Vectors and their Applications

Type – 1

Choose the most appropriate option (a, b, c or d).

Q 1.	. ABCDEF is a regular hexagon where centre O is the origin. If the position vectors of A and B are				
	$\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{2i} + \vec{j} + \vec{k}$	respectively then \overrightarrow{BC} is	equal to		
	(a) $\vec{i} - \vec{j} + 2\vec{k}$	(b) $-\vec{i}+\vec{j}-2\vec{k}$	(c) $\vec{3i+3j-4k}$	(d) none of these	
Q 2.		two vertices and the cer on vector of the third vert	ntroid of a triangle are $\stackrel{\rightarrow}{i}$ + tex of the triangle is	$\vec{j}, 2\vec{i} - \vec{j} + 4\vec{k}$ and \vec{k}	
	(a) $-3\vec{i}+2\vec{k}$	(b) $3\vec{i}-2\vec{k}$	(c) $\vec{i} + \frac{2}{3}\vec{k}$	(d) none of these	
Q 3.	Let the position vectors respectively. Then the		$\vec{i} + 2\vec{j}, +3\vec{k}, -\vec{i} - \vec{j} + 8\vec{k}$ a	nd $-4\vec{i}+4\vec{j},6\vec{k}$	
	(a) right angled		(c) isosceles	(d) none of these	
Q 4.	$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors	of which every pair is no	oncollinear. If the vector	$\stackrel{\rightarrow}{a+b}$ and are collinear	
with \vec{c} and \vec{a} respectively then $\vec{a} + \vec{b} + \vec{c}$ is					
	(a) a unit vector	(b) the null vector	(c) equally inclined to a	$\stackrel{\rightarrow}{a}$, b, c (d) none of these	
Q 5.	If $\vec{r} = 3\vec{i} + 2\vec{j} - 5\vec{k}, \vec{a} = 2$ then	$\vec{i} - \vec{j} + \vec{k}, \vec{b} = \vec{i} + \vec{3} \vec{j} - \vec{2} \vec{k}$	and $\vec{s c} = 2\vec{i} + \vec{j} - 3\vec{k}$ such	that $\vec{r} = \lambda \vec{a} + \mu \vec{b} + v \vec{c}$	
	(a) $\mu, \frac{\lambda}{2}, v \text{ are in AP}$	(b) λ , μ , v are in AP	(c) λ, μ, v are in HP	(d) $\mu,~\lambda,~v$ are in GP	
Q 6.	The position vectors of noncoplanar vectors. T		$+3\vec{c},\vec{a}-2\vec{b}+\lambda\vec{c}$ and $\mu\vec{a}-$	$\vec{5b}$ where $\vec{a}, \vec{b}, \vec{c}$ are	
	(a) $\lambda = -2\mu = \frac{9}{4}$	(b) $\lambda = -\frac{9}{4}, \mu = 2$	(c) $\lambda = \frac{9}{4}, \mu = -2$	(d) none of these	
Q 7.	then		$\stackrel{\rightarrow}{\beta k}$ are linearly dependen		
	(a) $\alpha = 1, \beta = -1$	(b) α = 1, β = ± 1	(c) $\alpha = -1$, $\beta = \pm 1$ the bisectors of the angle	(d) $\alpha = \pm 1, \beta = 1$	
Q 8.	Let $\vec{OA} = \vec{a}$ and $\vec{OB} = \vec{I}$	$\vec{\mathfrak{o}}$. A vector along one of		e ∠AOB is	
	(a) $\vec{a} + \vec{b}$	(b) $\vec{a} - \vec{b}$	(c) $\frac{\overrightarrow{a}}{ \overrightarrow{a} } + \frac{\overrightarrow{b}}{ \overrightarrow{b} }$	(d) none of these	
Q 9.			to a rectangular Cartesia ne anticlockwise sense. I		

