right) = \left(3, \frac{4}{3}\right)$$

23. (b) Let the slope of line L be m.

Then
$$\left| \frac{m + \sqrt{3}}{1 - \sqrt{3}m} \right| = \sqrt{3}$$

$$\Rightarrow m + \sqrt{3} = \pm (\sqrt{3} - 3m)$$

$$\Rightarrow 4m = 0 \text{ or } 2m = 2\sqrt{3} \Rightarrow m = 0 \text{ or } m = \sqrt{3}$$

 \therefore L intersects x-axis, $\therefore m = \sqrt{3}$

 \therefore Equation of L is $y + 2 = \sqrt{3} (x - 3)$

or
$$\sqrt{3} x - y - (2 + 3 \sqrt{3}) = 0$$

D. MCQs with ONE or MORE THAN ONE Correct

1. (a, b, c)

For concurrency of three lines

$$px + qy + r = 0$$
; $qx + ry + p = 0$; $rx + py + q = 0$

We must have,

$$\begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix} = 0$$

$$\Rightarrow C_1 + C_2 + C_3, \begin{vmatrix} p+q+r & q & r \\ p+q+r & r & p \\ p+q+r & p & q \end{vmatrix} = 0$$

$$\Rightarrow (p+q+r) \begin{vmatrix} 1 & q & r \\ 1 & r & p \\ 1 & p & q \end{vmatrix} = 0$$

$$\Rightarrow C_1 - C_2, C_2 - C_3,$$

$$\Rightarrow (p+q+r) \begin{vmatrix} 0 & q-r & r-p \\ 0 & r-p & p-q \\ 1 & p & q \end{vmatrix} = 0$$

$$\Rightarrow (p+q+r)(pq-q^2-rp+rq-r^2+pr+pr-p^2)=0$$

$$\Rightarrow (p+q+r)(p^2+q^2+r^2-pq-pr-rq)=0$$

$$\Rightarrow p^3 + q^3 + r^3 - 3pqr = 0$$

It is clear that a, b, c are correct options.

2. (e) Let A(0, 8/3), B(1, 3) and C(82, 30).

Now, slope of line
$$AB = \frac{3 - 8/3}{1 - 0} = \frac{1}{3}$$

Slope of line
$$BC = \frac{30-3}{82-1} = \frac{27}{81} = \frac{1}{3}$$

 \Rightarrow AB || BC and B is common point.

 $\Rightarrow A, B, C$ are collinear.

3. (a, c) Substituting the co-ordinates of the points (1, 3), (5, 0) and (-1, 2) in 3x + 2y, we obtain the value 8, 15 and 1 which are all +ve. Therefore, all the points lying inside the triangle formed by given points satisfy $3x + 2y \ge 0$. Hence (a) is correct answer.

Substituting the co-ordinates of the given points in 2x+y-13, we find the values -8, -3 and -13 which are all -ve.

So, (b) is not correct.

Again substituting the given points in 2x-3y-12 we get -19, -2, -20 which are all -ve.

It follows that all points lying inside the triangle formed by given points satisfy $2x - 3y - 12 \le 0$.

So, (c) is the correct answer.

Finally substituting the co-ordinates of the given points in -2x + y, we get 1, -10 and 4 which are not all +ve. So, (d) is not correct.

Hence, (a) and (c) are the correct answers.

(b) Consider $\vec{a} = 2p\hat{i} + \hat{j}$ with respect to original axes and 4. a = (p+1)i + j with respect to new axes. Now, as length of vector will remain the same

$$|\vec{a}| = \sqrt{(2p)^2 + 1} = \sqrt{(p+1)^2 + 1^2}$$

$$\Rightarrow p^2 + 2p + 2 = 4p^2 + 1 \Rightarrow 3p^2 - 2p - 1 = 0$$

$$\Rightarrow p = 1 \text{ or } -1/3$$

:. (b) is the correct answer.

5. (c) PQRS will represent a parallelogram if and only if the mid-point of PR is same as that of the mid-point of QS. That is, if and only if

$$\frac{1+5}{2} = \frac{4+a}{2}$$
 and $\frac{2+7}{2} = \frac{6+b}{2}$

 $\Rightarrow a=2$ and b=3.

- (d) Slope of x + 3y = 4 is -1/3 and slope of 6x 2y = 7 is 3. 6. Therefore, these two lines are perpendicular which shows that both diagonals are perpendicular. Hence *PQRS* must be a rhombus.
- 7. (a, c, d) Since the co-ordinates of in the centre depend on lengths of side of Δ . \therefore it can have irrational coordinates
- 8. (b, c) We know that length of intercept made by a circle on

a line is given by =
$$2\sqrt{r^2 - p^2}$$

where $p = \bot$ distance of line from the centre of the

Here circle is $x^2 + y^2 - x + 3y = 0$ with centre $\left(\frac{1}{2}, \frac{-3}{2}\right)$

and radius =
$$\frac{\sqrt{10}}{2}$$

 L_1 : y = mx (any line through origin)

 L_2 : x+y-1=0 (given line)

ATQ circle makes equal intercepts on
$$L_1$$
 and L_2

$$\Rightarrow 2\sqrt{\frac{10}{4} - \frac{\left(\frac{m}{2} + \frac{3}{2}\right)^2}{m^2 + 1}} = 2\sqrt{\frac{10}{4} - \frac{\left(\frac{1}{2} - \frac{3}{2} - 1\right)^2}{2}}$$

$$\Rightarrow \frac{\left(\frac{m+3}{2}\right)^2}{m^2+1} = 2$$

$$\Rightarrow m^2 + 6m + 9 = 8m^2 + 8 \Rightarrow 7m^2 - 6m - 1 = 0$$

$$\Rightarrow 7m^2 - 7m + m - 1 = 0 \Rightarrow (7m+1)(m-1) = 0$$

⇒
$$m=1,-1/7$$

∴ The required line L_1 is $y=x$ or $y=-\frac{x}{2}$,

i.e., x - y = 0 or x + 7y = 0.

(a) The intersection point of two lines is $\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right)$ 9.

Distance between (1, 1) and $\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right) < 2\sqrt{2}$

$$\Rightarrow 2\left(1 + \frac{c}{a+b}\right)^2 < 8 \Rightarrow 1 + \frac{c}{a+b} < 2$$
$$\Rightarrow a+b-c > 0$$

E. Subjective Problems

1. Let P(x, y) divides line segment AB in the ratio 1 : 2, so that $AP = \ell/3$ and $BP = 2\ell/3$ where $AB = \ell$.

Then
$$PN = x$$
 and $PM = y$

Let
$$\angle PAM = \theta = \angle BPN$$

In
$$\triangle PMA$$
, $\sin \theta = \frac{y}{\ell/3} = \frac{3y}{\ell}$

In
$$\triangle PNB$$
, $\cos \theta = \frac{x}{2\ell/3} = \frac{3x}{2\ell}$

Now, $\sin^2 \theta + \cos^2 \theta = 1$

$$\Rightarrow \frac{9y^2}{\ell^2} + \frac{9x^2}{4\ell^2} = 1 \Rightarrow 9x^2 + 36y^2 = 4\ell^2$$

As C lies on the line y = x + 3, let the co-ordinates of C be $(\lambda, \lambda + 3)$. Also A(2, 1), B(3, -2).

Then area of $\triangle ABC$ is given by

$$\frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ \lambda & \lambda + 3 & 1 \end{vmatrix} = \pm 5$$

$$\Rightarrow |2(-2-\lambda-3)-1(3-\lambda)(3\lambda+9+2\lambda)|=10$$

$$\Rightarrow$$
 $|-2\lambda-10-3+\lambda+5\lambda+9|=10 \Rightarrow |4\lambda-4|=10$

$$\Rightarrow 4\lambda - 4 = 10$$

$$\Rightarrow 4\lambda - 4 = 10$$
 or $4\lambda - 4 = -10$

$$\Rightarrow \lambda = 7/2$$

or
$$\lambda = -3/2$$

- Coordinates of C are $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(\frac{-3}{2}, \frac{3}{2}\right)$
- 3. Let side AB of rectangle ABCD lies along 4x + 7y + 5 = 0.

As (-3, 1) lies on the line, let it be vertex A.

Now (1, 1) is either vertex C or D.

If (1, 1) is vertex D then slope of AD = 0

 \Rightarrow AD is not perpendicular to AB.

But it is a contradiction as ABCD is a rectangle.

 \therefore (1, 1) are the co-ordinates of vertex C.

