TRIANGLES AND ITS PROPERTIES

CONTENTS

- Triangle
- Interior and Exterior of a Triangle
- Types of Triangle
- Angle sum property of a Triangle
- Median & Altitude of a Triangle
- Exterior Angle of a Triangle
- Triangle Inequality
- Pythagoras Theorem

TRIANGLE

A geometrical figure formed by joining three noncollinear points by three line segments is called a triangle.

The triangle ABC has :

Sides : \overline{AB} , \overline{BC} , \overline{CA}

Vertices : A, B and C.

Angles : \angle BAC or \angle CAB, \angle ABC or \angle CBA and \angle ACB or \angle BCA.

A triangle is denoted by the symbol ' Δ '.

The three sides and three angles taken together are called six elements or six parts of a triangle.

♦ EXAMPLES ♦

- **Ex.1** Do three collinear points A, B and C form a triangle?
- **Sol.** No, three collinear points form a line.
- **Ex.2** For the triangle Δ LMN, name
 - (a) the side opposite to $\angle M$.
 - (b) the angle opposite to side LM.
 - (c) the vertex opposite to side NL.
 - (d) the side opposite to vertex N.
- **Sol.** (a) The side opposite to $\angle M$ is LN.
 - (b) The angle opposite to side LM is $\angle N$.
 - (c) The vertex opposite to side NL is M.
 - (d) The side opposite to vertex N is LM.
- **Ex.3** How many different triangles are in figure ? Name each of them.

Sol. $\triangle ABC, \triangle ADE, \triangle ABE, \triangle ADC, \triangle BFC, \triangle BFD, \\ \triangle BDE, \triangle CEF, \triangle CED, \triangle DEF, \triangle BCD, \triangle BEC.$

So, there are 12 different triangles in the given figure.

> INTERIOR AND EXTERIOR OF A TRIANGLE

Interior of a triangle is the region of the plane enclosed by ΔABC .

Here, point P is in the interior of $\triangle ABC$.

Exterior of a triangle is the region of the plane which lies beyond or not enclosed by the boundary of $\triangle ABC$. In figure, Q is the point which is in the exterior of the $\triangle ABC$.

Interior of $\triangle ABC$ (as shown by the shaded region P in figure) together with the points on the boundary of $\triangle ABC$ (as shown by point Q) is known as the triangular region ABC.

> TYPES OF TRIANGLE	
Based on angles	Based on sides
1. Acute angled triangle :	1. Equilateral triangle :
A triangle whose all angles are acute i.e., less than 90°.	A triangle with all sides equal to one another.
A 70° B 60° 50° C	4 cm $4 cm$ $4 cm$ C
2. Obtuse angled triangle : A triangle whose one angle is obtuse i.e., greater than 90°. $A = \frac{100^{\circ}}{30^{\circ}} C$ A triangle cannot have more than one obtuse angle.	2. Isosceles triangle : A triangle with any two sides equal to each other. 5 cm 5 cm 6 cm C
3. Right angled triangle :	3. Scalene triangle :
A triangle whose one angle	A triangle in which all

is of measure 90° also the other two angles are acute angles whose sum is 90°. A 6 cm7 cm6 cm7 cm8 cmC The side of opposite to the right angle is called the hypotenuse, and other two side are called legs of the right triangle.

ANGLE SUM PROPERTY OF A TRIANGLE

The sum of the angles of a triangle is 180° or two right angles.

Given : A triangle PQR.

To prove : $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

i.e., sum of all angles of a triangle is 180°.

Construction : Through P, draw a line ST parallel to QR.

Proof : As ST || QR and transversal PQ cuts them.

 $\therefore \ \angle 2 = \angle 5$ (alternate angles) ...(1)

Again ST || QR and transversal PR cuts them.

 $\therefore \ \angle 3 = \angle 4$ (alternate angles) ...(2)

Adding (1) and (2), we get

$$\angle 2 + \angle 3 = \angle 5 + \angle 4 \qquad \dots (3)$$

Now adding $\angle 1$ on both sides to equation (3), we get

$$\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 5 + \angle 4$$
$$\Rightarrow \angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

 $(as \angle 1 + \angle 5 + \angle 4 = 180^{\circ})$

Note :

(i). Each angle of an equilateral triangle measures 60°

- (ii) The angles opposite to equal sides of an isosceles triangle are equal.
- (iii) A scalene triangle has all angles unequal.
- (iv) A triangle cannot have more than one right angle
- (v) A triangle cannot have more than one obtuse angle.
- (vi) In a right triangle, the sum of two acute angles is 90°.
- (vii) The sum of the lengths of the sides of a triangle is called perimeter of triangle.

♦ EXAMPLES ♦

- **Ex.4** Classify the triangles as Scalene, isosceles or equilateral, if their sides are :
 - (i) 2 cm, 3 cm, 2 cm (ii) 2 cm, 2 cm, 2 cm
 - (iii) 3 cm, 6 cm, 4 cm
- Sol. (i) As two sides are equal, so this is an isosceles triangle.
 - (ii) As all sides are equal, so this is an equilateral triangle.
 - (iii) As all sides are unequal, so this is a scalene triangle.
- **Ex. 5** Classify the following triangles according to their angles :

- **Sol.** (i) As all the angles of this triangle are acute, so this is an acute triangle.
 - (ii) As one of the angles (130°) is obtuse, so this is an obtuse triangle.
 - (iii) As one of the angles is a right angle (90°), so this is a right triangle.

- (iv) As one of the angles is obtuse (95°), so this is an obtuse triangle.
- (v) As one of the angles is a right angle (90°), so this is a right triangle.
- (vi) As all the angles are acute, so this is an acute triangle.
- **Ex. 6** Classify the triangles as acute, obtuse or right, whose angles are :

(i)
$$50^{\circ}$$
, 40° , 90° (ii) 120° , 30° , 30°

(iii) 70°, 60°, 50°

- Sol. (i) As one of the angles is a right angle, so this is a right triangle.
 - (ii) As one of the angles is an obtuse angle, so this is an obtuse triangle.
 - (iii) As all the angles are acute, so this is an acute triangle.
- **Ex.7** Classify the triangles according to their given sides as scalene, isosceles or equilateral :

(a) 3.5 cm, 4 cm, 4 cm (b) 6 cm, 7 cm, 9 cm

(c) 6.2 cm, 6.2 cm, 6.2 cm

- Sol. (a) As two sides are equal so it is an isosceles triangle.
 - (b) As all the sides are different so it is an scalene triangle.
 - (c) As all the sides are equal so it is equilateral triangle.
- **Ex.8** Classify the triangles as acute, obtuse or right if angles are :
 - (a) 60°, 30°, 90°
 - (b) 120°, 40°, 20°
 - $(c) 60^{\circ}, 60^{\circ}, 60^{\circ}$
- Sol. (a) As one angle of 90° so, it is a right triangle.
 - (b) As one angle (120°) is greater than 90° i.e., obtuse, so it is an obtuse triangle.
 - (c) As each angle is of 60°, so it is an equilateral triangle.
- **Ex.9** Two angles of a triangle are of measures 70° and 30°. Find the measure of the third angle.
- Sol. Let PQR be a triangle such that $\angle P = 70^{\circ}$, $\angle Q = 30^{\circ}$. Then, we have to find the measure of third angle R.

