OBJECTIVE QUESTIONS

1.	n atom jumps in so	kinetic energy change	s
	(b) $-\frac{3}{8}x$	(d) $-\frac{3}{4}x$	
2.	 ergy of an electron	om is -6.8 eV. Indicat	е

in which excited state, the electron is present?

(a) First (b) Second (c) Third (d) Fourth

3. What is the potential energy of an electron in N shell of the Be³⁺ ion?

(a) -3.4 eV
 (b) -6.8 eV
 (c) -13.6 eV
 (d) -27.2 eV
 4. The kinetic and potential energies (in eV) of electron present in the third Bohr's orbit of hydrogen atom are, respectively:

(a) -1.51, -3.02 (b) 1.51, -3.02 (c) -3.02, 1.51 (d) 1.51, -1.51

5.		listance be							W 34	9 9
ē.	(a)	2.645×10^{-2}) ⁻¹⁰ m	4 1	10.24	(b)	1.322×10	$^{-10}$ m		
	(c)	1.851×10^{-1}	0^{-10} m			(d)	none of the	ese		÷
6.		lectron trav							the san	ne de
	Brog	lie waveler	igth, the	veloc	ity will b	e app	roximately:			
	(a)	$\frac{1840}{x}$	(b)	$\frac{x}{1840}$	<u>-</u>	(c)	1840x	(d) x	0	
7.	Acco	rding to Bo	ohr's ato	mic th	eory, wh	ich o	f the follow	ing is con	rect?	
()*()	(a)	Potential e	energy o	of elect	$ron \propto Z^2$	$/n^2$			*2 72	
Sel.	(b)	The production $(n) \propto 7^2$	uct of	velocit	y of ele	ctron	and princi	ple quan	tum nui	nber
	(c)	Frequency	of revo	olution	of electr	on in	an orbit ∝ 2	Z^2/n^3		
27	(d)	Coulombi	c force	of attra	ction on	the e	lectron $\propto Z^2$	$^2/n^2$		
8.		electron is						ainty, wha	t is the t	heo-
_ /	(a)	14.5 μm	(b)	29 μ	m	(c)	58 μm	(d) 1	14 µm	\
9.	For v	which of the	follow	ing set	s of quan	tum r	numbers, an	electron v	will have	e the
	high	est energy?	Bt.							. 12
		n	1	m	S					
1	(a)	3	2	1	-1/2					
	(b)	4	3	-1	+1/2					
	(c)	4	1	-1	+1/2	*				
	(d)	5	0	0	-1/2					
10.		ratio of (E_2) the energy			E ₃) for He	e ⁺ ion	is approxin	nately equ	al to (w	here
		10		15		(c)	17	(d) 1:	2 .	
11	If the	e binding en								oxi-
		54.4 eV					122.3 eV			
12	. The	ionization 6	energy o	of H ato	om is 21.	79 ×			binding	en-
	ergy	of the seco	nd excit	ed stat	e of Li ²⁺	ion:				
	(a)	$3^2 \times 21.7$	$\times 10^{-19}$	J .		(b)	21.79×10^{-1}	⁻¹⁹ J	(2	
	(c)	$\frac{1}{3} \times 21.79$	9×10^{-1}	⁹ J	*	(d)	$\frac{1}{3^2} \times 21.79$	$9 \times 10^{-19} \text{J}$	ſ	,

13. The wave number of the first line in the Balmer series of hydrogen is 15200 cm⁻¹. What would be the wave number of the first line in the Lyman series of

(a) $2.4 \times 10^5 \text{ cm}^{-1}$ (b) $24.3 \times 10^5 \text{ cm}^{-1}$

the Be3+ ion?