CD is a line parallel to AB and passing through C, therefore equation of CD is

$$y-1 = -\frac{4}{7}(x-1) \Rightarrow 4x+7y-11 = 0$$

Also BC is a line perpendicular to AB and passing through C, therefore equation of BC is

$$y-1 = \frac{7}{4}(x-1) \Rightarrow 7x-4y-3 = 0$$

Similarly, AD is a line perpendicular to AB and passing through A(-3, 1), therefore equation of line AD is

$$y-1 = \frac{7}{4}(x+3) \Rightarrow 7x-4y+25 = 0$$

4. (a) $AH \perp BC \Rightarrow m_{AH} \times m_{BC} = -1$

$$\Rightarrow \frac{k}{h} \times \frac{3+1}{-2-5} = -1$$

$$\Rightarrow 4k - 7h = 0 \qquad \dots \dots (1)$$

Also, $BH \perp AC$

$$\Rightarrow \frac{-1}{5} \times \frac{3-k}{-2-h} = -1 \Rightarrow 3-k = -10-5h$$

$$\Rightarrow 5h - k + 13 = 0 \qquad \dots \dots (2)$$

Solving (1) and (2), we get h = -4, k = -7

 \therefore Third vertex is (-4, -7).

(b) The given lines are x - 2y + 4 = 0(1)

and
$$4x-3y+2=0$$
(2)

Both the lines have constant terms of same sign.

 \therefore The equation of bisectors of the angles between the given lines are

$$\frac{x-2y+4}{\sqrt{1+4}} = \pm \frac{4x-3y+2}{\sqrt{16+9}}$$

Here $a_1a_2 + b_1b_2 > 0$ therefore, taking +ve sign on RHS, we get obtuse angle bisector as

$$(4-\sqrt{5})x+(2\sqrt{5}-3)y-(4\sqrt{5}-2)=0$$
(3)

5. The given line is 5x - y = 1

... The equation of line L which is perpendicular to the given line is $x + 5y = \lambda$. This line meets co-ordinate axes at A $(\lambda, 0)$ and $B(0, \lambda/5)$.

$$\therefore \quad \text{Area of } \triangle OAB = \frac{1}{2} \times OA \times OB$$

$$\Rightarrow 5 = \frac{1}{2} \times \lambda \times \frac{\lambda}{5} \Rightarrow \lambda^2 = 5^2 \times 2 \Rightarrow \lambda = \pm 5\sqrt{2}$$

$$\therefore$$
 The equation of line L is $x + 5y - 5\sqrt{2} = 0$

or
$$x + 5y + 5\sqrt{2} = 0$$
.

6. From figure,

7.

$$x = OA - AL$$

$$= c \cos \alpha - AN \cos \alpha$$

$$= c \cos \alpha - (AP \sin \alpha.) \cos \alpha$$

$$= c \cos \alpha - c \sin \alpha.$$

$$\sin \alpha \cos \alpha$$

$$= c \cos \alpha (1 - \sin^2 \alpha)$$

$$= c \cos \alpha (1 - \sin^2 \alpha)$$

$$= a \cos^3 \alpha$$

$$= c \cos^3 \alpha$$

$$y = OB - MB$$

$$= c \sin \alpha - BN \sin \alpha$$

$$= c \sin \alpha - BP \cos \alpha \sin \alpha$$

=
$$c \sin \alpha - c \cos \alpha \cdot \cos \alpha \sin \alpha$$

$$= c \sin \alpha (1 - \cos^2 \alpha) = c \sin^3 \alpha$$

:. Locus of (x, y) is
$$\left(\frac{x}{c}\right)^{\frac{2}{3}} + \left(\frac{y}{c}\right)^{\frac{2}{3}} = 1$$
 or $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$

Slope of
$$BC = \frac{a(t_1 + t_3) - a(t_2 + t_3)}{at_1t_3 - at_2t_3}$$
$$= \frac{a(t_1 + t_3 - t_2 - t_3)}{at_3(t_1 - t_2)} = \frac{1}{t_3}$$

$$\therefore$$
 Slope of $AD = -t_3$

$$\therefore$$
 Eq. of AD ,

$$y-a(t_1+t_2)=-t_3(x-at_1t_2)$$

or
$$x t_3 + y = a t_1 t_2 t_3 + a (t_1 + t_2)$$
(1)
Similarly, by symm. equation of *BE* is

$$\Rightarrow xt_1 + y = at_1t_2t_3 + a(t_2 + t_3) \qquad(2)$$
Solving (1) and (2), we get $x = -a$

$$y = a(t_1 + t_2 + t_3) + at_1t_2t_3$$

 $\therefore \quad \text{Orthocentre } H(-a, a(t_1 + t_2 + t_3) + at_1t_2t_3)$

8. Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} 6 & 3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [6(7) + 3(5) + 4(-2)] = \frac{49}{2}$$
Area of $\triangle PBC = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1 \end{vmatrix}$

$$= \frac{1}{2} (7x + 7y - 14) - \frac{7}{2} |x + y - 2|$$

$$ATQ, \frac{Ar(\triangle PBC)}{Ar(\triangle ABC)} = \frac{\frac{7}{2} |x + y - 2|}{\frac{49}{2}} = \left| \frac{x + y - 2}{7} \right|$$

9. Let equations of equal sides AB and AC of isosceles $\triangle ABC$

$$7x-y+3=0$$
(1)
and $x+y-3=0$ (2)

The third side BC of Δ passes through the point (1,-10). Let its slope be m.

As
$$AB = AC$$

$$\therefore \angle B = \angle C$$

$$\Rightarrow$$
 tan $B = \tan C$

(3)

Now slope of AB = 7 and slope of AC = -1

Using
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
, we get

$$\tan B = \left| \frac{7-m}{1+7m} \right|$$
 and $\tan C = \left| \frac{-1-m}{1-m} \right|$

From eq. (3), we get

$$\left| \frac{7-m}{1+7m} \right| = \left| \frac{-1-m}{1-m} \right|$$

$$\Rightarrow \frac{7-m}{1+7m} = \pm \left(\frac{-1-m}{1-m}\right)$$

Taking '+' sign, we get

$$(7-m)(1-m) = -(1+m)(1+7m)$$

$$\Rightarrow$$
 7 - 8m + m² + 7m² + 8m + 1 = 0

$$\Rightarrow$$
 $8m^2 + 8 = 0 \Rightarrow m^2 + 1 = 0$

It has no real solution.

Taking '-' sign, we get

$$(7-m)(1-m)=(1+m)(1+7m)$$

$$\Rightarrow 7 - 8m + m^2 - 7m^2 - 8m - 1 = 0$$

$$\Rightarrow -6m^2 - 16m + 6 = 0 \Rightarrow 3m^2 + 8m - 3 = 0$$

$$\Rightarrow$$
 $(3m-1)(m+3)=0 \Rightarrow m=1/3,-3$

:. The required line is

$$y+10=\frac{1}{3}(x-1)$$
 or $y+10=-3(x-1)$

i.e.
$$x-3y-31=0$$
 or $3x+y+7=0$.

10. Let *O* be the centre of the circle. *M* is the mid point of *AB*. Then

$$OM \perp AB$$

Let *OM* when produced meets the circle at *P* and *Q*.

 \therefore PQ is a diameter perpendicular to AB and passing through M.

$$M = \left(\frac{-3+5}{2}, \frac{4+4}{2}\right) = (1,4)$$

Slope of
$$AB = \frac{4-4}{5+3} = 0$$

 \therefore PQ, being perpendicular to AB, is a line parallel to y-axis passing through (1, 4).

:. Its equation is

$$x=1$$
(1)

Also eq. of one of the diameter given is

$$4y = x + 7$$
(2)

Solving (1) and (2), we get co-ordinates of centre O(1,2)

Also let co-ordinates of D be (α, β)

Then O is mid point of BD, therefore

$$\left(\frac{\alpha+5}{2}, \frac{\beta+4}{2}\right) = (1,2) \implies \alpha = -3, \beta = 0$$

 $\therefore D(-3,0)$

Using the distance formula we get

$$AD = \sqrt{(-3+3)^2 + (4-0)^2} = 4$$

$$AB = \sqrt{(5+3)^2 + (4-4)^2} = 8$$

: Area of rectangle $ABCD = AB \times AD = 8 \times 4$

= 32 square units.

11. A being on y-axis, may be chosen as (0, a).

The diagonals intersect at P(1, 2).