components p + 1 and 1 with respect to the new system then

	(a) p = 1, $-\frac{1}{3}$	(b) p = 0	(c) $p = -1$, $\frac{1}{3}$	(d) p = 1, - 1			
Q 10.	. If \vec{a} and \vec{b} are two vectors of magnitude inclined at an angle 60° then the angle between \vec{a} and						
	$\dot{a} + \dot{b}$ is						
	(a) 30°	(b) 60°	(c) 45°	(d) none of these			
Q 11.	Let $ \vec{a} = \vec{b} = \vec{a} - \vec{b} =$	1Then the angle betweer	\vec{a} and \vec{b} is				
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$			
Q 12.	A vector of magnitude	4 which is equally incline	d to the vectors $\vec{i} + j, \vec{j} +$	$\vec{k} \vec{k} + \vec{i}$ is			
	(a) $\frac{4}{\sqrt{3}}(\vec{i}-\vec{j}-\vec{k})$	(b) $\frac{4}{\sqrt{3}}(\vec{i}+\vec{j}-\vec{k})$	(c) $\frac{4}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k})$	(d) none of these			
Q 13.	If $\vec{a} + \vec{b} = 2\vec{i}$ and $2\vec{a} - \vec{b}$	$\vec{b} = \vec{i} - \vec{j}$ then cosine of th	e angle between $\stackrel{\rightarrow}{a}$ and	$\stackrel{\rightarrow}{b}$ is			
	(a) $\sin^{-1}\frac{4}{5}$	(b) $\cos^{-1}\frac{4}{5}$	(c) $\cos^{-1}\frac{3}{5}$	(d) none of these			
Q 14.	Let $ \vec{a} = 1, \vec{b} = \sqrt{2}, \vec{c} $	$ =\sqrt{3}$, and $\vec{a} \perp (\vec{b} + \vec{c}), \vec{b}$.	$\perp (\vec{c} + \vec{a}) \text{ and } \vec{c} \perp (\vec{a} + \vec{b}).$	Then $ \vec{a} + \vec{b} + \vec{c} $ is			
	(a) √6 these	(b) 6	(c) √ <u>14</u>	(d) none of			
Q 15.	$(\vec{a}.\vec{i})\vec{i}+(\vec{a}.\vec{j})\vec{j}+(\vec{a}.\vec{k})$	is equal to					
	(a) $\vec{i} + \vec{j} + \vec{k}$	(b) á	(c) 3a [→]	(d) none of these			
Q 16.	If a, b, are unit vectors and b is	such that a + b is also a	unit vector then the angl	e between the vectors a			
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{2\pi}{3}$			
Q 17.	$ \vec{fa}.\vec{i} = \vec{a}.(\vec{i} + \vec{j}) = \vec{a}.(\vec{i} + \vec{j})$	$\vec{+j} \cdot \vec{+k}$ =1 then \vec{a} is					
	(a) $\vec{i} - \vec{j}$	(b) i	(c) _j	(d) \vec{k}			
Q 18.	$(\vec{a}.\vec{i})^2 + (\vec{a}.\vec{j})^2 + (\vec{a}+\vec{k})$)² is equal to					
	(a) [→] a	(b) 3	(c) $ \vec{a}.(\vec{i}+\vec{j}+\vec{k}) ^2$	(d) \vec{k}			
Q 19.	$ \vec{a} + \vec{b} ^2 - \vec{a} - \vec{b} ^2$ is equivalent	ual to					
	(a) 4a.b	(b) 0	(c) 4 a.b	(d) none of these			
Q 20.		, rth terms of an HP and					
	then $\vec{\mu} = (q-r)\vec{i} + (r-r)\vec{i}$	b) $\vec{j} + (p-q)\vec{k}, \vec{v}\frac{\vec{i}}{a} + \vec{j}\frac{\vec{j}}{b} + \vec{k}\frac{\vec{k}}{c}$					
	(a) $\stackrel{\rightarrow}{\mu} \cdot \stackrel{\rightarrow}{v}$ are parallel vec	ctors	(b) $\stackrel{\rightarrow}{\mu} \stackrel{\rightarrow}{v}$ are orthogonal	vectors			
	(c) $\vec{\mu} \cdot \vec{v} = 1$		(d) $\vec{\mu} \vec{x} \vec{v} = \vec{i} + \vec{j} + \vec{k}$				
Q 21.	If $\vec{a} + \vec{b} \perp \vec{a}$ and $ \vec{b} = \sqrt{2}$	$\sqrt{2} \vec{a} $ then					

	(a) $(2\vec{a} + \vec{b}) \parallel \vec{b}$	(b) $(2\vec{a} + \vec{b}) \perp \vec{b}$	(c) $(2\overrightarrow{a}-\overrightarrow{b})\perp\overrightarrow{b}$	(d) $(2\overrightarrow{a}+\overrightarrow{b})\perp\overrightarrow{a}$	
Q 22.	Let $\vec{a} = 2\vec{i} + \vec{j} + \vec{k}, \vec{b} = \vec{k}$	$\vec{i} + 2\vec{j} - \vec{k}$ and a unit vecto	\vec{c} be coplanar. If \vec{c} is p	perpendicular to \vec{a} then \vec{c}	
	(a) $\frac{1}{\sqrt{2}}(-\overrightarrow{j}+\overrightarrow{k})$	(b) $\frac{1}{\sqrt{3}}(-\vec{i}-\vec{j}+\vec{k})$	(c) $\frac{1}{\sqrt{5}}(\vec{i}-2\vec{j})$	(d) $\frac{1}{\sqrt{3}}(\vec{i}-\vec{j}-\vec{k})$	
Q 23.	Let $\vec{\lambda} = \vec{a} \cdot \vec{x} \cdot \vec{b} + \vec{c}$, $\vec{\mu} = \vec{b}$	$\vec{v} \cdot \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$ and $\vec{v} = \vec{v} \cdot \vec{v} \cdot \vec{v}$	$\dot{\mathbf{p}}$). Then		
	•	(b) $\vec{\lambda}, \mu, \vec{v}$ are coplanar	•	(d) none of these	
Q 24.	Let $\vec{a}, \vec{b}, \vec{c}$ be three unit respectively then $\cos \phi$	t vectors such that $ \stackrel{\rightarrow}{\mathbf{a}} \stackrel{\rightarrow}{\mathbf{b}} \stackrel{\rightarrow}{\mathbf{a}} \alpha$ + cos β is equal to	$+\vec{c} = 1 \vec{a} \perp \vec{b}$. If \vec{c} make	s angles α , β with $\overrightarrow{a,b}$	
	(a) $\frac{3}{2}$	(b) 1	(c) – 1	(d) none of these	
Q 25.	If $\vec{a}, \vec{b} \vec{c}$ are three vector	ors of equal magnitude ar	nd the angle between ea	ch pair of vectors is $\frac{\pi}{3}$	
	such that $ \vec{a} + \vec{b} + \vec{c} = -$	$\sqrt{6}$ then $ \vec{a} $ is equal to			
	(a) 2	(b) — 1	(c) 1	(d) $\frac{1}{3}\sqrt{6}$	
Q 26.	lf a = 5, a –b =8 ar	$\vec{a} + \vec{b} = 10$ then \vec{b}	is		
	(a) 1	(b) √57	(c) 3	(d) none of these	
Q 27.	If \vec{a} and \vec{b} are unit vec	ctors and α is the angle b	between them then $\cos \frac{\alpha}{2}$	is	
	(a) $\frac{1}{2} \vec{a} + \vec{b} $	(b) $\frac{1}{2} \vec{a} - \vec{b} $	(c) $ \vec{a} + \vec{b} $	(d) none of these	
Q 28.	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $ then				
		(b) $\vec{a} \perp \vec{b}$	(c) \vec{a} = \vec{b}	(d) none of these	
Q 29.	Two vectors $\vec{a} = \vec{i} + \frac{\vec{i}}{\sqrt{2}}$	and $\vec{b} = \frac{\vec{i}}{\sqrt{2}} + \vec{j}$ are			
	(a) perpendicular to ea		(b) parallel to each other		
	(c) inclined to each oth	her at an angle $\frac{\pi}{3}$	(d) inclined to each other at an angle $\frac{\pi}{6}$		
Q 30.	Let $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}, \vec{b} = \vec{k}$	$\vec{i} + 3\vec{j} - \vec{k}$ and $\vec{c} = \vec{i} + \vec{j} - 2\vec{k}$	$2\overset{ ightarrow}{k}$. Avector in the plane	if \vec{b} and \vec{c} whose	
	projection on $\stackrel{\rightarrow}{a}$ has the	e magnitude $\stackrel{\rightarrow}{a}$ is			
	(a) $2\vec{i}+3\vec{j}-3\vec{k}$	(b) $2\vec{i}+3\vec{j}+3\vec{k}$	(c) $-2\vec{i}-\vec{j}+5\vec{k}$	(d) $2\vec{i} + \vec{j} + 5\vec{k}$	
Q 31.	ABC is an equilateral t	riangle of side a. The valu	ue of $\overrightarrow{AB}.\overrightarrow{BC}+\overrightarrow{BC}.\overrightarrow{CA}+$	$\vec{CA}.\vec{AB}$ is equal to	
	(a) $\frac{3a^2}{2}$	(b) 3a ²	(c) $-\frac{3a^2}{2}$	(d) none of these	
Q 32.	If $\vec{a} = \vec{i} + \vec{j}, \vec{b} = 2\vec{j} - \vec{k}$ a	and $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{a}$	$\vec{x b}$ then \vec{r} is equal to $ \vec{r} $		