As $\angle P + \angle Q + \angle R = 180^{\circ}$

(angle sum property of triangle)

$$70^{\circ} + 30^{\circ} + \angle R = 180^{\circ}$$

$$100^{\circ} + \angle R = 180^{\circ}$$

$$\angle R = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow \angle R = 80^{\circ}$$
P
70^{\circ}

- **Ex.10** One of the angles of a triangle has measure 70° and the other two angles are equal. Find these two angles.
- **Sol.** Let PQR be a triangle such that :

$$\angle P = 70^{\circ}$$
 and $\angle Q = \angle R = x$ (let)

As
$$\angle P + \angle Q + \angle R = 180^{\circ}$$

(angle sum property of Δ)

$$70^{\circ} + x + x = 180^{\circ}$$
$$2x = 180^{\circ} - 70^{\circ}$$
$$2x = 110^{\circ}$$
$$x = \frac{110^{\circ}}{2}$$
$$x = 55^{\circ}$$

So, measure of each of remaining two angles is 55°.

- Ex.11 Write the
 - (i) side opposite to the vertex Q of ΔPQR
 - (ii) angle opposite to the side LM of Δ LMN
 - (iii) vertex opposite to the side RT of Δ RST.
- **Sol.** (i) The side opposite to vertex Q is PR.

(ii) Angle opposite to side LM is $\angle N$.

(iii) Vertex opposite to the side RT of Δ RST is S.

Ex.12 In each of the following, the measures of three angles are given. State in which case the angles can possibly be those of a triangle :

(i) 53°, 73°, 83°	(ii) 59°, 12°, 109°
-------------------	---------------------

- (iii) 45°, 45°, 90° (iv) 30°, 120°, 30°
- **Sol.** (i) $53^{\circ} + 73^{\circ} + 83^{\circ} = 209^{\circ} > 180^{\circ}$

Therefore, not possible

(ii) $59^\circ + 12^\circ + 109^\circ = 180^\circ$

Therefore, possible

(iii) $45^\circ + 45^\circ + 90^\circ = 180^\circ$

Therefore, possible

(iv) $30^\circ + 120^\circ + 30^\circ = 180^\circ$

Therefore, possible

- **Ex.13** The three angles of a triangle are equal to one another. What is the measure of each angle ?
- **Sol.** Let each angle be of measure x in degrees. Then, by angle sum property

$$x + x + x = 180^{\circ}$$
$$\Rightarrow 3x = 180^{\circ}$$
$$\Rightarrow x = 60^{\circ}$$

So, the measure of each angle is 60° .

- **Ex.14** The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles.
- Sol. Given ratio between the angles of a triangle = 2:3:4.

Let the angles be 2x, 3x and 4x

Since the sum of angles of a Δ is 180°

$$\therefore 2x + 3x + 4x = 180^{\circ}$$
$$\Rightarrow 9x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{9} = 20^{\circ}$$

Hence the angles are 2x, 3x and 4x

i.e., $2 \times 20^{\circ}$, $3 \times 20^{\circ}$, $4 \times 20^{\circ}$

$$\Rightarrow$$
 40°, 60° and 80°.

Ex.15 In $\triangle ABC$, if $\angle A = 2 \angle B$ and $\angle C = 3 \angle B$, then find all the angles of $\triangle ABC$.

Sol. In $\triangle ABC$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow 2\angle B + \angle B + 3\angle B = 180^{\circ}$$

$$\Rightarrow 6\angle B = 180^{\circ}$$

$$\Rightarrow \angle B = \frac{180^{\circ}}{6} = 30^{\circ}$$

$$\Rightarrow \angle B = 30^{\circ}$$
Now, $\angle A = 2\angle B = 2 \times 30^{\circ} = 60^{\circ}$ and $\angle C = 3 \angle B = 3 \times 30^{\circ} = 90^{\circ}$

Hence, $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$ and $\angle C = 90^{\circ}$.

Ex.16 In the Fig., $CD \perp AB$. Also, $\angle A = 45^{\circ}$. Find $\angle ADC$, $\angle CDB$, $\angle ABC$, $\angle DCB$ and $\angle DCA$.

Sol.

Since $CD \perp AB$

 $\therefore \angle ADC = \angle CDB = 90^{\circ}$

Now in \triangle ADC, we have

 $\angle ADC + \angle DAC + \angle DCA = 180^{\circ}$

(angle sum property of triangle)

$$90^{\circ} + 45^{\circ} + z = 180^{\circ}$$

$$\Rightarrow z = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

$$\therefore \angle y = 90^{\circ} - 45^{\circ} \Rightarrow \angle y = 45^{\circ}$$

In $\triangle ACB$

$$\angle A + 90^{\circ} + \angle x = 180^{\circ}$$

$$45^{\circ} + 90^{\circ} + \angle x = 180^{\circ}$$

$$135^{\circ} + \angle x = 180^{\circ}$$

$$\angle x = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

Hence, $x = 45^{\circ}$, $y = 45^{\circ}$ and $z = 45^{\circ}$

Ex.17 In the fig. AB \parallel DC. Find the values of x, y and z.

 $\angle DEC = \angle AEB \quad [vertically opposite angles]$ $\Rightarrow x = 70^{\circ} \text{ and}$ $\angle ABE = \angle EDC$ $[\Theta AB \parallel DC, \quad \therefore \text{ alternate angles are equal}]$ $\Rightarrow y = 60^{\circ}$ Now in $\triangle DEC$, we have $x + y + z = 180^{\circ}$ $[sum of interior angles of a \Delta is 180^{\circ}]$ $\Rightarrow 70^{\circ} + 60^{\circ} + z = 180^{\circ}$ $\Rightarrow z = 180^{\circ} - 30^{\circ}$ $\Rightarrow z = 50^{\circ}$

Hence, $x = 70^{\circ}$, $y = 60^{\circ}$ and $z = 50^{\circ}$ respectively.

Ex.18 In the Fig., DE || AC. If $\angle B = 40^{\circ}$ and $\angle C = 50^{\circ}$, then find x, y and z.

Sol.

In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$

[In a
$$\Delta$$
 sum of all interior angles is 180°]
 $\Rightarrow z + 40^\circ + 50^\circ = 180^\circ$
 $\Rightarrow z = 90^\circ$
Now in Δ BDE, we have
 $y = z = 90^\circ$
[Θ AC || DE \therefore Corresponding angles are equal]
and $x = \angle$ ACB = 50°
Hence, $x = 50^\circ$, $y = 90^\circ$ and $z = 90^\circ$.

Ex.19 One angle of a $\triangle ABC$ is 50° and the other two angles are of same measure as in Fig. Find the measure of each angle.

Sol.

Let $\angle A = 50^{\circ}$ and $\angle B = \angle C = x$

We know that in a Δ , sum of angles is 180°.

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$
$$\Rightarrow 50^{\circ} + x + x = 180^{\circ}$$
$$\Rightarrow 2x = 180^{\circ} - 50^{\circ} = 130^{\circ}$$
$$\Rightarrow x = \frac{130^{\circ}}{2} = 65^{\circ}$$

Hence, the measure of equal angles is 65° each.

In (Fig.) $\triangle ABC$, DE || AB, find the values of x, Ex.20 y and z.