Again we know that diagonals will be parallel to the angle bisectors of the two sides y = x + 2 and y = 7x + 3

i.e.,
$$\frac{x-y+2}{\sqrt{2}} = \pm \frac{7x-y+3}{5\sqrt{2}}$$

$$\Rightarrow$$
 $5x-5y+10=\pm(7x-y+3)$

$$\Rightarrow 2x + 4y - 7 = 0 \text{ and } 12x - 6y + 13 = 0$$

$$m_1 = -1/2$$

$$m_2 = 2$$

 $\Rightarrow 2x + 4y - 7 = 0 \text{ and } 12x - 6y + 13 = 0$ $m_1 = -1/2 \qquad m_2 = 2$ Let diagonal d_1 be parallel to 2x + 4y - 7 = 0 and diagonal d_2 be parallel to 12x - 6y + 13 = 0. The vertex A could be on any of the two diagonals. Hence slope of AP is either -1/2 or 2.

$$\Rightarrow \frac{2-a}{1-0} = 2 \qquad \text{or} \qquad \frac{-1}{2}$$

$$\Rightarrow a=0$$

or
$$\frac{5}{2}$$

$$\therefore$$
 A is (0,0) or (0,5/2)

12. Let the equation of other line L, which passes through the point of intersection P of lines

$$L_1 \equiv ax + by + c = 0$$

and
$$L_2 \equiv \ell x + my + n = 0$$

be $L_1 + \lambda L_2 = 0$

be
$$L_1 + \lambda L_2 = 0$$

i.e.
$$(ax + by + c) + \lambda (\ell x + my + n) = 0$$
(3)

From figure it is clear that L_1 is the bisector of the angle between the lines given by (2) and (3) [i.e. L_2 and L]

Let
$$M(\alpha, \beta)$$
 be any point on L_1 then

$$a \alpha + b \beta + c = 0 \qquad \dots (4)$$

Also from M, lengths of perpendiculars to lines L and L_2 given by equations (3) and (4), are equal

$$\frac{\ell \alpha + m \beta + n}{\sqrt{\ell^2 + m^2}} = \pm \frac{(a \alpha + b \beta + c) + \lambda (l \alpha + m \beta + n)}{\sqrt{(a + \lambda)^2 + (b + \lambda m)^2}}$$

$$\Rightarrow \frac{1}{\sqrt{\ell^2 + m^2}} = \pm \frac{\lambda}{\sqrt{(\ell^2 + m^2)\lambda^2 + 2(a\ell + bm)\lambda + (a^2 + b^2)}}$$
[Using 4]

$$\Rightarrow (\ell^2 + m^2)\lambda^2 + 2(a\ell + bm)\lambda + (a^2 + b^2) = \lambda^2(\ell^2 + m^2)$$

$$\Rightarrow \lambda = -\frac{a^2 + b^2}{2(a\ell + bm)}$$

Substituting this value of λ in eq. (3), we get L as

$$(ax + by + c) - \frac{(a^2 + b^2)}{2(a\ell + bm)} (\ell x + my + n) = 0$$

$$\Rightarrow (a^2 + b^2)(\ell x + my + n) - 2(a\ell + bm)(ax + by + c) = 0$$

Let BC be taken as x-axis with origin at D, the mid-point of BC, and DA will be y-axis.

Let BC = 2a, then the co-ordinates of B and C are (-a, 0)and (a, 0).

Let DA = h, so that co-ordinates of A are (0, h).

Then equation of AC is
$$\frac{x}{a} + \frac{y}{h} = 1$$
(1)

And equation of $DE \perp$ to AC and passing through origin is

$$\frac{x}{h} - \frac{y}{a} = 0 \Rightarrow x = \frac{hy}{a} \qquad \dots (2)$$

Solving (1) and (2) we get the co-ordinates of pt E as follows

$$\frac{hy}{a^2} + \frac{y}{h} = 1 \implies h^2 y + a^2 y = a^2 h$$

$$\Rightarrow y = \frac{a^2h}{a^2 + h^2} \Rightarrow x = \frac{ah^2}{a^2h^2}$$

$$\therefore E\left(\frac{ah^2}{a^2+h^2}, \frac{a^2h}{a^2+h^2}\right)$$

Since F is mid pt. of DE, therefore, its co-ordinates are

$$F\left(\frac{ah^2}{2(a^2+h^2)}, \frac{a^2h}{2(a^2+h^2)}\right)$$

$$\therefore \text{ Slope of } AF = \frac{h - \frac{a^2h}{2(a^2 + h^2)}}{0 - \frac{ah^2}{2(a^2 + h^2)}} = \frac{2h(a^2 + h^2) - a^2h}{-ah^2}$$

$$\Rightarrow m_1 = -\frac{a^2 + 2h^2}{ah} \qquad \dots \dots (i)$$

And slope of
$$BE = \frac{\frac{a^2h}{a^2 + h^2} - 0}{\frac{ah^2}{a^2 + h^2} + a} = \frac{a^2h}{ah^2 + a^3 + ah^2}$$

$$\Rightarrow m_2 = \frac{ah}{a^2 + 2h^2} \qquad \dots \dots (ii)$$

GP 3480

From (i) and (ii), we observe that

$$m_1 m_2 = -1 \Rightarrow AF \perp BE$$
.

Hence Proved.

14. The given st. lines are 3x + 4y = 5 and 4x - 3y = 15. Clearly these st. lines are perpendicular to each other $(m_1 m_2 = -1)$, and intersect at A. Now B and C are pts on these lines such that AB = AC and BC passes through (1, 2)

From fig. it is clear that

$$\angle B = \angle C = 45^{\circ}$$

Let slope of BC be m. Then using

$$\tan B = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
, we get $\tan 45^\circ = \left| \frac{m + 3/4}{1 - \frac{3}{4}m} \right|$

$$\Rightarrow$$
 4 $m+3=\pm(4-3m)$

$$\Rightarrow$$
 4m+3=4-3m or 4m+3=-4+3m

$$\Rightarrow m = 1/7 \text{ or } m = -7$$

$$\therefore$$
 Eq. of BC is, $y-2=\frac{1}{7}(x-1)$

or
$$y-2=-7(x-1)$$

$$\Rightarrow$$
 7y - 14 = x - 1 or y - 2 = -7x + 7

$$\Rightarrow x-7y+13=0 \text{ or } 7x+y-9=0$$

15. Eq. of the line AB is

$$\frac{x}{7} - \frac{y}{5} = 1 \qquad [A(7,0), B(0,-5)]$$

$$\Rightarrow 5x - 7y - 35 = 0$$

Eq. of line $PQ \perp AB$ is $7x + 5y + \lambda = 0$ which meets axes of x and y at pts $P(-\lambda/7, 0)$ and $Q(0, -\lambda/5)$ resp.

Eq. of AQ is,

$$\frac{x}{y} + \frac{y}{-\lambda/5} = 1 \Rightarrow \lambda x - 35y - 7\lambda = 0 \qquad \dots (2)$$

Eq. of BP is,

$$\frac{-7x}{\lambda} - \frac{y}{5} = 1 \Rightarrow 35x + \lambda y + 5\lambda = 0 \qquad \dots (3)$$

Locus of R the pt. of intersection of (2) and (3) can be obtained by eliminating λ from these eq.'s, as follows

$$35x + (5+y)\left(\frac{35y}{x-7}\right) = 0$$

$$\Rightarrow$$
 35x (x-7) + 35y (5+y) = 0 \Rightarrow x²+y²-7x+5y=0

16. Let the equation of line through A which makes an intercept of 2 units between.

$$2x + y = 3$$
(1)

and
$$2x + y = 5$$
(2)

be
$$\frac{x-2}{\cos\theta} = \frac{y-3}{\sin\theta} = r$$

Let AP = r then AQ = r + 2

Then for pt $P(x_1, y_1)$,

$$\frac{x_1-2}{\cos\theta} = \frac{y_1-3}{\sin\theta} = r \implies \frac{2(x_1-2)+(y_1-3)}{2\cos\theta+\sin\theta} = r$$

$$\left(\text{Using } \frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{b_1}{b_2} = \frac{\lambda a_1 + \mu b_1}{\lambda a_2 + \mu b_2}\right)$$

$$\Rightarrow \frac{(2x_1 + y_1) - 7}{2\cos\theta + \sin\theta} = r \Rightarrow \frac{5 - 7}{2\cos\theta + \sin\theta} = r$$

