NURTURE COURSE

IONIC EQUILIBRIUM

## IONIC EQUILIBRIUM

#### 1. INTRODUCTION

Ionic equilibrium deals with the equilibrium of any substance with its ions in solution. The substance producing ions are called electrolytes.

According to conductivity, substances are of two types :

#### (i) Non-Conductor :

Those substances which do not show the flow of current or electricity.

Ex. Non - metals, plastic rubber, wood, etc.

Exception – Graphite is a non-metal but shows conductivity due to motion of free electrons.

#### (ii) Conductors :

Those substances which show conductivity or flow of current are called conductors. These are of 2 types :

#### (a) Metallic or electronic conductors :

Those conductor which show conductivity due to motion of free electrons. Resistance increases with temperature.

Ex. All metals, Graphite

#### (b) Ionic or electrolytic conductors :

Those conductors which show conductivity due to movement of free ions. Ions are in free state in the solutions of ionic compounds. On passing electric current through the solution, ions move towards oppositely charged electrodes, i.e., the cation moves towards cathode (negative electrode) and the anion moves towards anode (positive electrode).



The current flows through the solution due to the movement of the ions. Resistance decrease with temperature.

According to strength, ionic conductors are of two types :

(i) **Strong electrolyte :** Those ionic conductors which are completely ionized in aqueous solution are called as strong electrolyte.

For strong electrolyte the value of degree of dissociation is 100%.

**i.e.** : 
$$\alpha = 1$$

**Ex.** (a) Strong acid  $\rightarrow$  H<sub>2</sub>SO<sub>4</sub>, HCl, HNO<sub>3</sub> HClO<sub>4</sub>, H<sub>2</sub>SO<sub>5</sub>, HBr, HI, HBrO<sub>4</sub>, HIO<sub>4</sub>, RSO<sub>3</sub>H

- (b) Strong base  $\rightarrow$  KOH, NaOH, Ba(OH)<sub>2</sub> CsOH, RbOH
- (c) All soluble salts  $\rightarrow$  NaCl, KCl, CuSO<sub>4</sub>.....
- (ii) Weak electrolytes : Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of  $\alpha$  is less than one.
- Ex. (a) Weak acid : HCN,  $CH_3COOH$ , HCOOH,  $H_2CO_3$ ,  $H_3PO_3$ ,  $H_3PO_2$ , etc.
  - (b) Weak base :  $NH_4OH$ ,  $Cu(OH)_2$ ,  $Zn(OH)_2$ ,  $Fe(OH)_3$ ,  $Al(OH)_3$ , etc.

Е

1.2 DEGREE OF DISSOCIATION / IONISATION

 • When an electrolyte is dissolved in a solvent (H<sub>2</sub>O), it spontaneously dissociates into ions.

 • It may dissociate partially (
$$\alpha < 1$$
) or sometimes completely ( $\alpha = 1$ )

 • The degree of dissociation ( $\alpha$ ) of an electrolyte is the fraction of mole of the electrolyte that has dissociated under the given conditions.  
 $\alpha = \frac{N_0. of moles dissociated}{N_0. of moles dissociated}$ 

 1.3 FACTORS AFFECTING THE VALUE OF DEGREE OF DISSOCIATION:

 (i) Dilution :  $\alpha \propto \sqrt{v}$ . So on dilution,  $\alpha$  increases

 (ii) Temperature : On increasing temperature, ionization increases so,  $\alpha$  increases

 (iii) Nature of electrolyte

 (a) Strong electrolyte

 (b) Weak elecrolyte

  $\alpha = 100 \%$ 
 $\alpha < < 100 \%$ 

 (iv) Nature of solvent :

 If dielectric constant,  $\mu$ , of solvent increases, then the value of  $\alpha$  increases.