Sol.

$$A \qquad B \qquad I \\ 110^{\circ}$$

Since DE || AB, therefore,

 $\angle CED = \angle CAB$ [Corresponding angles]

$$\Rightarrow x = 60^{\circ}$$
 (i)

and
$$\angle CDE = \angle DBA$$
 (ii)

[Corresponding angles]

But $\angle DBA + \angle DBF = 180^{\circ}$ [linear pair]

 $\Rightarrow \angle DBA + 110^\circ = 180^\circ$ $\Rightarrow \angle DBA = 180^{\circ} - 110^{\circ} = 70^{\circ}$ Substituting $\angle DBA = 70^{\circ}$ in (ii), we get $\angle CDE = 70^{\circ}$ \Rightarrow y = 70° Now in $\triangle DBE$, we have $x + y + z = 180^{\circ}$ [sum of the interior angles of a triangle is 180°] $\Rightarrow 60^{\circ} + 70^{\circ} + z = 180^{\circ}$ $\Rightarrow 130^{\circ} + z = 180^{\circ}$ \Rightarrow z = 180° - 130° = 50° Hence, $x = 60^{\circ}$, $y = 70^{\circ}$ and $z = 50^{\circ}$ respectively.

- Show that sum of exterior angles of a triangle is Ex.21 360°.
- Let the triangle is ABC as shown in Fig. Sol.

Interior angles are marked with numbers 1, 2 and 3 while exterior angles are marked with 4, 5 and 6.

Since $\angle 2 + \angle 4 = 180^{\circ}$ [Linear pair](i)

 $\angle 3 + \angle 6 = 180^{\circ}$ [Linear pair](ii)

 $\angle 5 + \angle 1 = 180^{\circ}$ [Linear pair] (iii)

Adding (i), (ii) and (iii) on both the sides, we get

$$\angle 2 + \angle 4 + \angle 3 + \angle 6 + \angle 5 + \angle 1 = 540^{\circ}$$
$$\Rightarrow \angle 4 + \angle 5 + \angle 6 + (\angle 1 + \angle 2 + \angle 3)$$
$$= 540^{\circ}$$

 $\Rightarrow \angle 4 + \angle 5 + \angle 6 + 180^\circ = 540^\circ$

 $[\Theta \angle 1, \angle 2 \text{ and } \angle 3 \text{ are the interior angles of the}]$ \triangle ABC (: sum will be 180°)]

$$\Rightarrow \angle 4 + \angle 5 + \angle 6 = 540^\circ - 180^\circ$$
$$= 360^\circ.$$

Ex.22 Observe the Fig. and find $\angle A + \angle B + \angle C +$ $\angle D + \angle E + \angle F$.

Sol.

We know that sum of interior angles of a triangle is 180° .

 \therefore In \triangle ABC, we have

 $\angle A + \angle B + \angle C = 180^{\circ}$ (i)

Similarly, in ΔDEF , we have

 $\angle D + \angle E + \angle F = 180^{\circ}$ (ii)

Adding (i) and (ii), we have

 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 360^{\circ}.$

MEDIAN OF A TRIANGLE

A line segment that joins a vertex of a triangle to the mid-point of the opposite side is called a median of the triangle.

For example, consider Δ LMN. Let S be the midpoint of MN, then LS is the line segment joining vertex L to the mid point of its opposite side.

The line segment LS is said to be the median of Δ LMN.

Similarly, RN and MT are also medians of Δ LMN.

Note :

- (i) A triangle has three medians.
- (ii) All the three medians meet at one point G (called centroid of the triangle) i.e., all medians of any triangle are concurrent.
- (iii) The centroid of the triangle always lies inside of triangle.
- (iv) The centroid of a triangle divides each one of the medians in the ratio 2 : 1.

(v) The medians of an equilateral triangle are equal in length.

► ALTITUDE OF A TRIANGLE

An altitude of a triangle is the line segment drawn from a vertex of a triangle, perpendicular to the line containing the opposite side.

(i) PS is an altitude on side QR in figure.

(ii) AD is an altitude, with D the foot of perpendicular lying on BC in figure.

(iii) The side PQ, itself is an altitude to base QR of right angled Δ PQR in figure.

Note :

- (i) A triangle has three altitudes.
- (ii) All the three altitudes meet at a point H (called orthocentre of triangle) i.e., all altitudes of any triangle are concurrent.
- (iii) Orthocentre of the triangle may lie inside the triangle [Figure (i)], outside the triangle [Figure (ii)] and on the triangle [Figure (iii)].

♦ Orthocentre

The point of concurrence of the altitudes of a triangle is called the orthocentre of the triangle.

Notes :

- 1. Since the altitudes of a triangle are concurrent, therefore to locate the orthocentre of a triangle, it is sufficient to draw its two altitudes.
- 2. Although altitude of a triangle is a line segment, but in the statement of their concurrence property, the term altitude means a line containing the altitude (line segment).

Properties of Altitudes	Properties of Orthocentre				
1. The altitudes of an equilateral triangle are equal.	1. The orthocentre of an acute-angled triangle lies in the interior of the triangle.				

2. The altitude bisects the base of an equilateral triangle.	2. The orthocentre of a right-angled triangle is the vertex containing the right angle.				
3. The altitudes drawn on equal sides of an isosceles triangle are equal.	3. The orthocentre of an obtuse-angled triangle lies in the exterior of the triangle.				

EXTERIOR ANGLE OF A TRIANGLE

If a side of a triangle is produced, the exterior angle so formed is equal to the sum of two interior opposite angles.

Let $\triangle PQR$ be a triangle such that its side QR is produced to form ray QS. Then $\angle PRS(\angle 4)$ is the exterior angle of $\triangle PQR$ at R in [Figure (i)] and angle $\angle 1$ and $\angle 2$ are its two interior opposite angles i.e., $\angle 4 = \angle 1 + \angle 2$.

In Figure (ii), $\angle 5$ is exterior angle at point P and $\angle 2$ and $\angle 3$ are its two interior opposite angle i.e., $\angle 5 = \angle 2 + \angle 3$.

In Figure (iii), $\angle 6$ is the exterior angle at point Q and $\angle 1$ and $\angle 3$ are its two interior opposite angle i.e., $\angle 6 = \angle 1 + \angle 3$

Note :

- (i) In a triangle an exterior angle is greater than each of the interior opposite angles.
- (ii) An exterior angle and the interior adjacent angle form a linear pair.
- (iii) An exterior angle of a triangle is equal to the sum of its interior opposite angles.

Therefore, we conclude that in an equilateral triangle, altitudes and medians are the same.

♦ EXAMPLES ♦

- Ex.23 How many altitudes can a triangle have ?
- Sol. A triangle can have three altitudes.
- **Ex.24** Fill in the blanks :

Sol.

- (i) A triangle has _____medians.
- (ii) The medians of a triangle are_____

(iii) The point where all the medians meet is said to be the _____ of the triangle.

- Sol. (i) three (ii) concurrent (iii) centroid.
- **Ex.25** In $\triangle PQR$, D is the mid point of QR.

- (i) PM is altitude. (ii) PD is median.
- (iii) No, $QM \neq MR$.

Sol. (i) $\angle x = 50^{\circ} + 70^{\circ}$

(Θ exterior angle is equal to sum of its opposite interior angles)

So, $\angle x = 120^{\circ}$

(ii) $\angle x = 38^{\circ} + 40^{\circ}$

(Θ exterior angle is equal to sum of its opposite interior angles)

So, $\angle x = 78^{\circ}$

(iii)
$$\angle x = 50^{\circ} + 50^{\circ}$$

(Θ exterior angle is equal to sum of its opposite interior angles)

So, $\angle x = 100^{\circ}$.

