Speed Test-25

1. **(d)** Wavelength of particle $(\lambda_1) = \frac{h}{mv} = \frac{h}{(1 \times 10^{-3}) \times v}$

where v is the velocity of the particle.

Wavelength of electron

$$(\lambda_2) = \frac{h}{(9.1 \times 10^{-31}) \times (3 \times 10^6)}$$

But $\lambda_1 = \lambda_2$

$$\therefore \frac{h}{(1 \times 10^{-3}) \times v} = \frac{h}{(9.1 \times 10^{-31}) \times (3 \times 10^{6})}$$

$$\Rightarrow v = \frac{9.1 \times 10^{-31} \times 3 \times 10^6}{10^{-3}}$$

$$= 2.73 \times 10^{-21} \, \text{ms}^{-1}$$

2. (a) For electron De-Broglie wavelength,

$$\lambda_e = \frac{h}{\sqrt{2mE}}$$

For photon E = pc

 \Rightarrow De-Broglie wavelength, $\lambda_{Ph} = \frac{hc}{E}$

$$\therefore \frac{\lambda_e}{\lambda_{Dh}} = \frac{h}{\sqrt{2mE}} \times \frac{E}{hc} = \left(\frac{E}{2m}\right)^{1/2} \frac{1}{c}$$

 (d) The electron ejected with maximum speed v_{max} are stopped by electric field E =4N/C after travelling a distance d=1m

$$\frac{1}{2}mv_{max}^2 = eEd = 4eV$$

The energy of incident photon = $\frac{1240}{200}$ = 6.2 eV

From equation of photo electric effect

$$\frac{1}{2}mv_{max}^2 = hv - \varphi_0$$

$$\phi_0 = 6.2 - 4 = 2.2 \text{ eV}$$

4. **(b)** $\lambda_{\min} = 1 \text{ Å (given)}$

$$\therefore \lambda_{\min} = \frac{1240}{E} \text{ (eV) (nm)}$$

Thus,
$$E = \frac{1240(eV)(nm)}{0.01(nm)} = 12400 eV$$

5. (a) The maximum kinetic energy of an electron accelerated through a potential difference of V volt is $\frac{1}{2}$ mv² =eV

$$\therefore$$
 maximum velocity $v = \sqrt{\frac{2eV}{m}}$

$$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 15000}{9.1 \times 10^{-31}}}$$

$$v = 7.26 \times 10^7 \,\text{m/s}$$

6. (b) Photoelectrons are emitted in A alone. Energy of electron needed if emitted from $A = \frac{h\nu}{e} eV$

$$\therefore E_{A} = \frac{\left(6.6 \times 10^{-34}\right) \times \left(1.8 \times 10^{14}\right)}{1.6 \times 10^{-19}} = 0.74 \,\text{eV}$$

$$E_B = \frac{\left(6.6 \times 10^{-34}\right) \times \left(2.2 \times 10^{14}\right)}{1.6 \times 10^{-19}} = 0.91 \text{ eV}$$

Incident energy 0.825 eV is greater than $\rm E_A(0.74~eV)$ but less than $\rm E_B(0.91~eV)$.

7. (a) According to relation, $E = \frac{1}{2} m v^2$

$$\sqrt{\frac{2E}{m}} = v$$

$$\lambda = \frac{h}{\sqrt{2mE}}$$

Because m₁ < m₂ < m₂

So for same λ , $E_1 > E_3 > E_2$.

Physics S-P-103

Emission of electron from a substance under the action of light is photoelectric effect. Light must be at a sufficiently high frequency. It may be visible light, U.V, X-rays. So U.V. cause electron emission.

9. **(b)**
$$\lambda_0 = \frac{c}{v_0} = \frac{3 \times 10^8}{5 \times 10^{14}} = 6 \times 10^{-7} \,\text{m} = 6000 \,\text{Å}$$

10. (c)
$$\lambda = \frac{h}{mv}$$
, $v = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$, $v \to c$, $m \to \infty$

hence, $\lambda \to 0$.