  $H_2O \rightarrow \mu = 81$ 
 $D_2O \rightarrow \mu = 79$ 
 $C_0H_0 \rightarrow \mu = 0$ 

 Ex.1 Which one has greater  $\alpha_1$  or  $\alpha_2$  for the following equation :

 (i) NH\_4OH + H\_2O  $\rightarrow \alpha_2$ 

 Sol. Dielectric constant of H<sub>2</sub>O is more than that of D<sub>2</sub>O, so  $\alpha_1 > \alpha_2$ 

(v) Mixing of Ions :

| Odd ion Effect                                                 |
|----------------------------------------------------------------|
| $NH_4OH \implies NH_4^+ + OH^-$                                |
| On mixing HCl                                                  |
| $HCl \rightarrow H^+ + Cl^-$                                   |
| Due to reaction of $OH^-$ ions with $H^+$ ion,                 |
| concentration of OH <sup>-</sup> will decrease                 |
| $\therefore$ Equilibrium will shift in forward direction means |
| $\alpha$ increases.                                            |
|                                                                |
|                                                                |

## 1.4 OSTWALD'S DILUTION LAW (FOR WEAK ELECTROLYTE)

• For a weak electrolyte  $A^+B^-$  dissolved in water, if  $\alpha$  is the degree of dissociation then

|               | AB ====        | • A <sup>+</sup> - | + B <sup>-</sup> |
|---------------|----------------|--------------------|------------------|
| initial conc. | СМ             | 0                  | 0                |
| conc-at eq.   | $C(1-\alpha)M$ | CαM                | CαM              |

Then according to law of mass action,

$$K_{diss} = \frac{[A^+][B^-]}{[AB]} = \frac{C\alpha.C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{(1-\alpha)} = \text{dissociation constant of the weak electrolyte.}$$

$$\left[C = \frac{1}{V}, \text{ then } V = 1/C \text{ (volume of solution in which 1 mole is present) is called dilution, so } K_{diss} = \frac{\alpha^2}{(1-\alpha)V}\right]$$

If  $\alpha$  is negligible in comparison to unity,  $1 - \alpha \approx 1$ . so  $K_{diss} = \alpha^2 C \Rightarrow \alpha = \sqrt{\frac{K_{diss}}{C}} = \sqrt{K_{diss}V}$ 

$$\alpha \propto \frac{1}{\sqrt{\text{concentration}}}$$

- As concentration increases  $\Rightarrow \alpha$  decreases
- At infinite dilution  $\alpha$  reaches its maximum value, unity.



## 2. ACIDS BASES AND SALTS

## 2.1 Arrhenius concept :

(i) **Arrhenius Acid :** Substance which gives  $H^+$  ion on dissolving in water ( $H^+$  donor) **Ex.** HNO<sub>3</sub>, HClO<sub>4</sub>, HCl, HI, HBr, H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> etc.



## (iii) Strength of Acid or Base :

- (a) Strength of acids or bases depends on the extent of its ionisation. Hence equilibrium constant  $K_a$  or  $K_b$  respectively of the following equilibria give a quantitative measurement of the strength of the acid or base.
- **(b)** HA  $\rightleftharpoons$  H<sup>+</sup> + A<sup>-</sup>;

$$K_a = \frac{[H^+][A^-]}{[HA]} =$$
dissocation or ionisation constant of acid.

(c) Similarly

BOH  $\implies$  B<sup>+</sup> + OH<sup>-</sup>;

 $K_{b} = \frac{[B^{+}][OH^{-}]}{[BOH]} = \text{dissocation or ionisation constant of base}$ 

(d) Larger the value of  $K_a$  or  $K_b$ , stronger is the acid or base respectively.

#### 2.2 Bronsted - Lowry concept : (Conjugate acid - base concept) (Protonic concept)

- (i) Acid : substances which donate  $H^+$  are Bronsted Lowry acids ( $H^+$  donor)
- (ii) **Base :** substances which accept  $H^+$  are Bronsted Lowry bases ( $H^+$  acceptor)
- (iii) Conjugate acid base pairs : In a typical acid base reaction,  $HX + B \implies X^- + HB^+$



- Forward reaction Here HX being a proton donor is an acid B being a proton acceptor is a base.
- Backward reaction Here HB<sup>+</sup> being a proton donor is an acid X<sup>-</sup> being a proton acceptor is a base.