Ex.27 Find the value of unknown interior angle x in the following figures :

Sol. (i) $100^{\circ} = 70^{\circ} + x$

 $(\Theta$ exterior angle is equal to sum of its opposite interior angles)

$$100^{\circ} - 70^{\circ} = x$$

 $30^{\circ} = x$
So, $x = 30^{\circ}$

(ii) $120^\circ = 60^\circ + x$

 $(\Theta$ exterior angle is equal to sum of its opposite interior angles)

$$120^{\circ} - 60^{\circ} = x$$

$$60^{\circ} = x$$

So, $x = 60^{\circ}$
(iii) $75^{\circ} = 35^{\circ} + x$
 $75^{\circ} - 35^{\circ} = x$
 $40^{\circ} = x$
So, $x = 40^{\circ}$

Ex.28 In the given figure find the values of x and y.

Sol.
$$\angle APQ = \angle BAP + \angle ABP$$

(exterior angle property of Δ)

$$130^{\circ} = y + 58^{\circ}$$

$$130^{\circ} - 58^{\circ} = y$$

So,
$$y = 72^{\circ}$$

Now, $x + 130^{\circ} = 180^{\circ}$ (By linear pair)

 $x = 50^{\circ}$

 $x = 180^{\circ} - 130^{\circ}$

So,

Ex.29 In the figure, find x.

Sol. We know that

> exterior angle of the triangle = sum of its two interior opposite angles

- $55^{\circ} + x = 120^{\circ}$ *.*..
- $x = 120^{\circ} 55^{\circ} = 65^{\circ}$ \Rightarrow

Ex.30 In figure, find the values of x and y using exterior angle property.

exterior angle of the triangle = sum of its two interior opposite angles

- $y = x + 50^{\circ}$ \Rightarrow
- $110^{\circ} = x + 50^{\circ}$ \Rightarrow
- $x = 60^{\circ}$ \Rightarrow

TRIANGLE INEQUALITY

The sum of any two sides of a triangle is greater than the third side. PQ + QR > PR or PR + QR > PQor PQ + PR > QR

Ex.31 Is it possible to have triangle with the following sides ?

(i) 2 cm, 3 cm, 5 cm

(ii) 3 cm, 6 cm, 7 cm

(iii) 6 cm, 3 cm, 2 cm

Sol. (i) No

As
$$2 + 3 \neq 5$$

(as the sum of two sides (2 cm, 3 cm) is 5 cm which is not greater than the third side)

- (ii) 3 cm, 6 cm, 7 cm
 - As 3 + 6 = 9 > 76 + 7 = 13 > 3
 - 7 + 3 = 10 > 6

So, these are the possible sides of the triangle.

- (iii) 6 cm, 3 cm, 2 cm
 - As 6+3=9>2 $3+2=5 \Rightarrow 6$ 6+2=8>3As $3+2=5 \Rightarrow 6$

So, these are not the possible sides of triangle.

Ex.32 Take any point O in the interior of triangle PQR. Is

(i) OP + OQ > PQ? (ii) OQ + OR > QR? (iii) OR + OP > RP?

Sol.

(i) OP + OQ > PQ is true.

(Θ in Δ POQ the sum of two sides is greater than the third side.)

(ii) OQ + OR > QR is true.

(Θ in ΔROQ the sum of two sides is greater than the third side.)

(iii) OR + OP > RP is true.

(Θ in Δ POR the sum of two sides is greater than the third side)

Ex.33 AM is a median of triangle ABC.

Is AB + BC + CA > 2AM?

AB + BM > AM ...(1)

(Θ in triangle the sum of any two sides is greater than the third side)

Also in $\triangle AMC$

$$AC + MC > AM$$
 ...(2)

Adding (1) and (2), we get

AB + BM + AC + MC > AM + AM

$$\Rightarrow AB + AC + (BM + MC) > 2 AM$$

$$\Rightarrow$$
 AB + AC + BC > 2 AM (Θ BM + MC = BC)

Ex.34 ABCD is a quadrilateral.

Is
$$AB + BC + CD + DA > AC + BD$$
?

Sol. In $\triangle ABC$

$$AB + BC > AC \qquad \dots (1)$$

(Θ sum of two sides is greater than the third side)

Now, in $\triangle ADC$

AD + DC > AC ...(2)

(Θ sum of two sides is greater than the third side)

In $\triangle ABD$, $AB + AD > BD \dots (3)$

In $\triangle BCD$, $BC + CD > BD \dots (4)$

Adding (1), (2), (3) and (4), we get

$$2(AB + BC + CD + DA) > 2(AC + BD)$$

 \Rightarrow AB + BC + CD + DA > AC + BD.

- **Ex.35** The lengths of two sides of a triangle are 6 cm and 10 cm. Between which two numbers can length of third side fall ?
- **Sol.** We know that the sum of two sides of a triangle is always greater than the third side.

 \therefore The third side has to be less than the sum of the two sides.

The third side is thus less than 6 + 10 = 16 cm. The side cannot be less than the difference of the two sides. Thus the side has to be more than 10 - 6 = 4 cm.

The length of third side could be any length greater than 4 cm and less than 16 cm.

Ex.36 ABCD is a quadrilateral.

Is
$$AB + BC + CD + DA < 2 (AC + BD)$$
?

Sol. Let ABCD be a quadrilateral in which diagonals intersect at point O.

In $\triangle OAB$,

$$OA + OB > AB$$
 ...(1)

(as the sum of any two sides is greater than the third side)

Similarly, in $\triangle OBC$,

$$OB + OC > BC$$
 ...(2)

(as the sum of any two sides is greater than the third side)

In $\triangle DOC$, $OC + OD > DC \dots (3)$

In
$$\triangle AOD$$
, $OA + OD > AD \dots (4)$

Adding (1), (2), (3) and (4), we get

$$2(OA + OB + OC + OD) > AB + BC + DC + AD$$

 $\Rightarrow 2(OA + OC) + 2 (OB + OD)$

$$>$$
 AB + BC + DC + AC

$$\Rightarrow 2(AC + BD) > AB + BC + DC + AD$$

$$[\Theta OA + OC = AC \text{ and } OB + OD = BD]$$

or AB + BC + CD + DA < 2(AC + BD)

Rule for angles and sides of triangle :

- (i) The side opposite to the measure of the greatest angle is the greatest and vice-versa.
- (ii) The side opposite to the measure of the smallest angle is the smallest and vice-versa.

PYTHAGORAS THEOREM

In a right triangle, the square of the hypotenuse (The side opposite to right angle) is equal to the sum of the squares of its remaining two sides.

In
$$\triangle PQR$$
, $\angle Q = 90^{\circ}$, we have

$$PR^2 = PQ^2 + RQ^2$$

Note :

- (i) In a right triangle, the hypotenuse opposite to right angle is the longest side.
- (ii) Of all the line segments that can be drawn to a given line from a point outside it the perpendicular line segment is the shortest.
- (iii) The two sides of a right triangle other than the hypotenuse are called its legs.
- (iv) Three positive integers a, b, c in the same order are said to form a **Pythagoras triplet**, if $c^2 = a^2 + b^2$, for example, (3, 4, 5), (8, 15, 12) are Pythagoras triplets as $3^2 + 4^2 = 5^2$, $8^2 + 12^2 = 15^2$.