	(a) 2×10 (c) 2×10 What is the tage of a state of an atage of an atage of a 10^{-15}	otal spin value (b) of volume of is:	+2 or -2	(d) of ₂₆ Fe ³⁺ (c) y the nucl	4 × 10 ⁻²⁹ ion? +2.5 or -	kg 2.5 (d) respect to		•
	(c) 2×10 What is the t (a) +1 or -	- ²⁹ kg otal spin val -1 (b)	+2 or -2	(d) of ₂₆ Fe ³⁺ (c)	4 × 10 ⁻²⁹ ion? +2.5 or -	kg 2.5 (d)		
18.	(c) 2×10	⁻²⁹ kg	ue in case	(d)	4×10^{-29}	_		
						_		
			·J.		2×10^{-27}			
17.	Uncertainty tainty in velo mately [h = 0	city is (3.3/4	$(4\pi) \times 10^5 \mathrm{m}$				Å and uncer cle is approxi	
\	(a) $\frac{20}{41}$	VI.00	10 63			(d)	90-	
16.	An electron, practically at rest, is initially accelerated through a potential difference of 100 V. It then has de Broglie wavelength equal to λ_1 Å. It then gets retarded through 19 V and then has a wavelength λ_2 Å. A further retardation through 32 V changes the wavelength to λ_3 . Calculate $(\lambda_3 - \lambda_2)/\lambda_1$.						S	
	(a) $\frac{\lambda}{\pi}$	(b)	$\frac{\lambda}{2\pi}$	(c)	$\frac{\lambda}{4\pi}$	(d)	$\frac{\lambda}{3\pi}$	
15.	The de Brog			lectron m	oving in	a circular	orbit is λ. Th	е
/	(a) 4	(b)		(c)	5	(d)*	15	
			n = 2 $n = 1$					
10	· /		n=3	1.				
	_/		n=4					
			n = 5					
	levels involv	ed are those	e as shown $n = 6$	in the fig	ure?			50
80	that you wor	uld expect to	see with	the naked	eye if th	e only ele	ctronic energ	y