| Acid                               |                   | Base             |          | Conjugat<br>Acid  | te | Conjugate<br>Base       |
|------------------------------------|-------------------|------------------|----------|-------------------|----|-------------------------|
| HCl                                | +                 | H <sub>2</sub> O | <u></u>  | $H_{3}O^{+}$      | +  | Cl⁻                     |
| $\mathrm{HSO}_4^-$                 | +                 | NH <sub>3</sub>  | <u> </u> | $\mathrm{NH}_4^+$ | +  | $\mathbf{SO}_4^{-2}$    |
| [Fe(H <sub>2</sub> O) <sub>6</sub> | ] <sup>3+</sup> + | $H_2O$           | <u> </u> | $H_3O^+$          | +  | $[Fe(H_2O)_5(OH)]^{2+}$ |

- Conjugate acid base pair differ by only one proton.
- Strong acid will have weak conjugate base and vice versa.

|                    |                                 |                                                                             | Ionie Ee                                                                                                  |
|--------------------|---------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Acid               | Conjugate base                  | Base                                                                        | Conjugate acid                                                                                            |
| HCl                | Cl⁻                             | NH <sub>3</sub>                                                             | $\mathrm{NH}_4^+$                                                                                         |
| $H_2SO_4$          | $\mathrm{HSO}_4^-$              | H <sub>2</sub> O                                                            | $H_{3}O^{+}$                                                                                              |
| $\mathrm{HSO}_4^-$ | $\mathbf{SO}_4^{2-}$            | RNH <sub>2</sub>                                                            | $RNH_3^+$                                                                                                 |
| $H_2O$             | OH⁻                             |                                                                             |                                                                                                           |
|                    | AcidHCl $H_2SO_4$ $HSO_4^ H_2O$ | AcidConjugate baseHCl $Cl^ H_2SO_4$ $HSO_4^ HSO_4^ SO_4^{2-}$ $H_2O$ $OH^-$ | AcidConjugate baseBaseHC1 $CI^ NH_3$ $H_2SO_4$ $HSO_4^ H_2O$ $HSO_4^ SO_4^{2-}$ $RNH_2$ $H_2O$ $OH^ CH^-$ |

(iv) Amphoteric (amphiprotic) : Substances which can act as acid as will as base are known as amphoteric

$$HCl + H_2O \implies H_3O^+ + Cl^-$$
  
base

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$
  
acid

## (v) Classification of Bronsted - Lowery Acids and Bases :

Bronsted - Lowery acids and bases can be

| (i) | Molecular | (ii) | Cationic | and | (iii) | Anionic |
|-----|-----------|------|----------|-----|-------|---------|
|     |           |      |          |     |       |         |

| Table - 1 | 1 |
|-----------|---|
|-----------|---|

| Туре      | Acid                                                                                             | Base                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Molecular | HCl, HNO <sub>3</sub> , HClO <sub>4</sub> ,                                                      | NH <sub>3</sub> , N <sub>2</sub> H <sub>4</sub> , Amines,                                               |
|           | $H_2SO_4$ , $H_3PO_4$ , $H_2O$ etc.                                                              | H <sub>2</sub> O, Alcohol, Ethers, etc.                                                                 |
| Cationic  | $NH_{4}^{+}, N_{2}H_{5}^{+}, PH_{4}^{+},$                                                        | $[\mathrm{Fe}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}]^{2+}$                                           |
|           | $[\text{Fe}(\text{H}_{2}\text{O})_{6}]^{3+}$ , $[\text{Al}(\text{H}_{2}\text{O})_{6}]^{3+}$ etc. | $\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}\right]^{2+} \mathrm{etc.}$                  |
| Anionic   | $HS^{-}$ , $HSO_{3}^{-}$ , $H_{2}PO_{4}^{-}$ , $HSO_{4}^{-}$                                     | Cl <sup>−</sup> , Br <sup>−</sup> , OH <sup>−</sup> , HSO <sub>4</sub> <sup>−</sup> , CN <sup>−</sup> , |
|           | $\text{HCO}_{3}^{-}$ , $\text{HPO}_{4}^{2-}$ , etc.                                              | $CO_3^{2-}, SO_4^{2-}, NH_2^{-}, CH_3COO^{-}, etc.$                                                     |
|           | all amphiprotic anions                                                                           | all amphiprotic anions                                                                                  |

## 2.3 Lewis concept (electronic concept) :

- (i) Acid : An acid is a molecule/ion which can accept an electron pair with the formation of a coordinate bond.
- **Ex.** Electron deficient molecules :  $BF_3$ ,  $AlCl_3$ , etc. Cations :  $H^+$ ,  $Fe^{2+}$ ,  $Na^+$ , etc.