[Using $2x_1 + y_1 = 5$ as $P(x_1, y_1)$ lies on 2x + y = 5]

$$\frac{-2}{2\cos\theta + \sin\theta} = r \qquad \dots (i)$$

For pt $Q(x_2, y_2)$,

$$\frac{x_2-2}{\cos\theta} = \frac{y_2-3}{\sin\theta} = r+2$$

$$\Rightarrow \frac{2(x_2-2)+(y_2-3)}{2\cos\theta+\sin\theta}=r+2$$

$$\Rightarrow \frac{-4}{2\cos\theta + \sin\theta} = r + 2 \qquad \dots \text{(ii)}$$

(ii)-(ii)

$$\Rightarrow \frac{-2}{2\cos\theta + \sin\theta} = 2$$

$$\Rightarrow 2\cos\theta + \sin\theta = -1$$
 ... (3)

$$\Rightarrow 2\cos\theta = -(1+\sin\theta)$$

Squaring on both sides, we get

$$\Rightarrow$$
 4 cos² θ = 1 + 2 sin θ + sin² θ

$$\Rightarrow$$
 $(5 \sin \theta - 3) (\sin \theta + 1) = 0 \Rightarrow \sin \theta = 3/5, -1$

$$\Rightarrow$$
 cos $\theta = -4/5$, 0 [Using eq. (3)]

$$\frac{x-2}{-4/5} = \frac{y-3}{3/5}$$
 or $\frac{x-2}{0} = \frac{y-3}{-1}$

 \Rightarrow either 3x-6=-4y+12 or x-2=0

$$\Rightarrow$$
 either $3x + 4y - 18 = 0$ or $x - 2 = 0$

17. The given curve is

$$3x^2 - y^2 - 2x + 4y = 0 \qquad \dots (1)$$

Let y = mx + c be the chord of curve (1) which subtends an ∠of 90° at origin.

Then the combined eq. of lines joining points of intersection of curve (1) and chord y = mx + c to the origin, can be obtained by making the eq. of curve homogeneous with the help of eq. of chord, as follows.

$$3x^2 - y^2 - 2x\left(\frac{y - mx}{c}\right) + 4y\left(\frac{y - mx}{c}\right) = 0$$

$$\Rightarrow$$
 $(3c+2m)x^2-2(1+2m)xy+(4-c)y^2=0$

As the lines represented by this pair are perpendicular to each other, therefore we must have

coeff. of
$$x^2$$
 + coeff. of y^2 = 0

$$\Rightarrow$$
 3c+2m+4-c=0

$$\Rightarrow$$
 $-2 = m \cdot 1 + c$

Which on comparision with eq. of chord, implies that y = mx + c passes though (1, -2).

Hence the family of chords must pass through (1, -2).

18. The points of intersection of given lines are

$$A\left(\frac{1}{3}, \frac{1}{9}\right), B(-7, 5), C\left(\frac{5}{4}, \frac{7}{8}\right)$$

If (α, α^2) lies inside the Δ formed by the given lines, then

$$\left(\frac{1}{3}, \frac{1}{9}\right)$$
 and (α, α^2) lie on the same side of the line $x + 2y - 3$
=0

$$\Rightarrow \frac{\alpha + 2\alpha^2 - 3}{\frac{1}{3} + \frac{2}{9} - 3} > 0 \Rightarrow 2\alpha^2 + \alpha - 3 < 0 \dots (1)$$

Similarly $\left(\frac{5}{4}, \frac{7}{8}\right)$ and (α, α^2) lie on the same side of the line

$$2x + 3y - 1 = 0$$
.

$$\Rightarrow \frac{2\alpha + 3\alpha^2 - 1}{\frac{10}{4} + \frac{21}{8} - 1} > 0 \Rightarrow 3\alpha^2 + 2\alpha - 1 > 0...(2)$$

(-7, 5) and (α, α^2) lie on the same side of the line 5x - 6y - 1 = 0.

$$\Rightarrow \frac{5\alpha + 6\alpha^2 - 1}{-35 - 30 - 1} > 0 \Rightarrow 6\alpha^2 - 5\alpha + 1 > 0 \dots (3)$$

Now common solution of (1), (2) and (3) can be obtained as in the previous method,

$$\therefore \quad \alpha \in \left(-\frac{3}{2}, -1\right) \cup \left(\frac{1}{2}, 1\right)$$

19. The given curve is

$$y = x^3$$
 ...(1)

Let the pt, P_1 be (t, t^3) , $t \neq 0$

Then slope of tangent at $P_1 = \frac{dy}{dx} = (3x^2)_{x=t} = 3t^2$

$$\therefore$$
 Equation of tangent at P_1 is

$$y-t^3 = 3t^2 (x-t) \Rightarrow y = 3t^2 x - 2t^3$$

$$\Rightarrow 3t^2x - y - 2t^3 = 0 \qquad \dots (2)$$

Now this tangent meets the curve again at P_2 which can be obtained by solving (1) and (2)

i.e.,
$$3t^2x - x^2 - 2t^3 = 0$$
 or $x^3 - 3t^2x + 2t^3 = 0$

$$(x-t)^2 (x+2t) = 0 \implies x = -2t \text{ as } x = t \text{ is for } P_1$$

$$\therefore y = -8t^2$$

Hence pt P_2 is $(-2t, -8t^2) = (t_1, t_1^3)$ say. Similarly, we can find that tangent at P_2 which meets the

curve again at $P_3(2t_1, -8t_1^3)$ i.e., $(4t, 64t^3)$.

Similarly, $P_4 \equiv (-8t, -512t^3)$ and so on.

We observe that abscissae of pts. $P_1, P_2, P_3...$ are $t, -2t, 4t, \dots$ which form a GP with common ratio -2. Also ordinates of these pts. t^3 , $-8t^3$, $64t^3$, ... also form a GP with common ratio – 8.

Now,
$$\frac{Ar(\Delta P_1 P_2 P_3)}{Ar(\Delta P_2 P_3 P_4)} = \frac{\begin{vmatrix} 1 & t & t^3 \\ 1 & -2t & -8t^3 \\ 1 & 4t & 64t^3 \end{vmatrix}}{\begin{vmatrix} 1 & -2t & -8t^3 \\ 1 & 4t & -64t^3 \\ 1 & -8t & -512t^3 \end{vmatrix}}$$

$$= \frac{t^4 \begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & -8 \\ 1 & 4 & 64 \end{vmatrix}}{(-2)(-8)t^4 \begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & -8 \\ 1 & 4 & -64 \end{vmatrix}} = \frac{1}{16} \text{ sq. units.}$$

20. Let θ be the inclination of line through A(-5, -4). Therefore equation of this line is

$$\frac{x+5}{\cos\theta} = \frac{y+4}{\sin\theta} = r_1, r_2, r_3$$

$$\Rightarrow B(r_1 \cos \theta - 5, r_1 \sin \theta - 4)$$

$$C(r_2 \cos \theta - 5, r_2 \sin \theta - 4)$$

 $D(r_3 \cos \theta - 5, r_3 \sin \theta - 4)$

$$D(r_3\cos\theta-5, r_3\sin\theta-4)$$

But B lies on $x + 3y + \tilde{2} = 0$. therefore

$$r_1 \cos \theta - 5 + 3r_1 \sin \theta - 12 + 2 = 0$$

$$\Rightarrow r_1 = \frac{15}{\cos\theta + 3\sin\theta} = AB$$

$$\Rightarrow \frac{15}{AB} = \cos\theta + 3\sin\theta \qquad \dots (1)$$

As C lies on
$$2x + y + 4 = 0$$
, therefore

$$2(r_2\cos\theta - 5) + (r_2\sin\theta - 4) + 4 = 0$$

$$\Rightarrow r_2 = \frac{10}{2\cos\theta + \sin\theta} = AC$$

$$\Rightarrow \frac{10}{AC} = 2\cos\theta + \sin\theta \qquad \dots (2)$$

Similarly D lines on x-y-5=0, therefore

$$r_3\cos\theta - 5 - r_3\sin\theta + 4 - 5 = 0$$

$$\Rightarrow r_3 = \frac{6}{\cos \theta - \sin \theta} = AD$$

$$\Rightarrow \frac{6}{4D} = \cos\theta - \sin\theta \qquad ...(3)$$

Now, ATQ,
$$\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$$

$$\Rightarrow$$
 $(\cos \theta + 3 \sin \theta)^2 + (2 \cos \theta + \sin \theta)^2$

=
$$(\cos \theta - \sin \theta)^2$$
 [Using (1), (2) and (3)]

$$\Rightarrow$$
 4 cos² θ + 9 sin² θ + 12 sin θ cos θ = 0

$$\Rightarrow$$
 2 cos θ + 3 sin θ = 0

$$\Rightarrow \tan \theta = -\frac{2}{3}$$

$$\therefore$$
 Equation of req. line is $y+4=-\frac{2}{3}(x+5)$

$$\Rightarrow$$
 2x + 3y + 22 = 0

21. Let the co-ordinates of Q be (b, α) and that of S be $(-b, \beta)$. Let PR and SQ intersect each other at G.

G is the mid pt of SQ.