11. (a) Give that, only 25% of 200W converter electrical energy 16. (a) $:: \lambda_0 = \frac{hc}{h}$ into light of yellow colour

$$\left(\frac{hc}{\lambda}\right) \times N = 200 \times \frac{25}{100}$$

Where N is the No. of photons emitted per second, h is planck's constant and c is speed of light.

$$N = \frac{200 \times 25}{100} \times \frac{\lambda}{hc}$$

$$=\frac{200\times25\times0.6\times10^{-6}}{100\times6.2\times10^{-34}\times3\times10^{8}}=1.5\times10^{20}$$

$$E = \frac{hc}{\lambda} \implies \lambda_2 = \frac{hc}{F}$$
 ...(i)

for proton $E = \frac{1}{2} m_p v_p^2$

$$E = \frac{1}{2} \frac{m_p^2 v_p^2}{m} \implies p = \sqrt{2mE}$$

$$p = \frac{h}{\lambda_1} \Rightarrow \lambda_1 = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$
 ...(ii)

$$\frac{\lambda_2}{\lambda_1} = \frac{hc}{E \times \frac{h}{\sqrt{2mE}}} \infty E^{-1/2}$$

13. (a)
$$hv = W_0 + E_b = 3.5 + 1.2 = 4.7 \text{ eV}$$

14. (a)
$$\phi = 6.2 \text{ eV} = 6.2 \times 1.6 \times 10^{-19} \text{ J}$$

 $V = 5 \text{ volt}$

$$\frac{hc}{\lambda} - \phi = eV_0$$

$$\Rightarrow \lambda = \frac{hc}{\phi + eV_0}$$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} (6.2 + 5)} \approx 10^{-7} \,\mathrm{m}$$

This range lies in ultra violet range.

15. (c) Applying Einstein's formula for photo-electricity

$$hv = \phi + \frac{1}{2}mv^2$$
; $hv = \phi + K$

$$\phi = hv - K$$

If we use 2v frequency then let the kinetic energy becomes K

 $h \cdot 2v = \phi + K$ So. 2hv = hv - K + K'K' = hv + K

:
$$(\lambda_0)_{sodium} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{2 \times 1.6 \times 10^{-19}} = 6188 \,\text{Å}$$

$$\because \lambda_0 \propto \frac{1}{\phi} \Rightarrow \frac{(\lambda_0)_{sodium}}{(\lambda_0)_{copper}} = \frac{(\phi)_{copper}}{(\phi)_{sodium}}$$

$$\Rightarrow$$
 $(\lambda_0)_{copper} = \frac{2}{4} \times 6188 = 3094 \text{ Å}$

To eject photo-electrons from sodium the longest wavelength is 6188 Å and that for copper is 3094 Å.

Hence for light of wavelength 4000 Å, sodium is

17. (c)
$$\frac{1}{2}$$
 mv² = $\frac{hc}{\lambda} - \phi \Rightarrow v = \sqrt{\frac{2(hc - \lambda\phi)}{\lambda m}}$

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2.m.(K.E)}}$$

$$\therefore \lambda \propto \frac{1}{\sqrt{K.E}}$$

If K.E is doubled, wavelength becomes $\frac{\lambda}{\sqrt{2}}$

19. (b)
$$\frac{1}{2}$$
 m $v_1^2 = 2$ W₀ - W₀ = W₀ and

$$\frac{1}{2}m\,v_2^2 = 10\,W_0 - W_0 = 9W_0$$

$$\frac{v_1}{v_2} = \sqrt{\frac{W_0}{9 W_0}} = \frac{1}{3}$$

20. (a) The work function has no effect on photoelectric current so long as $hv > W_0$. The photoelectric current is proportional to the intensity of incident light. Since there is no change in the intensity of light, hence $I_1 = I_2$.