Molecules with vacant orbitals :  $SF_4$ ,  $PF_3$ 

- (ii) **Base** : A base is any molecule/ion which has a pair of electrons which can be donated.
- **Ex.** Molecules with lone pairs :  $NH_3$ ,  $PH_3$ ,  $H_2O$ ,  $CH_3OH$ Anions :  $OH^-$ ,  $H^-$ ,  $NH_2^-$ , etc.

## JEE-Chemistry

#### 3. PROPERTIES OF WATER

#### (i) Molar concentration / Molarity of water :

**Molarity** = No. of moles/litre =  $\frac{1000 \text{ g/litre}}{18 \text{ g/mole}}$  = 55.55 mole/litre = **55.55 M** (density = 1 g/cc)

#### (ii) Ionic product of water :

According to arrhenius concept,  $H_2O \implies H^+ + OH^-$ So, ionic product of water,  $K_w = [H^+][OH^-] = 10^{-14}$  at 25° (experimental)

Dissociation of water is endothermic, so on increasing temperature K<sub>w</sub> increases.

#### (iii) Degree of dissociation of water :

$$H_{2}O \iff H^{+} + OH^{-} \Rightarrow \alpha = \frac{\text{decrease in concentration}}{\text{initially concentration}}$$
$$= \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \text{ or } 1.8 \times 10^{-7} \% \qquad [at 25^{\circ}C]$$

#### (iv) Dissociation or ionisation constant of water :

$$H_{2}O \iff H^{+} + OH^{-} \qquad K_{a} = K_{b} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16}$$
  
So,  $pK_{a} = pK_{b} = -\log(1.8 \times 10^{-16}) = 16 - \log 1.8 = 15.74$ 

Ex.2. At dissociation constant of heavy water is  $4 \times 10^{-15}$  at 35°C. If its density is 1.04 g/mL. Calculate its ionic product & degree of dissociation.

**Sol.** 
$$K_w = K_d [D_2 O] = \left(4 \times 10^{-15} \times \frac{1040}{20}\right) = 2.08 \times 10^{-13}$$

$$d = \sqrt{\frac{K_w}{C}} = \sqrt{\frac{2.08 \times 10^{-13}}{52}} = 12.64 \times 10^{-8}$$

Ex.3 Calculate ionic product of  $H_2O$  at  $50^{\circ}C$ .

**Sol.** 
$$\Delta H = 13.7 \times 10^3$$
 cal

$$\log \frac{\mathrm{K}_2}{10^{-14}} = \frac{13.7 \times 10^3}{2} \left( \frac{1}{298} - \frac{1}{323} \right)$$

*Ex.4 The hydronium ion conc. in an aq.*  $H_2CO_3$  solution is  $4 \times 10^{-4}$  M at 25°C OH<sup>-</sup> ion conc. in the solution is :

(A) 0 (B) 
$$2.5 \times 10^{-10}$$
 (C)  $2.5 \times 10^3$  (D)  $2.5 \times 10^{-11} M$ 

Answer :(D)

- $(A) pK_w$  increases with increase of temperature
- (B)  $pK_w$  decreases with increase of temperature
- (C)  $pK_w = 14$  at all temperatures
- (D)  $pK_W = pH$  at all temperatures

**Sol.** (**B**)

Ε

7

## 4. Acidity and pH scale :

ALLEN \_

(i) Acidic strength means the tendency of an acid to give  $H_3O^+$  or  $H^+$  ions in water.

So greater then tendency to give  $H^+$ , more will be the acidic strength of the substance.

(ii) Basic strength means the tendency of a base to give OH<sup>-</sup>ions in water.

So greater the tendency to give OH<sup>-</sup>ions, more will be basic strength of the substance.