(∴ diagonals of a rectangle bisect each other)

x co-ordinates of G must be a.

Let the co-ordinates of R be (h, k).

The *x*-coordinates of P is -h

(:: G is the mid point of PR)

As P lies on y = a, therefore coordinates of P are (-h, a).

PQ is parallel to y = mx, Slope of PQ = m

$$\therefore \frac{\alpha - a}{b + h} = m \Rightarrow \alpha = a + m(b + h) \dots (1)$$

Also
$$RQ \perp PQ \Rightarrow$$

Slope of
$$RQ = \frac{-1}{m}$$

$$\therefore \frac{k-\alpha}{h-b} = \frac{-1}{m} \Rightarrow \alpha = k + \frac{1}{m}(h-b) \dots (2)$$

From (1) and (2) we get

$$a + m(b + h) = k + \frac{1}{m}(h - b)$$

$$\Rightarrow$$
 $(m^2-1)h-mk+b(m^2+1)+am=0$

$$\therefore$$
 Locus of vertex $R(h, k)$ is

$$(m^2-1)x-my+b(m^2+1)+am=0.$$

22. Let $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ be the vertices of $\triangle ABC$

Then equation of alt. AD is

$$y-y_1 = -\left[\frac{x_2-x_3}{y_2-y_3}\right](x-x_1)$$

or
$$(x-x_1)(x_2-x_3)+(y-y_1)(y_2-y_3)=0$$
 ... (1)

Similarly equations of other two attitudes are

$$(x-x_2)(x_3-x_1)+(y-y_2)(y_3-y_1)=0$$
 ...(2)

and
$$(x-x_3)(x_1-x_2)+(y-y_3)(y_1-y_2)=0$$
 ...(3)
Now, above three lines will be concurrent if

$$\begin{vmatrix} x_2 - x_3 & y_2 - y_3 & -x_1(x_2 - x_3) - y_1(y_2 - y_3) \\ x_3 - x_1 & y_3 - y_1 & -x_2(x_3 - x_1) - y_2(y_3 - y_1) \\ x_1 - x_2 & y_1 - y_2 & -x_3(x_1 - x_2) - y_3(y_1 - y_2) \end{vmatrix} = 0$$

On L.H.S.

Operating $R_1 + R_2 + R_3$, R_1 becomes row of zeros.

 \therefore Value of determinant = 0 = R.H.S.

Hence the altitudes are concurrent.

Let P = (h, k) be a general point in the first quadrant such that d(P,A) = d(P,O)

$$\Rightarrow |h-3|+|k-2|=|h|+|k|=h+k...(1)$$

[h and k are + ve, pt (h, k) being in I quadrant.]

If h < 3, k < 2 then (h, k) lies in region I. It h > 3, k < 2, (h, k) lies in region II. If h > 3, k > 2 (h, k) lies in region III.

If h < 3, k > 2 (h, k) lies in region IV. In region I, eq. (1)

$$\Rightarrow 3-h+2-k=h+k \Rightarrow h+k=\frac{5}{2}$$

In region II, eq. (1) becomes

$$\Rightarrow h-3+2-k=h+k \Rightarrow k=-\frac{1}{2}$$
 not possible.

In region III, eq. (1) becomes

$$\Rightarrow h-3+k-2=h+k \Rightarrow -5=0$$
 not possible.

In region IV, eq. (1) becomes

$$\Rightarrow$$
 3-h+k-2=h+k \Rightarrow h=1/2

 \Rightarrow Hence required set consists of line segment x + y = 5/2 of finite length as shown in the first region and the ray x = 1/2 in the fourth region.

24. Let the co-ordinates of the vertices of the $\triangle ABC$ be $A(a_1, b_1)$, $B(a_2, b_2)$ and $C(a_3, b_3)$ and co-ordinates of the vertices of the $\triangle POR$ be

$$P(x_1, y_1), B(x_2, y_2)$$
 and $R(x_3, y_3)$

Slope of
$$QR = \frac{y_2 - y_3}{x_2 - x_3}$$

⇒ Slope of straight line perpendicular to

$$QR = -\frac{x_2 - x_3}{y_2 - y_3}$$

Equation of straight line passing through $A(a_1, b_1)$ and perpendicular to QR is

$$y-b_1 = -\frac{x_2 - x_3}{y_2 - y_3}(x - a_1)$$

Similarly equation of straight line from B and perpendicular to RP is

 $(x_3-x_1)x+(y_3-y_1)y-a_2(x_3-x_1)-b_2(y_3-y_1)=0$... (2) and eqⁿ of straight line from C and perpendicular to PO is

 $(x_1-x_2)x+(y_1-y_2)y-a_3(x_1-x_2)-b_3(y_1-y_2)=0$... (3) As straight lines (1), (2) and (3) are given to be concurrent, we should have

$$\begin{vmatrix} x_2 - x_3 & y_2 - y_3 & a_1(x_2 - x_3) + b_1(y_2 - y_3) \\ x_3 - x_1 & y_3 - y_1 & a_2(x_3 - x_1) + b_2(y_3 - y_1) \\ x_1 - x_2 & y_1 - y_2 & a_1(x_1 - x_2) + b_3(y_1 - y_2) \end{vmatrix} = 0$$
(4)

Operating $R_1 \rightarrow R_1 + R_2 + R_3$, we get

$$\begin{vmatrix} 0 & 0 & S \\ x_3 - x_1 & y_3 - y_1 & a_2(x_3 - x_1) + b_2(y_3 - y_1) \\ x_1 - x_2 & y_1 - y_2 & a_3(x_1 - x_2) + b_3(y_1 - y_2) \end{vmatrix} = 0$$

where

$$[S = a_1 (x_2 - x_3) + b_1 (y_2 - y_3) + a_2 (x_3 - x_1) + b_2 (y_3 - y_1) + a_3 (x_1 - x_2) + b_3 (y_1 - y_2)]$$

Expanding along R_1

$$\Rightarrow [(x_3-x_1)(y_1-y_2)-(x_1-x_2)(y_3-y_1)]S=0$$

$$\Rightarrow \left[\frac{y_1 - y_2}{x_1 - x_2} - \frac{y_3 - y_1}{x_3 - x_1} \right] S = 0$$

$$\Rightarrow [m_{PQ} - m_{PR}] S = 0 \Rightarrow S = 0$$
$$[m_{PQ} = m_{PR} \Rightarrow PQ \parallel PR$$

which is not possible in ΔPQR

$$\Rightarrow a_1(x_2-x_3)+b_1(y_2-y_3)+a_2(x_3-x_1)+b_2(y_3-y_1) +a_3(x_1-x_2)+b_3(y_1-y_2)=0...(5)$$

$$\Rightarrow x_1 (a_3 - a_2) + y_1 (b_3 - b_2) + x_2 (a_1 - a_3) + y_2 (b_1 - b_3) + x_3 (a_2 - a_1) + y_3 (b_2 - b_1) = 0 ...(6)$$
(Rearranging the equation (5))

But above condition shows

$$\begin{vmatrix} a_3 - a_2 & b_3 - b_2 & x_1(a_3 - a_2) + y_1(b_3 - b_2) \\ a_1 - a_3 & b_1 - b_3 & x_2(a_1 - a_3) + y_2(b_1 - b_3) \\ a_2 - a_1 & b_2 - b_1 & x_3(a_2 - a_1) + y_3(b_2 - b_1) \end{vmatrix} = 0 ...(7)$$

[Using the fact that as (4) \Leftrightarrow (5) in the same way (6) \Leftrightarrow (7)]

Clearly equation (7) shows that lines through P and perpendicular to BC, through Q and perpendicular to AB are concurrent. **Hence Proved.**

25. $C_1 \rightarrow aC_1$

$$\Delta = \frac{1}{a} \begin{vmatrix} a^2x - aby - ac & bx + ay & cx + a \\ abx + a^2y & -ax + by - c & cy + b \\ acx + a^2 & cy + b & -ax - by + c \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + bC_2 + cC_3$