represented by the	e principal quantum	number?	
(a) 10	(b) 14	(c) 12	(d) 16
		t orbit of H atom	is V , what will be the
(a) V		(c) 3V	(d) 9V
The species which	has its fifth ioniza	tion potential equ	als to 340 eV is:
(a) B ⁺	(p) C ₊	(c) B	(d) C
		round state is -13.	.6 eV. The energy of the
(a) -0.54 eV	(b) -5.40 eV	(c) -0.85 eV	(d) -2.72 eV
(a) $3\pi x$	(b) 670x	(c) $\frac{9x}{2}$	(d) $\frac{x}{2}$
uncertainty of its j (a) 1.05×10^{-28}	position will be (h = m	$= 6.626 \times 10^{-34} \text{Js}$ (b) 1.05×10	: ^{–26} m
		` '	/
(a) 4, 2			(d) 0, 2
			the state of the s
(a) 16 and 5	(b) 12 and 5	(c) 16 and 4	(d) 12 and 4
Uncertainty in post velocity is:	sition is twice the u	ncertainty in mor	mentum. Uncertainty in
(a) $\sqrt{\frac{h}{\pi}}$	(b) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$	(c) $\frac{1}{2m}\sqrt{h}$	(d) $\frac{h}{4\pi}$
then:			\$
		l i	(d) $\lambda = \sqrt{\frac{h}{m}}$
	If velocity of an velocity of the thin (a) V The species which (a) B^+ The energy of hydrological corresponding (a) -0.54 eV In H-atom, if x is of an electron in the content of an electron in the content of the content of unpaired electron (a) 4.2 Consider the ground the azimuthal quant (a) $16 \text{ and } 5$ Uncertainty in posterior in the content of unpaired electron (b) 4.2 Consider the ground the azimuthal quant (a) $16 \text{ and } 5$ Uncertainty in posterior is: (a) $\sqrt{\frac{h}{\pi}}$ If wavelength is expected the specific content of the content of unpaired electron (b) $\sqrt{\frac{h}{\pi}}$	If velocity of an electron in the first velocity of the third orbit of Li^{2+} ? (a) V (b) $V/3$ The species which has its fifth ionization (a) B^+ (b) C^+ The energy of hydrogen atom in its gelevel corresponding to $n = 5$ is: (a) -0.54 eV (b) -5.40 eV In H-atom, if x is the radius of the first of an electron in the third orbit is: (a) $3\pi x$ (b) $6\pi x$ The uncertainty in the momentum of uncertainty of its position will be $(h = (a) 1.05 \times 10^{-28} \text{ m})$ (c) $5.27 \times 10^{-30} \text{ m}$ Magnetic moment of X^{n+} ($Z = 26$) is of unpaired electrons and value of n , (a) $4, 2$ (b) $2, 4$ Consider the ground state of Cr atom the azimuthal quantum numbers $I = I$ (a) 16 and 5 (b) 12 and 5 Uncertainty in position is twice the unvelocity is: (a) $\sqrt{\frac{h}{\pi}}$ (b) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ If wavelength is equal to the distance	(a) V (b) $V/3$ (c) $3V$ The species which has its fifth ionization potential equation (a) B^+ (b) C^+ (c) B The energy of hydrogen atom in its ground state is -13 level corresponding to $n=5$ is: (a) -0.54 eV (b) -5.40 eV (c) -0.85 eV In H-atom, if x is the radius of the first Bohr orbit, ther of an electron in the third orbit is: (a) $3\pi x$ (b) $6\pi x$ (c) $\frac{9x}{2}$ The uncertainty in the momentum of an electron is 1 uncertainty of its position will be $(h=6.626\times10^{-34}\text{Js})$ (a) 1.05×10^{-28} m (b) 1.05×10 (c) 5.27×10^{-30} m (d) 5.25×10 Magnetic moment of X^{n+} ($Z=26$) is $\sqrt{24}$ Bohr magnet of unpaired electrons and value of n , respectively, are: (a) $4,2$ (b) $2,4$ (c) $3,1$ Consider the ground state of Cr atom ($Z=24$). The number of $Z=24$ is $Z=24$. The number of $Z=24$ is $Z=24$ is $Z=24$. The number of $Z=24$ is $Z=24$ is $Z=24$. The number of $Z=24$ is $Z=24$ is $Z=24$. The number of $Z=24$ is $Z=$

21. If a bulb of 40 W is producing a light of wavelength 620 nm with 80% of

22. What is likely to be principal quantum number for a circular orbit of diameter

1.6 10^{-19} J, hc = 12400 eV Å):