21. (c)
$$n \rightarrow 2-1$$

 $E = 10.2 \text{ eV}$
 $kE = E - \phi$
 $Q = 10.20 - 3.57$
 $h v_0 = 6.63 \text{ eV}$

EBD_7506

$$\upsilon_0 = \frac{6.63 \times 1.6 \times 10^{-19}}{6.67 \times 10^{-34}} = 1.6 \times 10^{15} \text{ Hz}$$

22. (d)
$$hv = W + \frac{1}{2}mv^2$$
 or $\frac{hc}{\lambda} = W + \frac{1}{2}mv^2$

Here
$$\lambda = 3000 \text{ Å} = 3000 \times 10^{-10} \text{ m}$$

and W = 1 eV = 1.6 × 10⁻¹⁹ joule

$$\therefore \frac{(6.6 \times 10^{-34})(3 \times 10^{8})}{3000 \times 10^{-10}}$$

=
$$(1.6 \times 10^{-19}) + \frac{1}{2} \times (9.1 \times 10^{-31}) v^2$$

Solving we get, $v \approx 10^6$ m/s

23. (b) According to Einstein's photoelectric equation, hv =

We have

$$hv = \phi_0 + 0.5$$

$$h\nu = \phi_0 + 0.5$$
 ...(i)
and $1.2h\nu = \phi_0 + 0.8$...(ii)

Therefore, from above two equations $\phi_0 = 1.0$ eV.

24. (c)
$$\lambda_{\text{max.}} = \frac{2d \sin \theta}{n_{\text{min.}}} = \frac{2 \times 15 \times \sin 90^{\circ}}{1} = 30 \text{ Å}$$

$$\begin{array}{ll} \textbf{25.} & \textbf{(d)} & W_0 = h \, v_1 - e V_1 \\ & = h \, v_2 - e \, V_2 \\ & e V_2 = h (v_2 - v_1) + e \, V_1 \\ & V_2 = \frac{h \left(n_2 - n_1 \right)}{e} + V_1 \end{array}$$

26. **(b)**
$$KE_{max} = hv - \phi$$

 $1eV = hv - 1.9eV \implies hv = 2.9 eV$

Now threshold wavelength (maximum wavelength), $\lambda_0 = \frac{hc}{F}$

$$\Rightarrow \lambda_0 = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.9 \times 1.6 \times 10^{-19}} = 6513 \text{ Å}$$

And threshold frequency

$$\nu_0 = \frac{c}{\lambda_0} = \frac{3 \times 10^8}{6513 \times 10^{-10}} = 4.6 \times 10^{14} Hz$$

27. (b)
$$E = W_0 + K_{max}$$
 ...(i) $\Rightarrow hf = W_A + K_A$...(ii)

and
$$2hf = W_B + K_B = 2W_A + K_B \left(\because \frac{W_A}{W_B} = \frac{1}{2} \right)$$

Dividing equation (i) by (ii)

$$\frac{1}{2} = \frac{W_A + K_A}{2W_A + K_B} \Rightarrow \frac{K_A}{K_B} = \frac{1}{2}$$

(d) $h\nu - h\nu_0 = E_{K^*}$ according to photoelectric equation, when $v = v_0$, $E_k = 0$. Graph (d) represents EK - v relationship.

29. (d)
$$K_{\text{max}} = \frac{hc}{\lambda} - W = \frac{hc}{\lambda} - 5.01$$

$$= \frac{12375}{\lambda(\text{in A})} - 5.01$$

$$= \frac{12375}{2000} - 5.01 = 6.1875 - 5.01 = 1.17775$$

30. (b)

31. (b)
$$\lambda \propto \frac{1}{\sqrt{V}}$$

$$\Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{100 \text{keV}}{25 \text{keV}}} = 2$$
$$\Rightarrow \lambda_2 = \frac{\lambda_1}{2}$$