Applying
$$c_1 \to c_1 + bc_2 + cc_3$$

$$\Delta = \frac{1}{a} \begin{vmatrix} (a^2 + b^2 + c^2)x & ay + bx & cx + a \\ (a^2 + b^2 + c^2)y & by - c - ax & cy + b \\ (a^2 + b^2 + c^2) & b + cy & -ax - by + c \end{vmatrix}$$

$$= \frac{1}{a} \begin{vmatrix} x & ay + bx & cx + a \\ y & by - c - ax & b + cy \\ 1 & b + cy & c - ax - by \end{vmatrix},$$

as
$$a^2 + b^2 + c^2 = 1$$

$$C_2 \rightarrow C_2 - bC_1$$
 and $C_3 \rightarrow C_3 - cC_1$

then
$$\Delta = \frac{1}{a} \begin{vmatrix} x & ay & a \\ y & -c - ax & b \\ 1 & cy & -ax - by \end{vmatrix}$$

$$= \frac{1}{ax} \begin{vmatrix} x^2 & axy & ax \\ y & -c - ax & b \\ 1 & ay & ax \\ y & -c - ax & b \end{vmatrix}$$

$$R_1 \rightarrow R_1 + yR_2 + R_3$$

$$\Delta = \frac{1}{ax} \begin{vmatrix} x^2 + y^2 + 1 & 0 & 0 \\ y & -c - ax & b \\ 1 & cy & -ax - by \end{vmatrix}$$

On expanding along R_1

$$\Delta = \frac{(x^2 + y^2 + 1)}{ax} ax(ax + by + c)$$
$$= (x^2 + y^2 + 1) (ax + by + c)$$

Given $\Delta = 0$

 $\Rightarrow ax + by + c = 0$, which represents a straight line.

$$[\because x^2 + y^2 + 1 \neq 0, \text{ being + ve}].$$

...(1)

26. The line y = mx meets the given lines in

$$P\left(\frac{1}{m+1}, \frac{m}{m+1}\right)$$
 and $Q\left(\frac{3}{m+1}, \frac{3m}{m+1}\right)$

$$y - \frac{m}{m+1} = 2\left(x - \frac{1}{m+1}\right)$$

$$\Rightarrow y - 2x - 1 = -\frac{3}{m+1}$$
and that of L_2 is

$$y - \frac{3m}{m+1} = -3\left(x - \frac{3}{m+1}\right)$$

$$\Rightarrow y + 3x - 3 = \frac{6}{m+1} \qquad \dots (2)$$
From (1) and (2)

$$\frac{y-2x-1}{y+3x-3} = -\frac{1}{2}$$

 \Rightarrow x-3y+5=0 which is a straight line.

27. Let the equation of the line be

$$(y-2) = m(x-8)$$
 where $m < 0$

$$\Rightarrow P \equiv \left(8 - \frac{2}{m}, 0\right) \text{ and } Q \equiv (0, 2 - 8m)$$

Now,
$$OP + OQ = \left| 8 - \frac{2}{m} \right| + |2 - 8m|$$

$$=10+\frac{2}{-m}+8(-m)\geq 10+2\sqrt{\frac{2}{-m}\times 8(-m)}\geq 18$$

28. A line passing through P(h, k) and parallel to x-axis is ...(1)

The other two lines given are

$$y = x \qquad \dots (2)$$

and
$$x + y = 2$$
 ...(3)

Let ABC be the Δ formed by the points of intersection of the lines (1), (2) and (3), as shown in the figure.

Then A(k, k), B(1, 1), C(2-k, k)

$$\therefore \text{ Area of } \Delta ABC = \frac{1}{2} \begin{vmatrix} k & k & 1 \\ 1 & 1 & 1 \\ 2-k & k & 1 \end{vmatrix} = 4h^2$$
Operating $C_1 - C_2$ we get

$$\begin{array}{c|cccc} 1 & 0 & k & 1 \\ 0 & 1 & 1 \\ 2 - 2k & k & 1 \end{array} = 4h^2$$

$$\Rightarrow \frac{1}{2} |(2-2k)(k-1)| = 4h^2 \Rightarrow (k-1)^2 = 4h^2$$

$$\Rightarrow k-1=2h$$
 or $k-1=-2h$

$$\Rightarrow k = 2h + 1$$
 or $k = -2h + 1$

$$\therefore$$
 Locus of (h, k) is, $y = 2x + 1$ or $y = -2x + 1$.

H. Assertion & Reason Type Questions

(c) Point of intersection of L_1 and L_2 is A(0, 0). 1. Also P(-2, -2), Q(1, -2)

AR is the bisector of $\angle PAQ$, therefore R divides PQ in the same ratio as AP : AQ.

Thus $PR : RQ = AP : AQ = 2\sqrt{2} : \sqrt{5}$

:. Statement-1 is true.

Statement-2 is clearly false.

I. Integer Value Correct Type

(6) Let the point P be (x, y)

Then
$$d_1(P) = \left| \frac{x - y}{\sqrt{2}} \right|$$
 and $d_2(P) = \left| \frac{x + y}{\sqrt{2}} \right|$

For *P* lying in first quadrant x > 0, y > 0.

Also $2 \le d_1(P) + d_2(P) \le 4$

$$\Rightarrow 2 \le \left| \frac{x - y}{\sqrt{2}} \right| + \left| \frac{x + y}{\sqrt{2}} \right| \le 4$$

If
$$x > y$$
, then $2 \le \frac{x - y + x + y}{\sqrt{2}} \le 4$

or
$$\sqrt{2} \le x \le 2\sqrt{2}$$

If x < y, then

$$2 \le \frac{y-x+x+y}{\sqrt{2}} \le 4$$
 or $\sqrt{2} \le y \le 2\sqrt{2}$

The required region is the shaded region in the figure given below.

 \therefore Required area = $(2\sqrt{2})^2 - (\sqrt{2})^2 = 8 - 2 = 6$ sq units.

Section-B JEE Main/ AIEEE

1. (a) $AB = \sqrt{(4+1)^2 + (0+1)^2} = \sqrt{26}$; $BC = \sqrt{(3+1)^2 + (5+1)^2} = \sqrt{52}$ $CA = \sqrt{(4-3)^2 + (0-5)^2} = \sqrt{26}$; In isosceles triangle side AB = CA

In isosceles triangle side AB = CAFor right angled triangle, $BC^2 = AB^2 + AC^2$

So, here
$$BC = \sqrt{52} \text{ or } BC^2 = 52$$

or
$$(\sqrt{26})^2 + (\sqrt{26})^2 = 52$$

So, the given triangle is right angled and also isosceles

2. (d) Equation of AB is

Equation of AD is
$$x \cos \alpha + y \sin \alpha = p;$$

$$\Rightarrow \frac{x \cos \alpha}{p} + \frac{y \sin \alpha}{p} = 1;$$

$$\Rightarrow \frac{x}{p/\cos \alpha} + \frac{y}{p/\sin \alpha} = 1$$
O

A

A

X

So co-ordinates of A and B are

$$\left(\frac{p}{\cos\alpha}, 0\right)$$
 and $\left(0, \frac{p}{\sin\alpha}\right)$;

So coordinates of midpoint of AB are

$$\left(\frac{p}{2\cos\alpha},\frac{p}{2\sin\alpha}\right) = (x_1, y_1)(let);$$

$$x_1 = \frac{p}{2\cos\alpha} \& y_1 = \frac{p}{2\sin\alpha};$$

$$\Rightarrow \cos\alpha = p/2x_1 \text{ and } \sin\alpha = p/2y_1;$$

$$\cos^2 \alpha + \sin^2 \alpha = 1 \Rightarrow \frac{p^2}{4} \left(\frac{1}{x_1^2} + \frac{1}{v_1^2} \right) = 1$$

Locus of (x_1, y_1) is $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$.