Converse of Pythagoras Theorem :

If there is a triangle such that the sum of the squares of two of its sides is equal to the square of the third side, it must be a right-angled triangle.

In $\triangle PQR$ if $PR^2 = PQ^2 + RQ^2$, then the triangle is right angled at Q.

♦ EXAMPLES ♦

- **Ex.37** PQR is a triangle, right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.
- **Sol.** In \triangle RPQ using Pythagoras theorem,

- **Ex.38** ABC is a triangle, right angled at C. If AB = 25 cm and AC = 7 cm, find BC.
- Sol. In $\triangle ABC$, using Pythagoras theorem,

- **Ex.39** A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance 'a'. Find the distance of the foot of the ladder from the wall.
- Sol. In $\triangle ABC$, using Pythagoras theorem, we get

- **Ex.40** A tree has broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of tree.
- **Sol.** Let AB be the tree and let C be the point at which it broke.

Then CB takes the position CD.

To find : Original height of tree i.e., AB

i.e.,
$$AC + BC$$

 $\Rightarrow AC + CD \qquad (\Theta BC = CD)$

In \triangle ACD, using Pythagoras theorem, we have

$$CD^{2} = AC^{2} + AD^{2}$$

$$CD^{2} = (5)^{2} + (12)^{2}$$

$$= 25 + 144 = 169$$

$$CD^{2} = 13^{2}$$

$$CD = 13 m$$
So, height of tree = AC + BC
= AC + CD (\overline{OBC} = CD)

= (5 + 13)m = 18 m

Hence, height of tree = 18 m

Ex.41 Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm.

Sol. Let ABCD is a rectangle, in which length AB = 40 cm, and a diagonal AC = 41 cm.

In rectangle each angle is of 90°. So, $\angle ABC = 90^{\circ}$

In \triangle ABC, using Pythagoras theorem,

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $AC^{2} = AB^{2} + BC^{2}$ (41)² = (40)² + BC² 1681 = 1600 + BC² 1681 - 1600 = BC² 81 = BC² 9² = BC² \Rightarrow

Hence, breadth of rectangle = 9 cm

Now, perimeter of rectangle

$$= 2$$
 (length + breadth)

$$= 2 (40 + 9) \text{ cm}$$

$$= 2 \times 49 \text{ cm}$$

Hence, perimeter of rectangle = 98 cm

- Ex.42 The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.
- Sol. Let ABCD be a rhombus, in which diagonals

AC and BD are of lengths 16 cm and 30 cm respectively.

We know that in rhombus diagonals bisect each other at right angle i.e., AO = OC and OB = OD.

So,
$$\angle AOD = 90^{\circ}$$

$$AO = \frac{AC}{2} = \frac{16}{2} = 8 \text{ cm}$$

 $DO = \frac{BD}{2} = \frac{30}{2} = 15 \text{ cm}$

In $\triangle AOD$, using Pythagoras theorem,

$$AD^{2} = AO^{2} + DO^{2}$$

 $AD^{2} = (8)^{2} + (15)^{2}$
 $= 64 + 225$
 $AD^{2} = 289$
 $AD^{2} = 17^{2}$
 $AD = 17 \text{ cm}$

Perimeter of rhombus = $4 \times side$

$$= 4 \times AD$$

$$= 4 \times 17$$
 cm

Hence, perimeter of rhombus = 68 cm

- **Ex.43** Angles Q and R of a $\triangle PQR$ are 25° and 65°. Which of the following is true :
 - (i) $PQ^2 + QR^2 = RP^2$ (ii) $PQ^2 + RP^2 = QR^2$

(iii)
$$\mathbf{RP}^2 + \mathbf{QR}^2 = \mathbf{PQ}^2$$
?

Sol. In **ΔPQR**

$$\angle P + \angle Q + \angle R = 180^{\circ}$$
$$\angle P + 25^{\circ} + 65^{\circ} = 180^{\circ}$$
$$\angle P + 90^{\circ} = 180^{\circ}$$
$$\angle P = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

- \Rightarrow Δ PQR is right triangle in which \angle P = 90°
- ÷. By Pythagoras theorem,

$$QR^2 = PQ^2 + PR^2$$

Hence, (ii) is true.

- Ex.44 Which of the following can be the sides of a right triangle?
 - (i) 2.5 cm, 6.5 cm, 6 cm
 - (ii) 2 cm, 2 cm, 5 cm
 - (iii) 1.5 cm, 2 cm, 2.5 cm?
- Sol. As we know that in a right angled triangle, the square of longest (hypotenuse) is equal to sum of squares of other two sides.

(i) Let
$$a = 2.5$$
, $b = 6.5$, $c = 6$
 $a^2 + c^2 = [(2.5)^2 + (6)^2] \text{ cm}^2$
 $= (6.25 + 36) \text{ cm}^2$
 $a^2 + c^2 = 42.25 \text{ cm}^2$
Now $b^2 = (6.5)^2 = 6.5 \times 6.5 = 42.25 \text{ cm}^2$
 $\Rightarrow a^2 + c^2 = b^2$
 $\Rightarrow 2.5 \text{ cm}, 6.5 \text{ cm}, 6 \text{ cm}$ are the sides of

1

(ii) Let
$$a = 2$$
, $b = 2$, $c = 5$
 $a^2 + b^2 = (2)^2 + (2)^2 = 4 + 4$
 $a^2 + b^2 = 8$
Now, $c^2 = (5)^2 = 25$

the right angled triangle.

- $a^2 + b^2 \neq c^2$ $(\Theta 8 \neq 25)$ \Rightarrow
- 2 cm, 2 cm and 5 cm are not the sides \Rightarrow of the triangle.
- (iii) Let a = 1.5 cm, b = 2 cm, c = 2.5 cm

$$a^{2} + b^{2} = (1.5)^{2} + (2)^{2}$$
$$= 2.25 + 4 = 6.25$$
$$c^{2} = (2.5)^{2}$$
$$= 6.25$$
$$a^{2} + b^{2} = c^{2}$$

 \Rightarrow

Hence, 1.5 cm, 2 cm and 2.5 cm are sides of the right angled triangle.

- A man goes 24 m due east and then 10 m due Ex.45 north. How far is he away from his initial position?
- Sol. Let O be the initial position of the man. Let he cover OP = 24 m due east and then PO = 10 m due north.

Finally, he reaches at point Q.

Join OQ which we have to find.

Now, in right $\triangle OPQ$ using Pythagoras theorem

Hence, the man is at a distance of 26 m from his initial position.

Ex.46 A ladder 13 m long reaches a window which is 5 m above the ground, on one side of street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window at a height of 12 m. Find the width of the street.

Sol. Let AB be the street and C be foot of the ladder. Let D and E be the windows at the heights of 5 m and 12 m respectively from the ground. Then, CD and CE are the two position of the ladder. In \triangle CDA, using Pythagoras theorem, we have

$$AC^{2} + AD^{2} = DC^{2}$$

$$AC^{2} = DC^{2} - AD^{2}$$

$$= 13^{2} - 5^{2}$$

$$= 169 - 25 = 144$$

$$AC^{2} = 12^{2}$$

$$\Rightarrow AC = 12 \text{ m}$$

$$F$$

$$AC = 12 \text{ m}$$

$$B$$

Now, in $\triangle BEC$, using Pythagoras theorem,

$$CE2 = BE2 + BC2$$

$$(13)2 = (12)2 + BC2$$

$$169 - 144 = BC2$$

$$25 = BC2$$

$$52 = BC2 \implies BC = 5 \text{ m.}$$

Hence, width of the street

5

= AB = AC + BC= 12 m + 5 m = 17 m

- **Ex.47** Two poles of 8 m and 13 m stand upright on a plane ground. If the distance between their feet is 12 m, find the distance between their tops.
- Sol. Let PQ and RS be the given poles such that PO = 8 m, RS = 13 m and OS = 12 m.