- 32. (a) In the Davisson and Germer experiment, the velocity of electrons emitted from the electron gun can be increased by increasing the potential difference between the anode and filament.
- 33. (b) According to Einsten's photoelectric effect, the K.E. of the radiated electrons $K.E_{max} = E - W$

$$\frac{1}{2}mv_1^2 = (1 - 0.5) \text{ eV} = 0.5 \text{ eV}$$

$$\frac{1}{2}mv_2^2 = (2.5 - 0.5) \text{ eV} = 2 \text{ eV}$$

$$\frac{v_1}{v_2} = \sqrt{\frac{0.5}{2}} = \frac{1}{\sqrt{4}} = 1/2$$

- **34. (b)** By using $hv hv_0 = K_{max}$ $\Rightarrow h(v_1 - v_0) = K_1$ $\Rightarrow \frac{v_1 - v_0}{v_2 - v_0} = \frac{K_1}{K_2} = \frac{1}{K}, \text{ Hence } v_0 = \frac{kv_1 - v_2}{K - 1}.$
- 35. (b) Cathode rays get deflected in the electric field.
- 36. (c) As we know

$$\begin{split} \lambda & \propto \frac{1}{\sqrt{V}} \\ \therefore \frac{1}{\sqrt{100}} & : \frac{1}{\sqrt{200}} : \frac{1}{\sqrt{300}} = 1 : \frac{1}{\sqrt{2}} : \frac{1}{\sqrt{3}} \end{split}$$

37. (d) Number of emitted electrons No. ∞ Intensity

$$\propto \frac{1}{\text{(Distance)}^2}$$

Therefore, as distance is doubled, N_E decreases by (1/4) times.

Physics S-P-105

38. (d) Photoelectrons are emitted if the frequency of incident light is greater than the threshold frequency.

39. (a) K.E. =
$$hv - hv_{th} = eV_0$$
 ($V_0 = \text{cut off voltage}$)

$$\Rightarrow V_0 = \frac{h}{e} (8.2 \times 10^{14} - 3.3 \times 10^{14})$$

$$= \frac{6.6 \times 10^{-34} \times 4.9 \times 10^{14}}{1.6 \times 10^{-19}} \approx 2V.$$

40. (d)
$$\frac{hc}{\lambda} - \phi = eV_0$$

$$v_0 = \frac{hc}{e\lambda} - \frac{\phi}{e}$$

For metal A For metal B

$$\frac{\phi_A}{hc} = \frac{1}{\lambda} \qquad \qquad \frac{\phi_B}{hc} = \frac{1}{\lambda}$$

As the value of $\frac{1}{\lambda}$ (increasing and decreasing) is not specified hence we cannot say that which metal has comparatively greater or lesser work function (ϕ).

- 41. (c)
- 42. (d) Potential difference = 100 V

K.E. acquired by electron = e(100)

$$\frac{1}{2}mv^2 = e(100) \implies v = \sqrt{\frac{2e(100)}{m}}$$

According to de Broglie's concept

$$\lambda = \frac{h}{mv}$$

$$\Rightarrow \lambda = \frac{h}{m\sqrt{\frac{2e(100)}{m}}}$$

$$= \frac{h}{\sqrt{2me(100)}} = 1.2 \times 10^{-10} = 1.2 \text{Å}$$

43. (d) Since p = nhv

$$\Rightarrow n = \frac{p}{hy} = \frac{2 \times 10^{-3}}{6.6 \times 10^{-34} \times 6 \times 10^{14}} = 5 \times 10^{15}$$

44. (a) From formula

$$\lambda = \frac{h}{\sqrt{2mKT}}$$
=\frac{6.63\times 10^{-34}}{\sqrt{2\times 1.67\times 10^{-27}\times 1.38\times 10^{-23}T}} m
\text{[By placing value of \$h\$, \$m\$ and \$k\$)}

$$=\frac{30.8}{\sqrt{T}}$$
Å

45. (c) The photoelectric equation

 $K_{\text{max}} = hv - \phi_0$ Explains that the intensity of incident radiation will increase photocurrent only beyond the threshold frequency.