	(a) $\frac{1}{\sqrt{11}}(\vec{i}+3\vec{j}-\vec{k})$	(b) $\frac{1}{\sqrt{11}}(\vec{i}-3\vec{j}+\vec{k})$	(c) $\frac{1}{\sqrt{11}}(\vec{i}-\vec{j}+\vec{k})$	(d) none of these			
Q 33.	5. $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2$ is equal to						
	(a) 0	(b) $ \vec{a} ^2 \vec{b} ^2$	(c) $(\vec{a} + \vec{b})^2$	(d) 1			
Q 34.	If $\stackrel{\rightarrow}{p,q}_{are}$ are two noncolling	near and nonzero vector	such that				
	where a,b,c are the lea (a) right angled	(b) obtuse angled	angle, then the triangle i (c) equilateral	(d) isosceles			
Q 35.	\rightarrow		$\vec{c} = (\vec{a} - \vec{b}) \cdot \vec{c} = 0$ then $(\vec{a} - \vec{b}) \cdot \vec{c} = 0$				
	(a) 0	(b) a	(c) \vec{b}	(d) none of these $\rightarrow \rightarrow \rightarrow$			
Q 36.		\rightarrow	rs $a = i + j + k$ and $b = 2$	$2\vec{i} - \vec{j} + 3\vec{k}$ and making an			
	acute angle with the w						
	(a) $-\frac{1}{\sqrt{26}}(4\vec{i}-\vec{j}-3\vec{k})$	(b) $\frac{1}{\sqrt{26}}(4\vec{i}-\vec{j}-3\vec{k})$	(c) $\frac{1}{\sqrt{26}} (4\vec{i} - \vec{j} + 3\vec{k})$	(d) none of these			
Q 37.	Let $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}, \vec{b} =$	$2\vec{i}+3\vec{j}-\vec{k}$ and $\vec{c}=\lambda\vec{i}+\vec{k}$	$\vec{j}(2\lambda - 1)\vec{k}$. If \vec{c} is paralle	el to the plane of the			
	vectors \vec{a} and \vec{b} then						
0.00	(a) 1	(b) 0	(c) – 1 → → → → → + · · · · ·	(d) 2 \vec{b} angle between \vec{b} and be α			
Q 38.	Let a be a unit vector then $\vec{b} \times \vec{c}$ is	perpendicular to unit vec	tors b and c and if the	angle between b and be α			
		(b) $\csc \alpha \overrightarrow{a}$	(c) $\sin \alpha \dot{a}$	(d) none of these			
Q 39.	If $\vec{a}.\vec{b}=0$ and $\vec{a}.\vec{x}.\vec{b}=0$	$\vec{0}$ then					
	(a) a b	(b) $\vec{a} \perp \vec{b}$	(c) $\vec{a} = \vec{b} \text{ or } = \vec{b} = \vec{0}$	(d) none of these			
Q 40.	The area of the paralle	elogram whose diagonals	s represent the vectors	$\vec{i} + \vec{j} - 2\vec{k}$ and $\vec{i} - 3\vec{j} + 4\vec{k}$			
	is (a) 10√3	(b) 5√3	(c) 8	(d) 4			
Q 41.		$(\vec{j}) + (\vec{r} \cdot \vec{k})(\vec{r} \times \vec{k})$ is equal		(u) +			
Q +1.	(a) $\vec{3r}$	(b) r					
Q 42.			(c) 8 fying $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} =$	(d) none of these			
Q 42.							
	Ũ	(b) $\frac{1}{3}(5\vec{i}-2\vec{j}-2\vec{k})$		(d) none of these			
Q 43.			g through the points who	ose position vector are			
	$\vec{i} - \vec{j} + 2\vec{k} - 2\vec{i} - \vec{k}$ and		1 -> -> ->				
	(a) $2\vec{i}+\vec{j}+\vec{k}$	(b) $\frac{1}{\sqrt{6}}(2\vec{i}+\vec{j}+\vec{k})$	(c) $\frac{1}{\sqrt{6}}(\vec{i}+2\vec{j}+\vec{k})$	(d) none of these			
Q 44.	Let $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and v,	where $\vec{a} \cdot \vec{b} \neq 0$. Then \vec{r}	is equal to				