Join PR (the distance between the tops of the poles which we have to find.)

From P, draw PT \perp RS.

 $\therefore \qquad RT = RS - TS \quad (TS = PQ = 8 m)$ = (13 - 8) mRT = 5 mPT = QS = 12 m

In $\triangle PRT$, using Pythagoras theorem,

$$PR^{2} = PT^{2} + RT^{2}$$

$$PR^{2} = (12)^{2} + (5)^{2}$$

$$= 144 + 25 = 169$$

$$PR^{2} = 13^{2}$$

$$PR = 13 \text{ m.}$$

 \Rightarrow

Hence, the distance between the tops of the poles is 13 m.

Ex.48 Find the length of hypotenuse of the right-angled triangle given in figure.

Sol. In the figure, AC is the hypotenuse (the side opposite to right-angle).

From Pythagoras Theorem,

 $AC^2 = AB^2 + BC^2$

$$\Rightarrow AC \times AC = AB \times AB + BC \times BC$$

$$\Rightarrow AC \times AC = 16 \times 16 + 30 \times 30$$

$$= 256 + 900 = 1156$$

$$= 34 \times 34$$

On comparing both sides, we get

$$AC = 34$$
 cm.

Ex.49 Find the length of XY in the right-angled triangle.

Sol. In this Δ , XZ is the hypotenuse (because XZ lies opposite to the right-angle Y).

Therefore, using Pythagoras theorem, we have

$$XZ^{2} = XY^{2} + YZ^{2}$$

$$\Rightarrow (13)^{2} = XY^{2} + (12)^{2}$$

$$\Rightarrow XY^{2} = 13^{2} - 12^{2} = 169 - 144 = 25$$

$$\Rightarrow (XY) \times (XY) = 25 = 5 \times 5$$

$$\Rightarrow XY = 5 \text{ cm.}$$

Q.1 Classify the triangles as scalene, isosceles or equilateral, if their sides are :

(i) 7 cm, 12 cm, 13 cm (ii) 6 cm, 6 cm, 6 cm (iii) 5 cm, 5 cm, 4 cm

- Q.2 Classify the triangles as acute, obtuse or right, whose angles are : (i) 150°, 10°, 20° (ii) 30°, 60°, 90° (iii) 80°, 40°, 60°
- Q.3 Observe the following figures and classify each of the triangles on the basis of their

- Q.4 Fill in the blanks with the correct word/symbol to make it a true statement :
 - (i) A triangle has sides.
 - (ii) A triangle has vertices.
 - (iii) A triangle has angles.
 - (iv) A triangle has parts.
 - (v) A triangle whose no two sides are equal is know as
 - (vi) A triangle whose two sides are equal is known as

- (vii) A triangle one of whose angles is 90° is known as
- (viii) A triangle whose all the angles are of measure less than 90° is known as
- (ix) A triangle whose one angle is more than 90° is known as
- (x) A triangle whose all the sides are equal is known as
- Q.5 In each of the following, state if the statement is true (T) or false (F) :
 - (i) A triangle has three sides.
 - (ii) A triangle may have four vertices.
 - (iii) Any three line segments make up a triangle.
 - (iv) The interior of a triangle includes its vertices.
 - (v) The triangular region includes the vertices of the corresponding triangle.
 - (vi) The vertices of a triangle are three collinear points.
 - (vii)An equivalent triangle is an isosceles also.
 - (viii) Every right triangle is scalene.
 - (ix) Each acute triangle is an equilateral.
 - (x) No isosceles triangle is obtuse.
- **Q.6** Answer the following in "yes" or "no" :
 - (i) Can an isosceles triangle be a right triangle ?
 - (ii) Can a right triangle be a scalene triangle ?
 - (iii) Can a right triangle be an equilateral triangle?
 - (iv) Can an obtuse triangle be an isosceles triangle?
- **Q.7** Fill in the blanks with suitable words/symbols so as to make the statement true :
 - (i) A median of a triangle is the that joins a vertex to the ...of the opposite side.
 - (ii) Medians of a triangle are
 - (iii) The point of concurrence of the medians of a triangle is called of the triangle.
 - (iv) The centroid of a Δ lies in of the triangle.
 - (v) The centroid of a Δ divides each median in the ratio

- Q.8 Fill in the blanks with suitable word(s)/symbol(s) to make each of the following statements correct :
 - (i) An altitude of a triangle is a from a vertex to the opposite side.
 - (ii) The point of concurrence of the altitudes (Produced, if necessary) of a triangle is called its
 - (iii) If $\triangle ABC$ is right angled at C, then two of the altitudes of the triangle are and
 - (iv) If H is the orthocentre of \triangle ABC, then BH is perpendicular to the line containing the side.....
 - (v) In a right triangle, the orthocentre is at
- **Q.9** If in the $\triangle ABC$, D is the mid-point of \overline{BC} , and P is foot of the perpendicular from A to the side BC, then

- (i) AD is the of $\triangle ABC$.
- (ii) AP is the on side BC.
- (iii) Is $m \overline{AD} = m \overline{AP}$?
- Q.10 Draw rough sketches for the following :
 - (i) In $\triangle ABC$, the medians BE and CF of the triangle.
 - (ii) In ΔDEF , the medians EB and FA.
 - (iii) In Δ PQR, the altitudes PM and QN.
 - (iv) In Δ LMN, LP is an altitude lies in the exterior of the Δ .
- Q.11 Think and answer the following :
 - (i) What do you understand by the term median?
 - (ii) What do you understand by the term midpoint of a line segment ?

- (iii) How many medians can a triangle have ?
- (iv) Does a median lie wholly in the interior of the triangle? If you think that this is not true, draw the figure and justify your answer.
- (v) Can you find the mid-point of a line? If no, justify your answer ?
- (vi) How many altitudes can a triangle have ?
- (vii) Will an altitude always lie in the interior of the triangle? If you think that this need not be true, draw a rough sketch to show such a case.
- (viii) Can you think of a triangle in which two altitudes of the triangle are its sides?
- (ix) Can the altitudes and medians be same for a triangle ?
- Q.12 Observe the following figure and complete the table :

Fig	Exterior	Corresponding	Adjacent		
rıg.	Angles	Interior Angles	Interior Angles		
(i)					
(ii)					

Q.13 In figure, find the measures of x and y.

Q.14 In figure, find the values of x, y and z.

Q.15 In the figure, $3 \angle BAD = \angle DBA$. Find $\angle CDB$, $\angle DBC$ and $\angle ABC$.