(b) 10^{18}

(a) 2×10^{18}

efficiency, then the number of photons emitted by the bulb in 20 s are (1 eV =

20 nm of the hydrogen atom if we assume Bohr orbit to be the same as that

(c) 10^{21}

(d) 2×10^{21}

32.	Which describes orbital?						
	(a) ψ (b) ψ^2	(c) $ \psi^2 $	(d) All				
33.	Consider an electron in the nth orbit of	of a hydrogen ato	m in the Bohr model.				
× *	The circumference of the orbit can be expressed in terms of the de Broglie						
	wavelength λ of the electron as:	*# <u>****</u>	• •				
	(a) $(0.529)n\lambda$	(b) $\sqrt{n}\lambda$	r				
	(c) $(13.6)\lambda$	(d) <i>nλ</i>					
34.	The wave number of electromagnetic ra		_				
	electron in-between two levels of Li ²⁺ ion whose principal quantum numbers						
1.0	sum is 4 and difference is 2 is:		0				
	(a) $3.5R_H$ (b) $4R_H$	(c). $8R_H$	(d) $\frac{8}{9}R_H$				
35.	The value of the magnetic moment of	a particular ion is	2.83 Rohr magneton				
55.	The ion is:	a particular for 15	2.03 Bom magneton.				
- /	(a) Fe^{2+} (b) Ni^{2+}	(c) Mn ²⁺	(d) Co ³⁺				
36.	The angular momentum of an electron	in a given orbit i	s J. Its kinetic energy				
/	will be:						
/	(a) $\frac{1}{2} \frac{J^2}{J^2}$ (b) $\frac{Jv}{v}$	(c) J^2	(d) $\frac{J^2}{2\pi}$				
1	$2 mr^2$	2m	$\frac{(a)}{2\pi}$				
37.	For which of the following species, Bo	hr's theory is not	applicable?				
	(a) Be^{3+} (b) Li^{2+}	(c) He ²⁺	(d) H				
38.	For an f-orbital, the values of m are:						
	(a) $-2, -1, 0, +1, +2$	(b) $-3, -2, -1,$	0, +1, +2, +3				
	(c) $-1, 0, +1$	(d) $0, +1, +2, +$	3 / -				
39.	The number of unpaired electrons in an	atom of atomic i	number 24 (in ground				
	state) is:						
	(a) 3 (b) 4	(c) 5	(d) 6				
40.	In hydrogen spectrum, which of the for 350-700 nm?	ollowing lies in t	he wavelength range				
	(a) Balmer series	(b) Lyman serie	20				
	(c) Brackett series	(d) Paschen ser					
41.	The outer electronic configuration of 3s						
	(a) O (b) Cl	(c) Br	(d) Ar				
42.	Atomic weight of an element is not nec						
	(a) it contains electrons, protons, and	5.00					
	(b) it contains allotropic forms	-					
	(c) atoms are no longer considered in	ndivisible	erro				
	(c) atoms are no longer considered indivisible						

(d) it contains isotopes

- 43. The charge on the atom having 17 protons, 18 neutrons, and 18 electrons is:
 - (a) +1
- (b) -1
- (c) -2
- (d) zero
- 44. Which of the following electron transition in a hydrogen atom will require the largest amount of energy?
 - (a) From n = 1 to n = 2
- (b) From n = 2 to n = 3
- (c) From $n = \infty$ to n = 1
- (d) From n = 3 to n = 5
- 45. Which of the following statements is not correct for an electron that has the quantum number n = 4 and m = 2?
 - (a) The electron may have the quantum number s = +1/2
 - (b) The electron may have the quantum number l=2
 - (c) The electron may have the quantum number m = 2
 - (d) The electron may have the quantum number l = 0, 1, 2

HINTS AND SOLUTIONS

- 1. (a) Change in PE = $-\frac{2x}{4} + (2x) \Rightarrow \frac{3}{2}x$
- 2. (a) $E_n = \frac{1}{2}PE = -\frac{6.8}{2} = -3.4 \text{ eV}$

$$E_n = \frac{-13.6}{n^2} = -3.4$$

n = 2 or first excited state

3. (d) Energy of N shell = $\frac{-13.6 \times (4)^2}{(4)^2} = -13.6 \text{ eV}$

∴ PE =
$$2 \times E = 2 \times -13.6 \text{ eV} = -27.2 \text{ eV}$$

4. (b) Total energy of third shell = $\frac{-13.6}{3^2}$

$$=-1.51 \text{ eV}$$

$$KE = -Total \text{ energy} = 1.51 \text{ eV}$$

 $PE = 2 \times E = -3.02 \text{ eV}$

5. (c) $r = 0.529 \frac{n^2}{7} \text{Å};$

$$r_4 - r_3 = 0.539 \left(\frac{16}{2} - \frac{9}{2} \right) \text{Å} = 1.851 \times 10^{-10} \text{ m}$$

6. (b) $\lambda = \frac{h}{m_e x} = \frac{h}{m_p V} = \frac{h}{1840 m_e V}$ (: $m_p = 1840 m_e$)

