MCQs with One Correct Answer 1. For AB bond if percent ionic character is plotted against electronegativity difference $(X_A - X_B)$, the shape of the curve would look like The correct curve is - (a) (A) - (b) (B) - (c) (C) - (d) (D) - 2. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2D). This is because - (a) in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF₃ these are in opposite directions - (b) in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions - (c) in NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the same direction - (d) in NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction - **3.** Among the following, the species with identical bond order are - (a) CO and O_2^{2-} - (b) O_2^- and CO - (c) O_2^{2-} and B_2 - (d) CO and N₂⁺ - 4. Which of the following statements is/are true - 1. PH₅ and BiCl₅ do not exist - 2. $p \pi d \pi$ bond is present in SO₂ - 3. I_3^+ has bent geometry - 4. SeF_4 and CH_4 have same shape - (a) 1, 2, 3 - (b) 1,3 - (c) 1, 3, 4 - (d) 1, 2, 4 12 CHEMISTRY - 5. The number of sigma (σ) and pi (π) bonds present in 1,3,5,7 octatetraene respectively are - (a) 14 and 3 - (b) 17 and 4 - (c) 16 and 5 - (d) 15 and 4 - **6.** The hybridizations of N, C and O shown in the following compound respectively, are - (a) sp^2 , sp, sp^2 - (b) sp^2, sp^2, sp^2 - (c) sp^2 , sp, sp - (d) sp, sp, sp^2 - 7. The bond dissociation energy of B F in BF₃ is 646 kJ mol⁻¹ whereas that of C F in CF₄ is 515 kJ mol⁻¹. The correct reason for higher B F bond dissociation energy as compared to that of C F is - (a) stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄. - (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄. - (c) lower degree of $p\pi p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄. - (d) smaller size of B—atom as compared to that of C—atom. - **8.** The most polarizable ion among the following is - (a) F- - (b) I - (c) Na⁺ - (d) Cl- - **9.** Minimum F-S-F bond angle present in : - (a) SSF₂ - (b) SF - (c) SF₂ - (d) F_3SSF - 10. Which of the following statement is correct about I_3^+ and I_3^- molecular ions? - (a) Number of lone pairs at central atoms are same in both molecular ions - (b) Hybridization of central atoms in both ions are same - (c) Both are polar species - (d) Both are planar species - 11. In which of the following species, *d*-orbitals having *xz* and *yz* two nodal planes involved in hybridization of central atom? - (a) IO_2F_2 - (b) ClF-4 - (c) IF₇ - (d) None of these - **12.** The type of bonds present in sulphuric anhydride is, - (a) 3σ and three $p\pi d\pi$ - (b) 3σ , one $p\pi p\pi$ and two $p\pi d\pi$ - (c) 2σ and three $p\pi d\pi$ - (d) 2σ and two $p\pi d\pi$ - 13. The correct statement with regard to H_2^+ and H_2^- is - (a) Both H_2^+ and H_2^- do not exist - (b) H_2^- is more stable than H_2^+ - (c) H_2^+ is more stable than H_2^- - (d) Both H_2^+ and H_2^- are equally stable - 14. The correct order of bond energies in NO, NO⁺ and NO⁻ is: - (a) $NO^- > NO > NO^+$ - (b) $NO > NO^{-} > NO^{+}$ - (c) $NO^{+} > NO > NO^{-}$ - (d) $NO^{+} > NO^{-} > NO$ - 15. Which of the following represents the correct order of Cl-O bond lengths in ClO⁻, ClO⁻₂, ClO⁻₃, ClO⁻₄? - (a) $ClO_4^- = ClO_3^- = ClO_2^- = ClO^-$ - (b) $ClO^- < ClO_2^- < ClO_3^- < ClO_4^-$ - (c) $ClO_4^- < ClO_3^- < ClO_2^- < ClO^-$ - (d) $ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$ - **16.