MCQs with One Correct Answer

1. For AB bond if percent ionic character is plotted against electronegativity difference $(X_A - X_B)$, the shape of the curve would look like

The correct curve is

- (a) (A)
- (b) (B)
- (c) (C)
- (d) (D)
- 2. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2D). This is because
 - (a) in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF₃ these are in opposite directions

- (b) in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions
- (c) in NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the same direction
- (d) in NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction
- **3.** Among the following, the species with identical bond order are
 - (a) CO and O_2^{2-}
 - (b) O_2^- and CO
 - (c) O_2^{2-} and B_2
 - (d) CO and N₂⁺
- 4. Which of the following statements is/are true
 - 1. PH₅ and BiCl₅ do not exist
 - 2. $p \pi d \pi$ bond is present in SO₂
 - 3. I_3^+ has bent geometry
 - 4. SeF_4 and CH_4 have same shape
 - (a) 1, 2, 3
- (b) 1,3
- (c) 1, 3, 4
- (d) 1, 2, 4

12 CHEMISTRY

- 5. The number of sigma (σ) and pi (π) bonds present in 1,3,5,7 octatetraene respectively are
 - (a) 14 and 3
- (b) 17 and 4
- (c) 16 and 5
- (d) 15 and 4
- **6.** The hybridizations of N, C and O shown in the following compound

respectively, are

- (a) sp^2 , sp, sp^2
- (b) sp^2, sp^2, sp^2
- (c) sp^2 , sp, sp
- (d) sp, sp, sp^2
- 7. The bond dissociation energy of B F in BF₃ is 646 kJ mol⁻¹ whereas that of C F in CF₄ is 515 kJ mol⁻¹. The correct reason for higher B F bond dissociation energy as compared to that of C F is
 - (a) stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄.
 - (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
 - (c) lower degree of $p\pi p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄.
 - (d) smaller size of B—atom as compared to that of C—atom.
- **8.** The most polarizable ion among the following is
 - (a) F-
- (b) I
- (c) Na⁺
- (d) Cl-
- **9.** Minimum F-S-F bond angle present in :
 - (a) SSF₂
- (b) SF
- (c) SF₂
- (d) F_3SSF
- 10. Which of the following statement is correct about I_3^+ and I_3^- molecular ions?
 - (a) Number of lone pairs at central atoms are same in both molecular ions
 - (b) Hybridization of central atoms in both ions are same
 - (c) Both are polar species
 - (d) Both are planar species

- 11. In which of the following species, *d*-orbitals having *xz* and *yz* two nodal planes involved in hybridization of central atom?
 - (a) IO_2F_2
 - (b) ClF-4
 - (c) IF₇
 - (d) None of these
- **12.** The type of bonds present in sulphuric anhydride is,
 - (a) 3σ and three $p\pi d\pi$
 - (b) 3σ , one $p\pi p\pi$ and two $p\pi d\pi$
 - (c) 2σ and three $p\pi d\pi$
 - (d) 2σ and two $p\pi d\pi$
- 13. The correct statement with regard to H_2^+ and

 H_2^- is

- (a) Both H_2^+ and H_2^- do not exist
- (b) H_2^- is more stable than H_2^+
- (c) H_2^+ is more stable than H_2^-
- (d) Both H_2^+ and H_2^- are equally stable
- 14. The correct order of bond energies in NO, NO⁺ and NO⁻ is:
 - (a) $NO^- > NO > NO^+$
 - (b) $NO > NO^{-} > NO^{+}$
 - (c) $NO^{+} > NO > NO^{-}$
 - (d) $NO^{+} > NO^{-} > NO$
- 15. Which of the following represents the correct order of Cl-O bond lengths in ClO⁻, ClO⁻₂, ClO⁻₃, ClO⁻₄?
 - (a) $ClO_4^- = ClO_3^- = ClO_2^- = ClO^-$
 - (b) $ClO^- < ClO_2^- < ClO_3^- < ClO_4^-$
 - (c) $ClO_4^- < ClO_3^- < ClO_2^- < ClO^-$
 - (d) $ClO_3^- < ClO_4^- < ClO_2^- < ClO^-$