	$\rightarrow \rightarrow$		(b) $\vec{b} - \frac{\vec{b} \cdot \vec{c}}{\vec{a} \rightarrow \vec{a}} \vec{a}$		
	(a) $\vec{b} + t\vec{a}$ where t is a s	calar	(b) b− <u>→</u> → a a.c		
	(c) $\vec{a} - \vec{c}$		(d) none of these		
Q 45.	For the vectors $\vec{u}, \vec{v}, \vec{w}$ three option?	which of the following ex_{\parallel}	pressions is not equal to	any one of the remaining	
	(a) $\vec{u}.(\vec{v} \times \vec{w})$	(b) $(\overrightarrow{v} x \overrightarrow{w}) . \overrightarrow{u}$	(c) $\vec{v}.(\vec{u} \times \vec{w})$	(d) $(\vec{u} \times \vec{v}).\vec{w}$	
Q 46.	For three noncoplanar	vectors $\vec{a}, \vec{b}, \vec{c}$ the relation	hold ו		
	$ \overrightarrow{a} x \overrightarrow{b} . \overrightarrow{c} = \overrightarrow{a} $	b c			
	holds if and only if (a) $\vec{b} \cdot \vec{c} - \vec{c} \cdot \vec{a} = 0$	(b) \overrightarrow{a} \overrightarrow{b} \overrightarrow{b} \overrightarrow{c} $\overrightarrow{-0}$	(c) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$	(d) $\overrightarrow{c} \overrightarrow{a} - \overrightarrow{a} \overrightarrow{b} - 0$	
Q 47.	$\vec{a} + \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \vec{c}$ $\vec{a} + \vec{b} \cdot \vec{c} \cdot \vec{c} + \vec{a}$ is eq		(0) 4.0 - 0.0 - 0.4 - 0	(d) 0.d = d.b = 0	
		(b) $3[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$	(c) $[\vec{a} \vec{b} \vec{c}]$	(d) 0	
Q 48.	$\vec{a} - \vec{b} \vec{b} - \vec{c} \vec{c} - \vec{a}$ is equ				
	(a) $2[\vec{a} \vec{b} \vec{c}]$	(b) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$	(c) 0	(d) none of these	
Q 49.	Let $\overrightarrow{a,b,c}$ be three unit	vectors and $\overrightarrow{a.b} = \overrightarrow{a.c} =$	0 . If the angle between	\vec{b} and \vec{c} is $\frac{\pi}{2}$ then	
	[abc] is equal to			5	
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{1}{2}$	(c) 1	(d) none of these	
	Z	2	$\rightarrow \rightarrow \rightarrow$		
Q 50.			s. If p,q,r lie in a plane, v	vhere	
	p = a i – a j+bk,q = i+ (a) then AM of a,c	\vec{k} and $\vec{r} = \vec{c} \cdot \vec{i} + \vec{c} \cdot \vec{j} + \vec{bk}$, (b) then GM if a,c		(d) equal to 0	
Q 51.	. ,	is not equal to s $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$		(.,	
	(a) $\vec{a}.\vec{b}.\vec{x}.\vec{c}$	(b) $\vec{c} \times \vec{a} \cdot \vec{b}$	(c) $\vec{b}.\vec{a}.\vec{x}.\vec{c}$	(d) $\vec{c}.\vec{a}x\vec{b}$	
0.52	$ \stackrel{\rightarrow}{}_{a,b} $	$\dot{\vec{b}} \times \vec{c} + \dot{\vec{b}} \times \vec{c} \times \vec{a} + \dot{\vec{c}} \times \vec{a} \times \vec{b}$ is	equal to		
G 02.	CX	a.b axb.c bxc.a			
0.52	(a) 3 $\rightarrow \rightarrow \rightarrow$ a b c are perceptoper	(b) 1 vectors and $\vec{p}, \vec{q}, \vec{r}$ are de	(c) 0	(d) none of these	
Q 53.					
	$\vec{p} = \frac{D}{\vec{b}}$	$\frac{\overrightarrow{xc}}{\overrightarrow{ca}}, \overrightarrow{q} = \frac{\overrightarrow{cxa}}{\overrightarrow{cab}}, \overrightarrow{r} = \frac{\overrightarrow{axb}}{\overrightarrow{ab}}$	<u>}</u> }]		
	$(\overrightarrow{a}+\overrightarrow{b}).\overrightarrow{p}+(\overrightarrow{b}+\overrightarrow{c}).\overrightarrow{q}+(\overrightarrow{c}+\overrightarrow{c})$	\vec{a}). r is equal to			
	(a) 0	(b) 1	(c) 2	(d) 3	