** Which one of the following molecule will have all equal X—F bond length? (where X = Central atom) - (a) SOCl₂F₂ - (b) SeF₄ - (c) PBr₂F₃ - (d) IF₇ - 17. Select the incorrect statement about N_2F_4 and N_2H_4 : - (I) In N₂F₄, d-orbitals are contracted by electronegative fluorine atoms, but d-orbital contraction is not possible by H-atom in N₂H₄ - (II) The N-N bond energy in N_2F_4 is more than N-N bond energy in N_2H_4 - (III) The N-N bond length in N_2F_4 is more than that of in N_2H_4 - (IV) The N-N bond length in N_2F_4 is less than that of in N_2H_4 - (a) I, II and III - (b) I and III - (c) II and IV - (d) II and III - **18.** The correct order of 'S—O' bond length is - (a) $SO_3^{2-} > SO_4^{2-} > SO_3 > SO_2$ - (b) $SO_3^{2-} > SO_4^{2-} > SO_2 > SO_3$ - (c) $SO_4^{2-} > SO_4^{2-} > SO_2 > SO_3$ - (d) $SO_4^{2-} > SO_4^{2-} > SO_3 > SO_2$ - 19. Among the following transformations, the hybridization of the central atom remains unchanged in - (a) $CO_2 \rightarrow HCOOH$ - (b) $BF_3 \rightarrow BF_4^-$ - (c) $NH_3 \rightarrow NH_4^+$ - (d) $PCl_3 \rightarrow PCl_5$ - **20.** In which species, X—O bond order is 1.5 and contains $p\pi d\pi$ bond(s). - (a) $IO_2F_2^-$ - (b) HCOO- - (c) SO^{2-}_{3} - (d) XeO_2F_2 ## **Numeric Value Answer** **21.** Consider the following molecule Calculate the value of $p \div q$, here p and q are total number of $d\pi$ – $p\pi$ bonds and total number of sp^3 hybridised atoms respectively in given molecule. - 22. Calculate the value of "x + y z" here x, y and z are total number of non-bonded electron pair(s), pie(π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively. - **23.** Total number of species which used all three *p*-orbitals in hybridisation of central atoms and should be non-polar also are - **24.** Consider the following orbitals 3s, $2p_x$, $4d_{xy}$, $4d_z^2$, $3d_{x^2-y^2}$, $3p_y$, 4s, $4p_z$ and find total number of orbital(s) having even number of nodal plane. - **25.** For the following molecules : $$PCl_5, BrF_3, ICl_2^-, XeF_5^-, NO_3^-, XeO_2F_2, PCl_4^+, CH_3^+$$ Calculate the value of $\frac{a+b}{c}$ a =Number of species having sp^3 d-hybridisation - b = Number of species which are planar - c = Number of species which are non-planar - **26.** Find total number of orbital which can overlap colaterally, (if inter nuclear axis is z) s, p_x , p_y , p_z , d_{xy} , d_{yz} , d_{xz} , d_{zz} , d_{z}^2 , d_{z}^2 , d_{z}^2 , d_{z}^2 14 CHEMISTRY - 27. In O_2^- , O_2 and O_2^{2-} molecular species, the sum of the total number of antibonding electrons is - **28.** Dipole moment of X is 1.6 D. What is the dipole moment of following compound: - **29.** What is the % of *p*-character with central atom in SF₆ molecule? **30.** Consider the following values for an ionic compound NaCl. $$\Delta H_f(NaCl) = -200 \text{ KJ/mol}$$ $$\Delta H_{\text{sub}}(\text{Na(s)}) = 650 \text{ KJ/mol}$$ $$\Delta H_{diss}(Cl_2(g)) = 400 \text{ KJ/mol}$$ $$I.E._{1}(Na(g)) = 500 \text{ KJ/mol}$$ Electron gain enthalpy (Cl(g)) = -350 KJ/mol Using Born Haber Cycle, find the value of lattic energy (U) in KJ/mol. | | ANSWER KEY |---|------------|---|-----|---|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|------|----|--------| | 1 | (c) | 4 | (a) | 7 | (b) | 10 | (d) | 13 | (c) | 16 | (a) | 19 | (c) | 22 | (3) | 25 | (3) | 28 | (1.6) | | 2 | (a) | 5 | (b) | 8 | (b) | 11 | (c) | 14 | (c) | 17 | (b) | 20 | (a) | 23 | (2) | 26 | (6) | 29 | (50) | | 3 | (c) | 6 | (a) | 9 | (d) | 12 | (b) | 15 | (c) | 18 | (b) | 21 | (1) | 24 | (5) | 27 | (21) | 30 | (1200) |