- 3. (a) Put x = 0 in the given equation $\Rightarrow by^2 + 2fy + c = 0.$ For unique point of intersection $f^2 - bc = 0$ $\Rightarrow af^2 - abc = 0.$ Since $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow 2fgh - bg^2 - ch^2 = 0$
- $\Rightarrow 2Jgn bg^2 cn^2 = 0$ **4. (a)** $3a + a^2 2 = 0 \Rightarrow a^2 + 3a 2 = 0$.; $\Rightarrow a = \frac{-3 \pm \sqrt{9 + 8}}{2} = \frac{-3 \pm \sqrt{17}}{2}$
- 5. (a) Co-ordinates of $A = (a \cos \alpha, a \sin \alpha)$

Equation of OB,

$$y = \tan\left(\frac{\pi}{4} + \alpha\right)x$$

 $CA \perp^{r} to OB$

Equation of CA

$$y - a \sin \alpha = -\cot \left(\frac{\pi}{4} + \alpha\right)(x - a \cos \alpha)$$

$$\Rightarrow (y - a \sin \alpha) \left(\tan \left(\frac{\pi}{4} + \alpha \right) \right) = (a \cos \alpha - x)$$

$$\Rightarrow (y - a \sin \alpha) \left(\frac{\tan \frac{\pi}{4} + \tan \alpha}{1 - \tan \frac{\pi}{4} \tan \alpha} \right) (a \cos \alpha - x)$$

$$\Rightarrow (y - a \sin \alpha)(1 + \tan \alpha) = (a \cos \alpha - x)(1 - \tan \alpha)$$

$$\Rightarrow (y - a \sin \alpha)(\cos \alpha + \sin \alpha) = (a \cos \alpha - x)(\cos \alpha - \sin \alpha)$$

$$\Rightarrow$$
 y(cos+ sin α) – a sin α cos α – a sin² α

$$= a \cos^2 \alpha - a \cos \alpha \sin \alpha - x(\cos \alpha - \sin \alpha)$$

$$\Rightarrow$$
 y(cos α + sin α) + x(cos α - sin α) = a

$$y(\sin\alpha + \cos\alpha) + x(\cos\alpha - \sin\alpha) = a.$$

6. (a) Equation of bisectors of second pair of straight lines

is,
$$qx^2 + 2xy - qy^2 = 0$$
(1)

It must be identical to the first pair

from (1) and (2)
$$\frac{q}{1} = \frac{2}{-2p} = \frac{-q}{-1} \Rightarrow pq = -1$$
.

7. (c) $x = \frac{a\cos t + b\sin t + 1}{3} \Rightarrow a\cos t + b\sin t = 3x - 1$

$$y = \frac{a \sin t - b \cos t}{3} \Rightarrow a \sin t - b \cos t = 3y$$

Squaring & adding,
$$(3x-1)^2 + (3y)^2 = a^2 + b^2$$

8. **(b)** Taking co-ordinates as

$$\left(\frac{x}{r},\frac{y}{r}\right);(x,y)\&(xr,yr)$$

Then slope of line joining

$$\left(\frac{x}{r}, \frac{y}{r}\right), \left(x, y\right) = \frac{y\left(1 - \frac{1}{r}\right)}{x\left(1 - \frac{1}{r}\right)} = \frac{y}{x}$$

and slope of line joining (x, y) and (xr, yr)

$$=\frac{y(r-1)}{x(r-1)}=\frac{y}{x} \qquad \qquad \therefore m_1=m$$

⇒ Points lie on the straight line.

9. (b) $(x-a_1)^2 + (y-b_1)^2 = (x-a_2)^2 + (y-b_2)^2$

$$(a_1 - a_2)x + (b_1 - b_2)y$$

$$+\frac{1}{2}(a_2^2+b_2^2-a_1^2-b_1^2)=0$$

$$c = \frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$$

10. (d) Let the vertex C be (h, k), then the

centroid of
$$\triangle ABC$$
 is $\left(\frac{2-2+h}{3}, \frac{-3+1+k}{3}\right)$

or
$$\left(\frac{h}{3}, \frac{-2+k}{3}\right)$$
. It lies on $2x + 3y = 1$

$$\Rightarrow \frac{2h}{3} - 2 + k = 1 \Rightarrow 2h + 3k = 9$$

- = Locus of C is 2x + 3y = 9
- 11. (a) Let the required line be $\frac{x}{a} + \frac{y}{b} = 1$ (1)

then
$$a + b = -1$$
(2)

(1) passes through (4, 3),
$$\Rightarrow \frac{4}{a} + \frac{3}{b} = 1$$

$$\Rightarrow 4b + 3a = ab$$
(3)

Eliminating b from (2) and (3), we get

$$a^2 - 4 = 0 \Rightarrow a = \pm 2 \Rightarrow b = -3 \text{ or } 1$$

: Equations of straight lines are

$$\frac{x}{2} + \frac{y}{-3} = 1$$
 or $\frac{x}{-2} + \frac{y}{1} = 1$

12. (c) Let the lines be $y = m_1 x$ and $y = m_2 x$ then

$$m_1 + m_2 = -\frac{2c}{7}$$
 and $m_1 m_2 = -\frac{1}{7}$

Given $m_1 + m_2 = 4 m_1 m_2$

$$\Rightarrow \frac{2c}{7} = -\frac{4}{7} \Rightarrow c = 2$$

13. (a) 3x + 4y = 0 is one of the lines of the pair

$$6x^2 - xy + 4cy^2 = 0$$
, Put $y = -\frac{3}{4}x$,

we get
$$6x^2 + \frac{3}{4}x^2 + 4c\left(-\frac{3}{4}x\right)^2 = 0$$

$$\Rightarrow$$
 6 + $\frac{3}{4}$ + $\frac{9c}{4}$ = 0 \Rightarrow c = -3

14. (a) The line passing through the intersection of lines ax + 2by = 3b = 0 and bx - 2ay - 3a = 0 is

$$ax + 2by + 3b + \lambda (bx - 2ay - 3a) = 0$$

$$\Rightarrow (a+b\lambda)x+(2b-2a\lambda)y+3b-3\lambda a=0$$

As this line is parallel to x-axis.

$$\therefore a + b \lambda = 0 \implies \lambda = -a/b$$

$$\Rightarrow ax + 2by + 3b - \frac{a}{b}(bx - 2ay - 3a) = 0$$

$$\Rightarrow ax + 2by + 3b - ax + \frac{2a^2}{b}y + \frac{3a^2}{b} = 0$$

$$y\left(2b + \frac{2a^2}{b}\right) + 3b + \frac{3a^2}{b} = 0$$

 $y\left(\frac{2b^2 + 2a^2}{b}\right) = -\left(\frac{3b^2 + 3a^2}{b}\right)$

$$y = \frac{-3(a^2 + b^2)}{2(b^2 + a^2)} = \frac{-3}{2}$$

So it is 3/2 units below x-axis.

15. (c) Vertex of tringle is (1, 1) and midpoint of sides through this vertex is (-1, 2) and (3, 2)

 \Rightarrow vertex B and C come out to be (-3, 3) and (5, 3)

$$\therefore \text{ Centroid is } \frac{1-3+5}{3}, \frac{1+3+5}{3} \Rightarrow \left(1, \frac{7}{3}\right)$$

16. (c)

 \therefore A is the mid point of PQ, therefore

$$\frac{a+0}{2} = 3$$
, $\frac{0+b}{2} = 4 \Rightarrow a = 6, b = 8$

 \therefore Equation of line is $\frac{x}{6} + \frac{y}{8} = 1$ or 4x + 3y = 24

17. (c) Clearly for point P,

$$a^2 - 3a < 0$$
 and $a^2 - \frac{a}{2} > 0 \Rightarrow \frac{1}{2} < a < 3$

18. (a) Given: The vertices of a right angled triangle A(l, k), B(1, 1) and C(2, 1) and Area of $\triangle ABC = 1$ square unit

We know that, area of right angled triangle

$$= \frac{1}{2} \times BC \times AB = 1 = \frac{1}{2}(1) |(k-1)|$$

$$\Rightarrow \pm (k-1) = 2 \Rightarrow k = -1, 3$$

19. (c) Given: The coordinates of points P, Q, R are (-1, 0), (0,0), $(3,3\sqrt{3})$ respectively.

Slope of QR =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3\sqrt{3}}{3}$$

$$\Rightarrow \tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} \Rightarrow \angle RQX = \frac{\pi}{3}$$

$$\therefore \angle RQP = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

Let QM bisects the $\angle PQR$.

$$\therefore \text{ Slope of the line QM} = \tan \frac{2\pi}{3} = -\sqrt{3}$$

:. Equation of line QM is
$$(y-0) = -\sqrt{3}(x-0)$$

$$\Rightarrow$$
 y=- $\sqrt{3}$ x \Rightarrow $\sqrt{3}$ x+y=0

Equation of bisectors of lines, xy = 0 are $y = \pm x$

Put
$$y = \pm x$$
 in the given equation
 $my^2 + (1 - m^2)xy - mx^2 = 0$

$$mx^2 + (1 - m^2)x^2 - mx^2 = 0$$

$$\Rightarrow$$
 1-m² = 0 \Rightarrow m = \pm 1

21. (d) Slope of
$$PQ = \frac{3-4}{k-1} = \frac{-1}{k-1}$$

 \therefore Slope of perpendicular bisector of PQ = (k-1)

Also mid point of PQ $\left(\frac{k+1}{2}, \frac{7}{2}\right)$.