Q 54.	. If a,b,c are three noncoplanar vectors represented by concurrent edges of a parallelepiped of volume 4 then					
	$(\vec{a} + \vec{b}).(\vec{b} \times \vec{c}) + (\vec{b} \times c).(\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}).(\vec{a} \times \vec{b})$					
	is equal to					
	(a) 12	(b) 4	(c) ± 12	(d) 0		
Q 55.		oplanar nonzero vectors \vec{r}	then			
		.b)cxa+(a.c)axb				
	Is equal to $\rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow$			
		(b) $[\vec{c} \vec{a} \vec{b}]\vec{b}$		(d) none of these		
Q 56.		endicular to $a+b+c$, wh	here $[a \ b \ c] = 2$. If $r = I($	$\vec{b} \cdot \vec{c}$ + m($\vec{c} \cdot \vec{x} \cdot \vec{a}$) + n($\vec{a} \cdot \vec{x} \cdot \vec{b}$)		
	then l + m + n is (a) 2	(b) 1	(c) 0	(d) none of these		
Q 57.		. ,	$\vec{c} + \vec{b}$)x($\vec{c} + \vec{a}$).($\vec{c} + \vec{b} + \vec{a}$) is			
	(a) $3[\vec{a} \vec{b} \vec{c}]$	(b) 0	(c) $[\vec{a} \vec{b} \vec{c}]$	(d) none of these		
0.59		. ,	→ → → → → → ⊦b+c a−c a−b]is equa			
Q 58.		_	_			
	(a) 0		(c) $-3[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]$	(d) 2[a b c]		
Q 59.	$[\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b+c} \stackrel{\rightarrow}{a+b+c}]$ is e					
	(a) 0	(b) $2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$	(c) $[\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}]$	(d) none of these		
Q 60.	If \vec{a}, \vec{b} are nonezero an	d noncolinear vectors the	en $[\vec{a}, \vec{b}, \vec{i}]\vec{i} + [\vec{a}, \vec{b}, \vec{j}]\vec{j} + [\vec{a}, \vec{b}, j$	$\vec{a} \vec{b} \vec{k} \vec{k}$ is equal to		
	(a) $\vec{a} + \vec{b}$	(b) $\vec{a} \times \vec{b}$	(c) $\vec{a} - \vec{b}$	(d) $\vec{b} \times \vec{a}$		
Q 61.	The three concurrent e	edges of a parallelpiped r	respesent the vectors $\stackrel{\rightarrow}{a}$,	$\overrightarrow{b}, \overrightarrow{c}$ such that $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \lambda$.		
			ee concurrent edges are	the three concurrent		
	(a) 2λ	es of the given parallelpip (b) 3λ	ed Is (c) λ	(d) none of these		
Q 62.	$\vec{i} x(\vec{a}x\vec{i}) + \vec{j} x(\vec{a}x\vec{j}) +$	()		. ,		
	(a) 2 ^ă	(b) 3 ^a	(c) ₀	(d) none of these		
Q 63.	Let \vec{a}, \vec{b} and \vec{c} be three	e vectors having magnitu	ides 1,1 and 2 respective	ely. If $\overrightarrow{a} x(\overrightarrow{a} x \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$,		
	the acute angle betwee	en \vec{a} and \vec{c} is				
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{6}$	(d) none of these		
Q 64.	0	n $(\vec{a}.\vec{b})\vec{b}+\vec{b}x(\vec{a}x\vec{b})$ is eq	9			
- • · ·	$\rightarrow^2 \rightarrow$		\rightarrow			
	(a) a b	(b) $(\vec{a}.\vec{b})\vec{a}$	(c) a	(d) none of these		

0.05	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	→, b+c	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
Q 65.	Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \cdot \vec{x} \cdot \vec{b} \cdot \vec{c} = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ and the angles between \vec{a}, \vec{c} and \vec{a}, \vec{b}					
	be α and β respectively		•			
	(a) $\alpha = \frac{3\pi}{4}, \beta = \frac{\pi}{4}$	(b) $\alpha = \frac{\pi}{4}, \beta = \frac{7\pi}{4}$	(c) $\alpha = \frac{\pi}{4}, \beta = \frac{3\pi}{4}$	(d) none of these		
Q 66.	Let $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ be three mut	ually perpendicular vecto	rs of the same magnitud	e. If a vector $\stackrel{\rightarrow}{\mathbf{x}}$ satisfies		
	the equation					
	$\vec{p} x \{ (\vec{x} - \vec{q}) x \vec{p} \}$	$+ \overrightarrow{q}x{(\overrightarrow{x}-\overrightarrow{r})}x\overrightarrow{q} + \overrightarrow{r}{(\overrightarrow{x}-\overrightarrow{p})}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} = 0$			
	this x is given by	4	4	A		
	(a) $\frac{1}{2}(\vec{p}+\vec{q}-2\vec{r})$	(b) $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$	(c) $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$	(d) $\frac{1}{3}(2\vec{p}+\vec{q}+\vec{r})$		
Q 67.	If . and x represent dot meaningless?	product and cross produ	ct respectively then whic	h of the following is		
	(a) $(\overrightarrow{a} x \overrightarrow{b}).(\overrightarrow{c} x \overrightarrow{d})$	(b) $(\overrightarrow{a} x \overrightarrow{b}) x (\overrightarrow{c} x \overrightarrow{d})$	(c) $(\overrightarrow{a}.\overrightarrow{b})(\overrightarrow{c}.\overrightarrow{x}.\overrightarrow{d})$	(d) $(\vec{a}.\vec{b})x(\vec{c}x\vec{d})$		
Q 68.	$(\vec{a} \times \vec{i})^2 + (\vec{a} \times \vec{j})^2 + (\vec{a} \times \vec{j})^2$					
	(a) $\stackrel{\rightarrow^2}{a}$	(b) 3a ^{→2}	(c) $2a^{\rightarrow^2}$	(d) none of these		
Q 69.	If $\ \overrightarrow{abxc} $ then (\overrightarrow{axb}) .	$(\dot{a} x \dot{c})$ is equal to				
	(a) $\stackrel{\rightarrow^2}{a} \stackrel{\rightarrow}{(b.c)}$	(b) $\overrightarrow{b}^2 \overrightarrow{a.c}$	(c) $\overrightarrow{c}^{a}(\overrightarrow{a.b})$	(d) none of these		
Q 70.	If $\vec{a}, \vec{b}, \vec{c}$ are noncoplana	r nonzero vectors then				
	(axb)x(axc)-	$+(\vec{b} \times \vec{c}) \times (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{c} \times a$	(cxb)			
	is equal to					
	(a) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]^2 (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$	(b) $\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}$	(c) ₀	(d) none of these		
Q 71.	If $\vec{a}, \vec{b}, \vec{c}$ are three nonce	oplanar nonzero vectors	and $\stackrel{\rightarrow}{r}$ is any vector in s	pace then		
	$(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times \vec{c}$	$(\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is	equal to			
	(a) $2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]\overrightarrow{r}$	(b) $3[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]\overrightarrow{r}$	(c) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{r}$	(d) none of these		
Q 72.	Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit	vectors of which $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{b}$	$\stackrel{\scriptscriptstyle ightarrow}{c}$ are nonparallel. Let the	e angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$		
	be $\boldsymbol{\alpha}$ and that between	$\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ be α and that I	between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{c}$ be β . I	$\vec{a} x(\vec{b} x \vec{c}) = \frac{1}{2} \vec{b}$ then		
	(a) $\alpha = \frac{\pi}{3}, \beta \frac{\pi}{2}$	(b) $\alpha = \frac{\pi}{2}, \beta \frac{\pi}{3}$	(c) $\alpha = \frac{\pi}{6}, \beta = \frac{\pi}{3}$	(d) none of these		
Q 73.	Let $\vec{a} = 2\vec{i} + \vec{j} - 2\vec{k}$ and	$\vec{b} = \vec{i} + \vec{j}$. If \vec{c} is a vector	such that $\vec{a} \cdot \vec{c} = \vec{c} , \vec{c} - \vec{c} $	$\stackrel{\rightarrow}{a} \mid = 2\sqrt{2}$ and the angle		
	between $\vec{a} \times \vec{b}$ and \vec{c} is	s 30° then $ (\vec{a} \times \vec{b}) \times \vec{c} $ is	equal to			
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) 2	(d) 3		
Q 74.	Let \vec{a} , and \vec{b} be two no	oncollinear unit vectors.	If $\vec{u} = \vec{a} - (\vec{a}.\vec{b})\vec{b}$ and $\vec{v} =$	$\vec{a} \times \vec{b}$ then $ \vec{v} $ is		