Hence, $V = \frac{1}{1840} m_e V$

7. (c)
$$v \propto \frac{Z}{n}$$
; $r \propto \frac{n^2}{Z}$; frequency of revolution = $\frac{V_n}{2\pi r_n}$;

Coulombic force of attraction = $\frac{Ze^2}{(4\pi\epsilon_0)r^2}$

8. (c)
$$\Delta x \approx \frac{h}{4\pi\Delta p} \approx \frac{h}{4\pi \times m\Delta v}$$

= $\frac{6.63 \times 10^{-14}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 1}$ (:: $\Delta v = 1 \text{ m/s}$)

$$\therefore \Delta x = 58 \, \mu \text{m}$$

9. (b) 4f has the highest energy among 3d, 4f, 4p, 5s orbitals.

10. (b)
$$\frac{13.6(2)^2 \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]}{13.6(2)^2 \left[\frac{1}{(3)^2} - \frac{1}{(4)^2} \right]} = 15$$

11. (d)
$$\frac{13.6(Z)^2}{(3)^2} = 24$$

 $IE = 13.6(Z)^2 = (24 \times 9) = 216 \text{ eV}$

12. (b) BE =
$$\frac{21.79 \times 10^{19} (3)^2}{(3)^2} = 21.79 \times 10^{-19} \text{ J}$$

13. (d) Given
$$15200 = R(1)^2 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right]$$
 ...(i)

Then
$$\overline{v} = R(4)^2 \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$$
 ...(i)

From Eqs. (i) and (ii), we have

$$\overline{v} = 1.313 \times 10^6 \text{ cm}^{-1}$$

- 14. (a) Only four lines are present in visible region, $6 \rightarrow 2$, $5 \rightarrow 2$, $4 \rightarrow 2$, and $3 \rightarrow 2$.
- 15. (b) We know $2\pi r = n\lambda$

For minimum radius, n = 1

$$2\pi r_{\min} = \lambda$$
$$r_{\min} = \frac{\lambda}{2\pi}$$

16. (c)
$$\lambda_1 = \sqrt{\frac{150}{100}} \mathring{A}$$
 ...(i)

$$\lambda_2 = \sqrt{\frac{150}{81}} \,\mathring{A} \qquad \dots (ii)$$

$$\lambda_3 = \sqrt{\frac{150}{49}} \, \mathring{A} \qquad \dots (iii)$$

From Eqs. (i), (ii), and (iii), we have

$$\frac{\lambda_3 - \lambda_2}{\lambda_1} = \frac{20}{63}$$

17. (c)
$$\Delta x \times m \times \Delta v \ge \frac{h}{4\pi}$$

 $1 \times 10^{-10} \times m \times \frac{3.3}{4\pi} \times 10^5 \ge \frac{6.6 \times 10^{-34}}{4 \times \pi}$
 $m = 2 \times 10^{-29} \text{ kg}$

18. (c) Total spin = Number of unpaired
$$e^{-} \times \left(\pm \frac{1}{2}\right)$$

= $5 \times \left(\pm \frac{1}{2}\right) = \pm \frac{5}{2}$

19. (a) Volume fraction =
$$\frac{\text{Volume of nucleus}}{\text{Total volume of atom}}$$
$$= \frac{(4/3)\pi (10^{-13})^3}{(4/3)\pi (10^{-8})^3} = 10^{-15}$$

20. (a) IE of one sodium atom =
$$\frac{hC}{\lambda}$$
 and IE of one mole Na atom = $\frac{hC}{\lambda}N_A$

$$= \frac{6.62 \times 10^{34} \times 3 \times 10^8 \times 6.02 \times 10^{23}}{242 \times 10^{-9}}$$
= 494.65 kJ·mol