- Q.17 One of the exterior angles of a triangle is 145° and the interior opposite angles are in the ratio 2 : 3. Find the measure of angles of the triangle.
- Q.18 The exterior angles PRS of a triangle PQR is 110° and if $\angle Q = 75^\circ$, find $\angle P$. Is $\angle PRS > \angle P$?
- Q.19 Find the value of unknown angle in the following diagrams :

- Q.20 In a triangle, find the third angle when two given angles are :
 - (i) 30°, 60°
 - (ii) 45°, 45°
 - (iii) 25°, 70°

Q.21 Observe the following table and state which measure forms a triangle :

S.No.	Measure of angles	Sum of measure of angles	Does the measure, represent a ∆? if not, why?
(i)	45°, 62°, 73°		
(ii)	46°, 54°, 80°		
(iii)	30°,40°,110°		
(iv)	45°, 61°, 75°		

Q.22 Find the value of unknown variable in each of the following triangles :

Q.23 Find the values of the x, y and z in the following figures :

- **Q.24** In figure, $\angle C = 50^{\circ}$ and $\angle A = 55^{\circ}$. $\angle CBD$ is the exterior angle.
 - (i) Find the interior adjacent angle.
 - (ii) Find \angle CBD.
 - (iii) Mark interior opposite angles.

- **Q.25** One of angles of a triangle is 80°. The other two angles are equal. Find the measure of these angles.
- Q.26 In the following triangles, equal sides are marked with ||, find the value of x in each case :

Q.27 Find the angles x and y in each figure :

Q.28 In figure, make a rough sketch of the triangle and name the angles that are equal.

Q.29 All three sides of the large triangle are equal as shown in figure. Find the angles r and s.

Q.30 Find the angles x, y and z in figure.

Q.31 Find the angles f and g in fig.

- Q.32 Is it possible to have a triangle with the following side lengths ?
 (i) 2 cm, 3 cm, 5 cm (ii) 3 cm, 6 cm, 7 cm (iii) 6 cm, 3 cm, 2 cm
- Q.33 Is the sum of any two angles of a triangle always greater than the third angle ?
- **Q.34** Take any point O in the interior of a \triangle ABC in figure. Is :

- (i) OB + OC > BC?
- (ii) OC + OA > CA?
- (iii) OA + OB > AB ?
- (iv) BC + CA + AB < 2 (OB + BC + OA)
- Q.35 AD is a median of triangle ABC in figure. Is AB + BC + CA > 2AD?

- **Q.36** ABCD is a quadrilateral. Is AB + BC + CD + DA > AC + BD?
- Q.37 O is any point in the interior of a triangle PQR and QO produced meets PR at S (figure). Is

- (iv) PQ + PR > OQ + OR?
- (v) PQ + QR + PR > OP + OQ + OR?
- Q.38 ABCD is a quadrilateral. Is AB + BC + CD + DA < 2(AC + BD)?
- **Q.39** The lengths of two sides of a triangle are 10 cm and 14 cm. Between what two measures should the length of the third side fall ?
- **Q.40** How long should the hypotenuse be in the right-angled triangle in figure.

- Q.41 The sides of a certain triangles are given below. Determine which of them are right-angled triangles.
 - (i) 1.7 cm, 1.5 cm, 0.8 cm
 - (ii) 0.9 cm, 4 cm, 4.1 cm
 - (iii) 4 cm, 5.2 cm, 7 cm
 - (iv) 2.4 cm, 3.2 cm, 7.9 cm
 - (v) 1.8 cm, 8 cm, 8.2 cm
 - (vi) 5 cm, 5.25 cm, 7.25 cm
- **Q.42** Find the lengths of the unknown side in these right-angled triangles.

Q.43 Find the unknown length x in figure.

Q.44 PQR is a right-angled triangle right-angled at P. If PQ = 14 cm, PR = 48 cm, find QR.

ANSWER KEY

1. (i) Scalene tria	angle (ii) Equ	ilateral triangle	(iii) Isosceles tri	angle		
2. (i) Obtuse-ang	gled triangle	(ii) Right-angled	triangle (iii) Acu	ute-angled triangl	e	
3. (a) Sides : (i)	Isosceles triangle	e(ii) Scalene trian	gle (iii) Isos	sceles triangle	(iv) Scalene trian	ngle
(v) Isosceles	triangle	(vi) Isosceles tria	angle			
(b) Angles :	(i) Acute-angled	triangle (ii) Righ	nt-angled triangle	(iii) Obtuse-angl	ed triangle	
(iv) Acute-an	ngled triangle	(v) Obtuse-angle	ed triangle	(vi) Right-angled	d triangle	
4. (i) three	(ii) three	(iii) three	(iv) six	(v) scalene	(vi) isosceles	
(vii) right tri	angle	(viii) acute triang	gle (ix) obt	use triangle	(x) equilateral	
5. (i) T	(ii) F	(iii) F	(iv) F	(v) T	(vi) F	(vii) F
(viii) F	(ix) F	(x) F				
6. (i) Yes	(ii) Yes	(iii) No	(iv) Yes			
7. (i) Line segme	ent, mid-point	(ii) concurrent	(iii) centroid	(iv) interior	(v) 2 : 1	
8. (i) Line segme	ent, perpendicular	r (ii) orth	ocentre	(iii) AC and BC	(iv) AC	
(v) the verte	x containing the i	right angle				
9. (i) Median	(ii) Perpendicula	ur (iii) No,	$m\overline{AD} > m\overline{AP}$			
11. (iii) 3	(iv) Yes	(v) No, a line ha	s no end points.	(vi) 3 (vii) No	1	
(viii) Yes, (r	ight triangle)	(ix) Yes (in an e	quilateral triangle	e)		
12. For fig. (i) \angle	BAF; ∠ABC, ∠	ACB;∠BAC	$\angle CBE; \angle BAC,$	∠BCA; ∠ABC	∠ACD; ∠ABC,	$\angle BAC; \angle ACB$
For fig. (ii) 2	\angle FDR; \angle DEF, \angle	DFE;∠EDF	$\angle DEQ; \angle EDF,$	∠DFE; ∠DEF	\angle EFP; \angle EDF, \angle	∠DEF; ∠EFD
13. $x = 105^{\circ}, y =$	45°	14. x = 100°, y =	$= 145^{\circ}, z = 35^{\circ}$	15. 72°, 60°, 114	• 16. (i) 1	35° (ii) 165°
17. 58°, 87°, 35°		18. 35°, yes	19. (i) 110°	(ii) 109°	(iii) 60°	
20. (i) 90°	(ii) 90° (iii) 85°	21. (i) 180°, yes	(ii) 180°, yes	(iii) 180°, yes	(iv) 181°, No	
22. (i) 80°	(ii) 45°	(iii) 25°	23. (i) 60°, 50°, 7	70° (ii) 105°	°, 105°, 45° (iii)	60°, 60°, 60°
24. (i) 75°	(ii) 105°	(iii) $\angle A$ and $\angle C$	25. 50°, 50°	26. (i) 60°	(ii) 45° (iii) 60°	(iv) 100°
27. (i) 80°, 130°	(ii) 90°, 135°	(iii) 55°, 125°	28. (i) ∠B, ∠C	(ii) $\angle Q$, $\angle R$	(iii) ∠D, ∠E	(iv) $\angle B$, $\angle C$
29. 60°, 30°	30. $x = y = 65^{\circ}, z$	$z = 120^{\circ}$	31. 80°, 140°	32. (i) No	(ii) Yes	(iii) No
33. No	34. (i) Yes	(ii) Yes	(iii) Yes	(iv) No	35. Yes	36. Yes
37. (i) Yes	(ii) Yes	(iii) Yes	(iv) Yes	(v) Yes	38. No	
39. Between 4 cr	m and 24 cm.	40. 13 feet	41. (i), (ii) , (v) a	and (vi)		
42. (i) 5 cm	(ii) 12 cm	(iii) 25 cm	(iv) 8 cm	(v) 9 cm	43. 96	44. 50 cm