	(a) u	(b) \vec{u} + \vec{u} . \vec{a}	(c) $ \vec{u} + \vec{u}.\vec{b} $	(d) $ \vec{u} + \vec{u} \cdot (\vec{a} + \vec{b})$				
Q 75.	If $\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}$ be three vector	s such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ t	hen laxb bxc cxalis	equal to				
	(a) 8 (b) 16 (c) 64 (d) none of these							
Q 76.	If \vec{d} is a unit vector such that $\vec{d} = \lambda \vec{b} \cdot \vec{x} \cdot \vec{c} + \mu \vec{c} \cdot \vec{x} \cdot \vec{a} + v \cdot \vec{a} \cdot \vec{x} \cdot \vec{b}$ then							
		$(\overrightarrow{b} x \overrightarrow{c}) + (\overrightarrow{d} . \overrightarrow{b})(\overrightarrow{c} x \overrightarrow{a}) + (\overrightarrow{d} .$						
	is equal to							
	(a) [a b c]	(b) 1	(c) $3 [\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}] $	(d) none of these				
Q 77.	$\vec{a} x (\vec{b} x \vec{c}), \vec{b} x (\vec{c} x \vec{a})$ and (a) linearly	(b) dependent	(c) equal vectors	(d) none of these				
Q 78.	$[\vec{b} \ \vec{c} \ \vec{b} \ \vec{x} \ \vec{c}] + (\vec{b} \ \vec{c})^2$ is equation	qual to						
		(b) $(\overrightarrow{b} + \overrightarrow{c})^2$		(d) none of these				
Q 79.	If the vector $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and	\vec{d} are coplanar then $(\vec{a} x)$	$(\vec{b})x(\vec{c}x\vec{d})$ is equal to					
	(a) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$	(b) o	(c) $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} + \overrightarrow{d}$	(d) none of these				
Q 80.	If $\vec{a}x(\vec{a}x\vec{b}) = \vec{b}x(\vec{b}x\vec{c})$	and $\vec{a} \cdot \vec{b} \neq 0$ then $[\vec{a} \cdot \vec{b} \cdot \vec{c}]$	is equal to					
	(a) 0	(b) 1	(c) 2	(d) none of these				
Q 81.		$\overrightarrow{OC} = \overrightarrow{D}$ and $\overrightarrow{OC} = \overrightarrow{D}$, where (I OAB, and q denote the /q is equal to						
	(a) 4	(b) 6	(c) $\frac{1}{2} \frac{ \vec{a} - \vec{b} }{ \vec{a} }$	(d) none of these				
Q 82.	The position vectors of	the vertices A, B, C of a	triangle are $\vec{i} - \vec{j} - 3\vec{k}, 2$	$\vec{i} + \vec{j} - 2\vec{k}$ and				
	$-5\vec{i}+2\vec{j}-6\vec{k}$ respecti segment BC, is	vely. The length of the bi	sector AD of the angle B	AC where D is on the line				
	(a) $\frac{15}{2}$	(b) <u>1</u>	(c) $\frac{11}{2}$	(d) none of these				
Q 83.	P is a point on the line	through the point A whos	se position vector is \vec{a} and	d the line is parallel to the				
		e position vector of P is						
	(a) $\vec{a} + 6\vec{b}$	(b) $\vec{a} + \frac{6}{ \vec{b} } \vec{b}$	(c) $\vec{a} - 6\vec{b}$	(d) $\overrightarrow{b} + \frac{6}{\overrightarrow{a}} \overrightarrow{a}$				
Q 84.	The coplanar points A, respectively. Then	B,C,D are (2 – x, 2, 2), (2	2, 2 – y, 2), (2, 2, 2, 2 – z) and (1, 1, 1)				
	(a) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$	(b) x + y + z = 1	(c) $\frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z}$	(d) none of these				
Q 85.	Let $\overrightarrow{AB} = 3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ and	$\vec{AC}=\vec{i}-\vec{j}+3\vec{k}$. If the p	oint P on the line segme	nt BC is equidistant from				
	AB and AC then \overrightarrow{AP} is							