- **16.** Which one of the following molecule will have all equal X—F bond length? (where X = Central atom)
 - (a) SOCl₂F₂
- (b) SeF₄
- (c) PBr₂F₃
- (d) IF₇
- 17. Select the incorrect statement about N_2F_4 and N_2H_4 :
 - (I) In N₂F₄, d-orbitals are contracted by electronegative fluorine atoms, but d-orbital contraction is not possible by H-atom in N₂H₄
 - (II) The N-N bond energy in N_2F_4 is more than N-N bond energy in N_2H_4
 - (III) The N-N bond length in N_2F_4 is more than that of in N_2H_4
 - (IV) The N-N bond length in N_2F_4 is less than that of in N_2H_4
 - (a) I, II and III
 - (b) I and III
 - (c) II and IV
 - (d) II and III
- **18.** The correct order of 'S—O' bond length is
 - (a) $SO_3^{2-} > SO_4^{2-} > SO_3 > SO_2$
 - (b) $SO_3^{2-} > SO_4^{2-} > SO_2 > SO_3$
 - (c) $SO_4^{2-} > SO_4^{2-} > SO_2 > SO_3$
 - (d) $SO_4^{2-} > SO_4^{2-} > SO_3 > SO_2$
- 19. Among the following transformations, the hybridization of the central atom remains unchanged in
 - (a) $CO_2 \rightarrow HCOOH$
 - (b) $BF_3 \rightarrow BF_4^-$
 - (c) $NH_3 \rightarrow NH_4^+$
 - (d) $PCl_3 \rightarrow PCl_5$
- **20.** In which species, X—O bond order is 1.5 and contains $p\pi d\pi$ bond(s).
 - (a) $IO_2F_2^-$
- (b) HCOO-
- (c) SO^{2-}_{3}
- (d) XeO_2F_2

Numeric Value Answer

21. Consider the following molecule

Calculate the value of $p \div q$, here p and q are total number of $d\pi$ – $p\pi$ bonds and total number of sp^3 hybridised atoms respectively in given molecule.

- 22. Calculate the value of "x + y z" here x, y and z are total number of non-bonded electron pair(s), pie(π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.
- **23.** Total number of species which used all three *p*-orbitals in hybridisation of central atoms and should be non-polar also are

- **24.** Consider the following orbitals 3s, $2p_x$, $4d_{xy}$, $4d_z^2$, $3d_{x^2-y^2}$, $3p_y$, 4s, $4p_z$ and find total number of orbital(s) having even number of nodal plane.
- **25.** For the following molecules :

$$PCl_5, BrF_3, ICl_2^-, XeF_5^-, NO_3^-, XeO_2F_2, PCl_4^+, CH_3^+$$

Calculate the value of $\frac{a+b}{c}$

a =Number of species having sp^3 d-hybridisation

- b = Number of species which are planar
- c = Number of species which are non-planar
- **26.** Find total number of orbital which can overlap colaterally, (if inter nuclear axis is z) s, p_x , p_y , p_z , d_{xy} , d_{yz} , d_{xz} , d_{zz} , d_{z}^2 , d_{z}^2 , d_{z}^2 , d_{z}^2

14 CHEMISTRY

- 27. In O_2^- , O_2 and O_2^{2-} molecular species, the sum of the total number of antibonding electrons is
- **28.** Dipole moment of X is 1.6 D. What is the dipole moment of following compound:
- **29.** What is the % of *p*-character with central atom in SF₆ molecule?

30. Consider the following values for an ionic compound NaCl.

$$\Delta H_f(NaCl) = -200 \text{ KJ/mol}$$

$$\Delta H_{\text{sub}}(\text{Na(s)}) = 650 \text{ KJ/mol}$$

$$\Delta H_{diss}(Cl_2(g)) = 400 \text{ KJ/mol}$$

$$I.E._{1}(Na(g)) = 500 \text{ KJ/mol}$$

Electron gain enthalpy (Cl(g)) = -350 KJ/mol

Using Born Haber Cycle, find the value of lattic energy (U) in KJ/mol.

	ANSWER KEY																		
1	(c)	4	(a)	7	(b)	10	(d)	13	(c)	16	(a)	19	(c)	22	(3)	25	(3)	28	(1.6)
2	(a)	5	(b)	8	(b)	11	(c)	14	(c)	17	(b)	20	(a)	23	(2)	26	(6)	29	(50)
3	(c)	6	(a)	9	(d)	12	(b)	15	(c)	18	(b)	21	(1)	24	(5)	27	(21)	30	(1200)