- Q.1 An exterior angle of a triangle is of measure 80° and one of its interior angles is of measure 45°. Find the measure of the other interior opposite angle.
- Q.2 If the two interior opposite angles of an exterior angle are complementary, then what is the measure of the exterior angle? Also write the type of the Δ .
- **Q.3** If the measure of two interior opposite angles of an exterior angle are equal in magnitude and also complementary, then find the measure of the exterior angle and interior opposite angles.
- Q.4 The two interior opposite angles of an extrior angle of a triangle are 20° and 70°. Find the measure of the exterior angle.
- **Q.5** Comment on the interior opposite angles, when the exterior angle is :
 - (i) an acute angle
 - (ii) an obtuse angle
 - (iii) a right angle
- **Q.6** Can the exterior angles of a triangle be a straight angle ?
- Q.7 An exterior angle of a triangle is 135° and the interior opposite angles are in the ratio 1 : 4. Find the angles of the triangle.
- Q.8 In the following figure, find

Q.9 In the figure, find the values of x, y and z.

- **Q.10** Three angles of a Δ are equal. Find the angles.
- **Q.11** In the figure, BE \perp BC & \angle C = 70°, \angle EBD = 40°. Find \angle A and \angle CBA.

Q.12 In figure, find sum of the angles : $\angle DOA + \angle OAB + \angle ABC + \angle BCD + \angle CDO.$ [Hint : Sum of angles asked in the question is equal to sum of the angles of all the triangles in the figure.]

- **Q.13** In a right-angled Δ , one acute angle is of 35°, find the other acute angle.
- **Q.14** The angles of a Δ are in the ratio 2 : 3 : 4. Find the angles.
- **Q.15** In a right-angled Δ , one acute angle is twice the other, find the measure of angles.
- **Q.16** In a Δ , two angles are of equal measure and the third angle is 20° more than equal angles. Find the angles.
- **Q.17** The acute angles of a right-angled Δ are in the ratio 2 : 3. Find the angles of the triangle.

- **Q.18** The three angles of a Δ are in the ratio 1 : 1 : 1. Find all the angles of the triangle. Classify the triangle in two different ways.
- Q.19 Think and state whether the following statements are true (T) or false (F). Also justify your answer.
 - (i) A triangle can have two right angles.
 - (ii) A triangle can have two obtuse angles.
 - (iii) Each angle of a triangle can be less than 60°.
 - (iv) A triangle can have all the three angles equal to 60°.
- **Q.20** In the figure, $\angle BAC = 3 \angle ABC$, and $\angle ACD = 100^{\circ}$, find $\angle ABC$:

- Q.21 A 10.10 m long ladder placed against a wall. The ladder reached a window 9.9 m height from the ground. Find the distance of the foot of the ladder from the wall.
- Q.22 Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, determine the distance between their tops.
- **Q.23** If the square of the hypotenuse of an isosceles right-angled triangle is 512 cm², find the length of each side.
- Q.24 A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 cm height. Find the width of the street if the length of the ladder is 15 m.
- Q.25 Using Pythagoras theorem, find the length of second diagonal of a rhombus whose side is 5 cm and one of the diagonals is 6 cm.

- Q.26 A man goes 120 m due east and then 160 m due north. How far is he from the starting point ?
- **Q.27** ABC is an isosceles right-angled triangle, rightangled at C. Prove that $AB^2 = 2AC^2$.
- **Q.28** ABC is a triangle, right angled at B. If AB = 12 cm and BC = 9 cm, find AC.
- Q.29 PQR is a triangle, right angled at R. If PQ = 26 cm, PR = 10 cm, find QR.
- Q.30 A ladder 25 m long reaches a window of a building 20 m above the ground (see figure below). Determine the distance of the foot of the ladder from the building.

- Q.31 Which of the following can be the sides of a right triangle :
 - (i) 24 cm, 7 cm, 25 cm
 - (ii) 1.6 cm, 4 cm, 3.8 cm
 - (iii) 4 cm, 3 cm, 5 cm
- **Q.32** A tree is broken at a height of 2.5 m from the ground and its top touches the ground at a distance of 6 m from the base of the tree. Find the original height of the tree.
- **Q.33** Angles B and C of $\triangle ABC$ are 40° and 50°. Write which of the following is true : (i) $AB^2 + BC^2 = AC^2$ (ii) $AC^2 + BC^2 = AB^2$ (iii) $AB^2 + AC^2 = BC^2$
- Q.34 Find the perimeter of the rectangle whose length and a diagonal are 24 cm and 25 cm respectively.
- Q.35 A ladder 15 dm long reaches a window which is 12 dm above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 dm high. Find the width of the street.

- Q.36 A man goes 12 m due west and then 5 m due south. How far is he away from his initial position ?
- Q.37 Find the perimeter of the rhombus whose diagonals measure 24 cm and 10 cm.
- Q.38 In each of the following there are three positive numbers. State if these numbers could possibly be the lengths of the sides of a triangle :

(i) 4, 3, 2	(ii) 3, 4, 5
(iii) 3.5, 2.5, 5	(iv) 2, 3, 6

Q.39 In the following figure, D is the mid point on the side BC of \triangle ABC. Complete each of the following statements using symbol '=', '<' or '>' so as to make it true :

- Q.40 S is a point in the interior of $\triangle PQR$ as shown in figure. State which of the following statements are true or false :
 - (i) PS + QS < PQ
 - (ii) PS + SR > PR
 - (iii) QS + SR = QR

- Q.41 The lengths of two sides of a triangle are 12 cm and 15 cm. Between what two measures should be length of the third side fall?
- **Q.42** In figure, PQR is a triangle and S is any point in its interior. Show that SQ + SR < PQ + PR.

[**Hint.** Produce QS which intersects PR at point T on producing]

ANSWER KEY

1. 35° 2. 90°, r	ight triangle	3. 90°, 45°, 45°		4. 90°		6. No		7. 27°, 1	08°, 45°
8. (i) 100°	(ii) 80°	(iii) 50°		(iv) 130°		9. x = 110°, y = 70°, z = 110°			
10. 60°, 60°, 60°		11. 60°, 50°		12. 540	0	13. 55°		14. 40°,	60°, 80°
15. 30°, 60°	16. $53\frac{1}{3}^{\circ}$, $53\frac{1}{3}^{\circ}$	$r, 73\frac{1}{2}$ °		17.36°,	54°, 90°				
18. 60°, 60°, 60°	Acute-angled tria	ingle (on the basi	s of angl	es) and I	Equilatera	al triangl	e (on the	basis of	sides)
19. (i) False	(ii) False	(iii) False	(iv)True	2	20. 25°		21. 2m		22. 13 m
23. Each side =	16 cm	24. 21 m	25. 8 cm	1	26. 200	m	28. 15 cm	m	29. 24 cm
30. 15 m	31. (i) Yes	(ii) No	(iii) Yes	5	32. 9 m		33. (iii)		34. 62 cm
35. 21 dm	36. 13 m	37. 52 cm	38. (i) Y	es	(ii) Yes		(iii) Yes		(iv) no

39. (i) < (ii) < (iii) < **40.** (i) F (ii) T (iii) F **41.** Between 3 cm and 27 cm