Q 86.	()	(b) $\vec{i} - 2\vec{k}$ between two diagonals		(d) none of these
	(a) $\frac{1}{3}$	(b) $\frac{2\sqrt{2}}{3}$		(d) none of these
Q 87.	If $\overrightarrow{AB} = \overrightarrow{b}$ and $\overrightarrow{AC} = \overrightarrow{c}$ t	hen the length of the per	pendicular from A to the	line BC is
	(a) $\frac{ \stackrel{\rightarrow}{b} x \stackrel{\rightarrow}{c} }{ \stackrel{\rightarrow}{b} + c }$	(b) $\frac{ \overrightarrow{b} \times \overrightarrow{c} }{ \overrightarrow{b} - \overrightarrow{c} }$	(c) $\frac{1}{2} \frac{ \overrightarrow{b} \times \overrightarrow{c} }{ \overrightarrow{b} - \overrightarrow{c} }$	(d) none of these
Q 88.	The distance of the poi (1, 1, 2) is	nt (1, 1, 1) from the plane	e passing through the po	ints (2, 1, 1), (1, 2, 1) and
	(a) $\frac{1}{\sqrt{3}}$	(b) 1	(c) √3	(d) none of these
Q 89.	The projection of the ve	ector $\vec{i} + \vec{j} + \vec{k}$ one the line	e whose vector equation	is
	$\vec{r} = (3+t)\vec{i} + (2t-1)\vec{j} +$	$3t \overset{ ightarrow}{k}$, t being the scalar p	parameter, is	
	(a) $\frac{1}{\sqrt{14}}$	(b) 6	(c) $\frac{6}{\sqrt{14}}$	(d) none of these
Q 90.	If the vertices of a tetra	hedron have the positior	n vectors $\vec{0}, \vec{i} + \vec{j}, 2\vec{j} - \vec{k}$ as	nd $\vec{i} + \vec{k}$ then the volume
	of the volume if of the t			
	(a) $\frac{1}{6}$	(b) 1	(c) 2	(d) none of these

Type 2

Choose the correct options. One or more option may be correct.

Q 91. A line passes through the point whose position vectors are $\vec{i} + \vec{j} - 2\vec{k}$ and $\vec{i} - 3\vec{j} + \vec{k}$. The position vector of a point on it at a unit distance from the first point is

(a)
$$\frac{1}{5}(\vec{6} \cdot \vec{i} + \vec{j} - 7\vec{k})$$
 (b) $\frac{1}{5}(\vec{4} \cdot \vec{i} + 9\vec{j} - 13\vec{k})$ (c) $\vec{i} - 4\vec{j} + 3\vec{k}$ (d) none of these

Q 92. A vector of magnitude 2 along bisector of the angle between the two vectors $2\vec{i}-2\vec{j}+\vec{k}$ and $\vec{i}+2\vec{j}-2\vec{k}$ is

(a)
$$\frac{2}{\sqrt{10}}(\vec{i}-\vec{k})$$
 (b) $\frac{1}{\sqrt{26}}(\vec{i}-4\vec{j}+3\vec{k})$ (c) $\frac{2}{\sqrt{26}}(\vec{i}-4\vec{j}+3\vec{k})$ (d) none of these

Q 93. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$, and perpendicular to $\vec{i} + \vec{j} + \vec{k}$, is

(a)
$$\frac{1}{\sqrt{2}}(-\vec{j}+\vec{k})$$
 (b) $\frac{1}{\sqrt{2}}(\vec{k}-\vec{i})$ (c) $\frac{1}{\sqrt{2}}(\vec{i}-\vec{k})$ (d) $\frac{1}{\sqrt{2}}(\vec{j}-\vec{k})$

Q 94. A unit vector which is equally inclined to the vectors $\vec{i}, \frac{-2\vec{i}+\vec{j}+2\vec{k}}{3}-\vec{k}$ and $\frac{-4\vec{j}-3\vec{k}}{5}$ is

(a)
$$\frac{1}{\sqrt{51}}(-\vec{i}+5\vec{j}-5\vec{k})$$
 (b) $\frac{1}{\sqrt{51}}(\vec{i}+5\vec{j}-5\vec{k})$ (c) $\frac{1}{\sqrt{51}}(\vec{i}+5\vec{j}+5\vec{k})$ (d) $\frac{1}{\sqrt{51}}(\vec{i}-5\vec{j}+5\vec{k})$