: Equation of perpendicular bisector is

$$y - \frac{7}{2} = (k-1)\left(x - \frac{k+1}{2}\right)$$

$$\Rightarrow$$
 2y-7 = 2(k-1) x -(k²-1)

$$\Rightarrow$$
 2(k-1)x-2y+(8-k²)=0

$$\therefore y-intercept = -\frac{8-k^2}{-2} = -4$$

$$\Rightarrow 8-k^2 = -8 \text{ or } k^2 = 16 \Rightarrow k = \pm 4$$

(d) Let (a^2, a) be the point of shortest distance on $x = y^2$

Then distance between
$$(a^2, a)$$
 and line $x - y + 1 = 0$ is given by

$$D = \frac{a^2 - a + 1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left[(a - \frac{1}{2})^2 + \frac{3}{4} \right]$$

It is min when $a = \frac{1}{2}$ and $D_{min} = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$

(a) If the lines $p(p^2 + 1)x - y + q = 0$ and $(p^2 + 1)^2 x + (p^2 + 1) y + 2q = 0$ are perpendicular to a common line then these lines

must be parallel to each other,

$$\therefore m_1 = m_2 \Rightarrow -\frac{p(p^2 + 1)}{-1} = -\frac{(p^2 + 1)^2}{p^2 + 1}$$

$$m_1 = m_2 \implies -\frac{2}{1} = -\frac{3}{p^2 + 1}$$

$$\Rightarrow (p^2 + 1) (p + 1) = 0$$

$$\Rightarrow p = -1$$

- \therefore p can have exactly one value.
- 24. (a) Given that

$$P(1,0), Q(-1,0)$$
 and $\frac{AP}{AQ} = \frac{BP}{BQ} = \frac{CP}{CQ} = \frac{1}{3}$

$$\Rightarrow$$
 3AP=AQ

Let
$$A = (x, y)$$
 then $3AP = AQ \implies 9AP^2 = AQ^2$

$$\Rightarrow 9(x-1)^2 + 9y^2 = (x+1)^2 + y^2$$

\Rightarrow 9x^2 - 18x + 9 + 9y^2 = x^2 + 2x + 1 + y^2
\Rightarrow 8x^2 - 20x + 8y^2 + 8 = 0

$$\Rightarrow$$
 $9r^2 - 18r + 9 + 9r^2 = r^2 + 2r + 1 + r^2$

$$\Rightarrow 8x^2 - 20x + 8y^2 + 8 = 0$$

$$\Rightarrow x^2 + y^2 - \frac{5}{3}x + 1 = 0 \qquad(1)$$

- A lies on the circle given by eq (1). As B and C also follow the same condition, they must lie on the same circle.
- Centre of circumcircle of $\triangle ABC$

= Centre of circle given by (1) =
$$\left(\frac{5}{4}, 0\right)$$

(c) Slope of line $L = -\frac{b}{5}$

Slope of line
$$K = -\frac{3}{c}$$

Line L is parallel to line k.

$$\Rightarrow \frac{b}{5} = \frac{3}{c} \Rightarrow bc = 15$$

(13, 32) is a point on L.

$$\therefore \frac{13}{5} + \frac{32}{b} = 1 \Rightarrow \frac{32}{b} = -\frac{8}{5}$$

$$\Rightarrow b = -20 \Rightarrow c = -\frac{3}{4}$$

Equation of K:
$$y-4x=3 \implies 4x-y+3=0$$

Distance between L and K =
$$\frac{|52-32+3|}{\sqrt{17}} = \frac{23}{\sqrt{17}}$$

26. (b)

$$L_1: y-x=0$$

$$L_2: 2x + y = 0$$

$$L_3: y+2=0$$

On solving the equation of line L_1 and L_2 we get their point of intersection (0,0) i.e., origin O.

On solving the equation of line L_1 and L_3 ,

we get
$$P = (-2, -2)$$
.

Similarly, we get
$$Q = (-1, -2)$$

We know that bisector of an angle of a triangle, divide the opposite side the triangle in the ratio of the sides including the angle [Angle Bisector Theorem of a Triangle]

$$\therefore \frac{PR}{RQ} = \frac{OP}{OQ} = \frac{\sqrt{(-2)^2 + (-2)^2}}{\sqrt{(-1)^2 + (-2)^2}} = \frac{2\sqrt{2}}{\sqrt{5}}$$

27. (c) Let the joining points be A(1,1) and B(2,4).

Let point C divides line AB in the ratio 3:2.

So, by section formula we have

$$C = \left(\frac{3 \times 2 + 2 \times 1}{3 + 2}, \frac{3 \times 4 + 2 \times 1}{3 + 2}\right) = \left(\frac{8}{5}, \frac{14}{5}\right)$$

Since Line 2x + y = k passes through $C\left(\frac{8}{5}, \frac{14}{5}\right)$

 \therefore C satisfies the equation 2x + y = k.

$$\Rightarrow \frac{2+8}{5} + \frac{14}{5} = k \Rightarrow k = 6$$

28. (b) Suppose B(0, 1) be any point on given line and co-ordinate of A is $(\sqrt{3}, 0)$. So, equation of

Reflected Ray is $\frac{-1-0}{0-\sqrt{3}} = \frac{y-0}{x-\sqrt{3}}$

$$\Rightarrow \sqrt{3}y = x - \sqrt{3}$$

29. (b) From the figure, we have

$$a=2, b=2\sqrt{2}, c=2$$

$$x_1 = 0, x_2 = 0, x_3 = 2$$

Now, x-co-ordinate of incentre is given as

$$\frac{ax_1 + bx_2 + cx_3}{a + b + c}$$

$$\Rightarrow x\text{-coordinate of incentre} = \frac{2 \times 0 + 2\sqrt{2}.0 + 2.2}{2 + 2 + 2\sqrt{2}}$$

$$= \frac{2}{2 + \sqrt{2}} = 2 - \sqrt{2}$$

30. (d) Let P, Q, R, be the vertices of $\triangle PQR$

Since PS is the median, S is mid-point of QR

So,
$$S = \left(\frac{7+6}{2}, \frac{3-1}{2}\right) = \left(\frac{13}{2}, 1\right)$$

Now, slope of
$$PS = \frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$$

Since, required line is parallel to PS therefore slope of required line = slope of PS Now, eqn of line passing

through (1, -1) and having slope $-\frac{2}{9}$ is

$$y-(-1)=-\frac{2}{9}(x-1)$$

$$9y + 9 = -2x + 2 \Rightarrow 2x + 9y + 7 = 0$$

31. (a) Given lines are

$$4ax + 2ay + c = 0$$

$$5bx + 2by + d = 0$$

The point of intersection will be

$$\frac{x}{2ad - 2bc} = \frac{-y}{4ad - 5bc} = \frac{1}{8ab - 10ab}$$

$$\Rightarrow x = \frac{2(ad - bc)}{-2ab} = \frac{bc - ad}{ab}$$

$$\Rightarrow y = \frac{5bc - 4ad}{-2ab} = \frac{4ad - 5bc}{2ab}$$

 \therefore Point of intersection is in fourth quadrant so x is positive and y is negative.

Also distance from axes is same

So x = -y (: distance from x-axis is -y as y is negative)

$$\frac{bc - ad}{ab} = \frac{5bc - 4ad}{2ab}$$

$$\Rightarrow 3bc - 2ad = 0$$

32. **(b)** Total number of integral points inside the square OABC $= 40 \times 40 = 1600$

No. of integral points on AC

= No. of integral points on OB

=40 [namely (1, 1), (2, 2) ... (40, 40)]

 \therefore No. of integral points inside the $\triangle OAC$

$$=\frac{1600-40}{2}=780$$

33. (a)

Let other two sides of rhombus are

$$x-y+\lambda=0$$

and
$$7x - y + \mu = 0$$

then O is equidistant from AB and DC and from AD and BC

$$\therefore |-1+2+1| = |-1+2+\lambda| \Rightarrow \lambda = -3$$

and
$$|-7+2-5| = |-7+2+\mu| \Rightarrow \mu = 15$$

 $\therefore \text{ Other two sides are } x - y - 3 = 0 \text{ and } 7x - y + 15 = 0$

On solving the eqns of sides pairwise, we get

the vertices as
$$\left(\frac{1}{3}, \frac{-8}{3}\right)$$
, $(1,2)$, $\left(\frac{-7}{3}, \frac{-4}{3}\right)$, $(-3,-6)$