21. (d) Power =
$$\frac{nhC}{\lambda \times t}$$

$$40 \times \frac{80}{100} = \frac{n \times 6.62 \times 10^{34} \times 3 \times 10^{8}}{620 \times 10^{-9} \times 20}$$

$$n = 2 \times 10^{21}$$

22. (b) Radius =
$$0.529 \frac{n^2}{z} \text{Å} = 10 \times 10^{-9} \text{ m}$$

So $n^2 = 189$
or $n \approx 14$

23. (a)
$$V = 2.188 \times 10^6 \frac{z}{n}$$
 m/s
Now, $V \propto \frac{z}{n}$
so $\frac{V_{\text{Li}^{2+}}}{V_H} = \frac{Z_1/H_1}{Z_2/H_2} = \frac{3/3}{1/1} = 1$
or $V_{\text{Li}^{2+}} = V_H$

24. (c) IP = 340 V
so IE = 340 eV = 13.6
$$\frac{Z^2}{(1)^2}$$

so $Z^2 = 25$
so $Z = 5$
25. (a) $E_n = E_1 \frac{Z^2}{n^2}$

$$E_5 = -13.6 \times \frac{(1)^2}{(5)^2} = -0.54 \text{ eV}$$

26. (b)
$$r_1 = 0.529 \text{ Å}$$

 $r_3 = 0.529 \times (3)^2 \text{ Å} = 9x$
so $\lambda = \frac{2\pi r}{r} = \frac{2\pi (9x)}{3} = 6\pi x$

27. (c)
$$\Delta p \cdot \Delta x = \frac{h}{4\pi}$$

$$\Delta x = \frac{6.62 \times 10^{34}}{4 \times 3.14 \times 1 \times 10^{-5}} = 5.27 \times 10^{30} \text{ m}$$

28. (a) Number of unpaired electrons = 4
$$X^{n+} = (Z = 26)$$
so $N = 2$

29. (b) Cr (Zn = 24)

Electronic configuration:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$$

Number of electron in $l = 1$, i.e., p subshell is 12

Number of electron in $l = 2$, i.e., p subshell is 5

30. (c)
$$\Delta x = 2\Delta p$$

$$\Delta x \cdot \Delta p \cdot m = \frac{h}{2} = \frac{h}{4\pi}$$

$$2\Delta p \cdot m \cdot \Delta V = \frac{h}{2}$$

$$(\Delta V)^2 = \frac{h}{4m^2}$$
 or $\Delta V = \frac{\sqrt{h}}{2m}$

31. (d)
$$\lambda = v$$

Then $\lambda = \frac{h}{mV}$ or $\lambda^2 = \frac{h}{m}$
So $\lambda = \sqrt{\frac{h}{m}}$

- 32. (b) ψ^2 describes the maximum probability of finding electron, i.e., orbital.
- 33. (d) $2\pi r = n\lambda = \text{circumference}$

34. (c)
$$\frac{n_1 + n_2 = 4}{n_1 - n_2 = 2}$$
 so $n_1 = 3$ and $n_2 = 1$
 $\overline{v} = R(3)^2 \left\{ \frac{1}{(3)^2} - \frac{1}{(1)^2} \right\} = 8R$

- 35. (b) Magnetic moment = 2.83

 Number of unpaired electrons = 2

 Hence Ni²⁺ is the answer.
- 36. (a) Angular momentum J = mvr $J^2 = m^2 v^2 r^2$ or $\frac{J^2}{2} = \left(\frac{1}{2}mv^2\right)mr^2$ or $KE = \frac{J^2}{2mr^2}$
- 37. (c) Bohr's theory is applicable only for H and H-like species.
- 38. (b) Value of m = -l, including zero.
- 39. (d) Electronic configuration of atomic number 24 is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$
- 40. (a) This is the range of visible region.
- 41. (b) $3s^2 3p^5$ is the configuration of Br.
- 42. (d) Average atomic mass of Cl is 35.5, due to isotopes
- 43. (b) Net charge is -1
- 44. (a) Largest amount of energy is required in $n = \infty$ to n = 1.
- 45. (d) For m=2 l=0, 1 are not possible