Q 95.	If $ \vec{a} = 4$, $ \vec{b} = 2$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ then $(\vec{a} \times \vec{b})^2$ equal to					
	(a) 48	(b) 16	(c) \overrightarrow{a}^2	(d) none of these		
Q 96.	Three points whose po	sition vectors are $\vec{a}, \vec{b}, \vec{c}$ v	vill be collinear if			
	(a) $\lambda \overrightarrow{a} + \mu \overrightarrow{b} = (\lambda + \mu) \overrightarrow{c}$	(b) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} =$	$\vec{0}$ (c) $[\vec{a} \vec{b} \vec{c}]$	(d) none of these		
Q 97.	Let $\vec{b} = 4\vec{i} + 3\vec{j}$. Let \vec{c}	be a vector perpendicula	ar to $\stackrel{\rightarrow}{b}$ and it lies in the x	–y plane. A vector in the		
	x-y plane having projec	ctions 1 and 2 along $\stackrel{\rightarrow}{\mathrm{b}}$ a	nd \vec{c} is			
	(a) $2\vec{i}-\vec{j}$	(b) $\vec{i} - 2\vec{j}$	(c) $\frac{1}{5}(-\vec{i}+11\vec{j})$	(d) none of these		
Q 98.	If $\vec{a}, \vec{b}, \vec{c}$ are noncoplana	ar nonzero vectors and	$\stackrel{\scriptscriptstyle ightarrow}{r}$ is any vector in space $\stackrel{\scriptscriptstyle ightarrow}{r}$	then		
	$[\vec{b} \ \vec{c} \ \vec{r}]\vec{a}+[\vec{c} \ \vec{a} \ \vec{r}]\vec{b}+[\vec{a}$	$\vec{b} \vec{r} \vec{c}$ is equal to				
	(a) $3[\vec{a} \vec{b} \vec{c}]\vec{r}$	(b) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{r}$	(c) $[\vec{b} \ \vec{c} \ \vec{a}]\vec{r}$	(d) none of these		
Q 99.	If $\vec{a}, \vec{b}, \vec{c}$ are nonecoplan	ar vectors such that $\stackrel{\rightarrow}{b}x$	$\vec{c} = \vec{a}, \vec{a} \times \vec{b} = \vec{c}$ and $\vec{c} \times \vec{a}$	$= \vec{b}$ then		
	(a) [→] =1	(b) $ \vec{b} = 1$	(c) $ \vec{a} + \vec{b} + \vec{c} = 3$	(d) none of these		
Q 100.	Let $\vec{a}, \vec{b}, \vec{c}$ be noncoplan	har vectors and $\vec{p} = \frac{\vec{b} \cdot \vec{c}}{[\vec{a} \cdot \vec{b}]}$	$\vec{c}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\vec{b} \cdot \vec{c}}, \vec{r} = \frac{\vec{c} \times \vec{a}}{\vec{b} \cdot \vec{c}}, \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{c} \cdot \vec{c}}$ the	n		
	(a) $\overrightarrow{p.a} = 1$	(b) $\overrightarrow{p.a} + \overrightarrow{q.b} + \overrightarrow{r.c} = 3$	(c) $\overrightarrow{p.a} + \overrightarrow{q.b} + \overrightarrow{r.c} = 0$	(d) none of these		
Q 101.	If $\vec{a}, \vec{b}, \vec{c}$ are any three v	ectors then $(\overrightarrow{a} x \overrightarrow{b}) x \overrightarrow{c}$ is a	a vector			
	(a) perpendicular to $\stackrel{\rightarrow}{a}$	¢ b	(b) coplanar with $\stackrel{ ightarrow}{ ext{a}}$ and	⊢ [→] b		
	(c) parallel to \vec{c}		(D) parallel to either $\stackrel{\rightarrow}{a}$	or b		
Q 102.	If $\vec{c} = \vec{a} \times \vec{b}$ and $\vec{b} = \vec{c} \times \vec{c}$					
	(a) $\vec{a}.\vec{b} = \vec{c}^2$	(b) $\overrightarrow{c} \cdot \overrightarrow{a} = \overrightarrow{b}^2$	(c) $\vec{a} \perp \vec{b}$	(d) $\vec{a} \parallel \vec{b} \times \vec{c}$		
Q 103.	If $\vec{x} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{c}$	$\stackrel{\rightarrow}{a}$ then $\stackrel{\rightarrow}{x}$ is equal to				
		(b) $\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b} \cdot \vec{a}}$		(d) none of these		
Q 104.	The resolved part of the	e vector $\stackrel{\rightarrow}{a}$ along the vect	or \vec{b} is $\vec{\lambda}$ and that perpe	ndicular to \vec{b} is $\vec{\mu}$. Then		
	(a) $\vec{\lambda} = \frac{\vec{(a.b)a}}{\vec{a}}$	(b) $\vec{\lambda} = \frac{(\vec{a}.\vec{b})\vec{b}}{\vec{b}^2}$	(c) $\stackrel{\rightarrow}{\mu} = \frac{(\vec{b}.\vec{b})\vec{a}-(\vec{a}.\vec{b})\vec{b}}{\stackrel{\rightarrow}{\overset{\rightarrow}{\overset{\rightarrow}{\overset{\rightarrow}{\overset{\rightarrow}{\overset{\rightarrow}{\overset{\rightarrow}{$	(d) $\stackrel{\rightarrow}{\mu} = \frac{\stackrel{\rightarrow}{b} x(\stackrel{\rightarrow}{a} x\stackrel{\rightarrow}{b})}{\stackrel{\rightarrow}{b}^2}$		
Q 105.	$(\overrightarrow{a} x \overrightarrow{b}.(\overrightarrow{c} x \overrightarrow{d})$ is equal to	0				
	(a) $\vec{a}.\{\vec{b}x(\vec{c}x\vec{d})\}$	(b) $(\vec{a}.\vec{c})(\vec{b}.\vec{d}) - (\vec{a}.\vec{d})(\vec{b}$	$\dot{\vec{b}}, \vec{c}$)(c) { $(\vec{a} \times \vec{b}) \times \vec{c}$ }.d	(d) $(\vec{d} \times \vec{c}).(\vec{b} \times \vec{a})$		
Q 106.		then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$ is a value				

- (a) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$
- (b) along the line of intersection of two planes, one containing \vec{a}, \vec{b} and the other containing \vec{c}, \vec{d}
- (c) equally inclined to both $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$

(d) none of these

Answers

1b	2a	3b	4b	5a	6c	7d	8c	9a	10a	
11b	12c	13b	14a	15b	16d	17b	18a	19a	20b	
21b	22a	23b	24c	25c	26b	27a	28b	29d	30c	
31c	32a	33b	34c	35a	36a	37b	38c	39c	40b	
41c	42a	43b	44b	45c	46c	47a	48c	49a	50c	
51c	52a	53d	54c	55a	56c	57c	58c	59a	60b	
61a	62a	63c	64c	65c	66b	67d	68c	69a	70b	
71a	72b	73b	74a	75b	76a	77a	78a	79b	80a	
81b	82a	83b	74a	85c	86a	87b	88a	89c	90a	
91a,b	92a,c	93a,d	94a,d	95b,c	96a,b	97a,c	98b,c	99a,b	,C	100a,b
101a,	b	102c,o	b	103b,o	C	104b,	c,d	105a,I	b,c,d	106b,c