- (iii) The concentration of H<sup>+</sup> ions is written in a simplified form introduced by Sorenson known as pH scale. pH is defined as negative logarithm of activity of H<sup>+</sup> ions.
- :.  $\mathbf{pH} = -\log a_{H^+}$  (where  $a_{H^+}$  is the activity of H<sup>+</sup> ions)
- (iv) Activity of  $H^+$  ions is the molar concentration of free  $H^+$  ions or  $H_3O^+$  ions in a dilute solution, but unitless.

(v) Now 
$$pH = -\log[H^+] = 7$$
 and  $pOH = -\log[OH^-] = 7$  for water at 25°C (experimental)

$$\begin{array}{c} pH = 7 = pOH \implies neutral \\ pH < 7 \text{ or } pOH > 7 \implies acidic \\ pH > 7 \text{ or } pOH < 7 \implies Basic \end{array} \right\} at 25 ^{\circ}C \\ \hline Neutral \\ Acidic strength \qquad \longleftarrow \qquad \bigvee \qquad Basic strength \\ increasing \qquad \longleftarrow \qquad \bigvee \qquad Basic strength \\ increasing \qquad \longleftarrow \qquad 14 \end{array}$$

## 4.1 pH Calculation of different Types of solutions :

## (a) Strong acid solution :

node06\B0AH.AI\Kota\LEE[Advanced]\Nurture\Chem\Sheet\Lonic aqufiltrium\Eng\01\_Theory, p65

Е

- (i) If concentration of  $H^+$  ions is greater than  $10^{-6}$  M,  $H^+$  ions coming from water can be neglected, So  $[H^+]$  = normality of strong acid solution
- (ii) If concentration is less than  $10^{-6}$  M, H<sup>+</sup> ions coming from water cannot be neglected. So  $[H^+] =$  normality of strong acid + H<sup>+</sup> ions coming from water in presence of this strong acid

Ex.6 Calculate pH of  $10^{-8}M$  HCl solution.

Sol. 
$$H_2O \iff H^+ + OH^-$$
  
 $10^{-8}+x = x$   
 $k_w = [H^+][OH^-]$   
 $10^{-14} = x(x + 10^{-8})$   
 $\Rightarrow x^2 + x \times 10^{-8} - 10^{-14} = 0$   
 $x = \frac{-10^{-8} \pm \sqrt{10^{-16} + 4 \times 10^{-14}}}{2} = \frac{-10^{-8} + 10^{-7}\sqrt{4 + \frac{1}{100}}}{2} = \frac{(\sqrt{401} - 1)10^{-8}}{2} = 0.95 \times 10^{-7}$   
 $[H^+] = 10.5 \times 10^{-8} = 1.05 \times 10^{-7}$   
 $pH = -log [H^+]$   
 $pH = 7 - log 1.05 \approx 6.98$ 

#### Strong base solution : 4.2

Calculate the [OH<sup>-</sup>] which will be equal to normality of the strong base solution and then use

$$K_{w} = [H^{+}] \times [OH^{-}] = 10^{-14}$$
, to calculate  $[H^{+}]$ 

## Ex.7 Calculate pH of $10^{-7}$ M of NaOH solution

**Sol.** 
$$[OH^{-}]$$
 from NaOH =  $10^{-7}$ 

$$[OH^{-}] \text{ from water} = x < 10^{-7} \text{ M} \quad (\text{due to common ion effect})$$

$$H_2O \iff OH^{-} + H^{+}$$

$$- (x + 10^{-7}) \quad x$$

$$K_w = [H^{+}] [OH^{-}] = 10^{-14} = x (x + 10^{-7})$$

$$x^{2} + 10^{-7}x - 10^{-14} = 0$$

$$\Rightarrow \quad x = \frac{\sqrt{5} - 1}{2} \times 10^{-7} = 0.618 \times 10^{-7} \quad (\sqrt{5} = 2.236)$$

$$[OH^{-}] = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7}$$

$$pOH = 7 - \log(1.618) = 6.79$$

$$pH = 14 - 6.79 = 7.21$$

4.3 **pH of mixture of two strong acids :** If  $V_1$  volume of a strong acid solution of normality  $N_1$  is mixed with  $\mathbf{V}_2$  volume of another strong acid solution of normality  $\mathbf{N}_2$  , then

Number of  $H^+$  ions from I-solution =  $N_1 V_1$ 

Number of  $H^+$  ions from II-solution =  $N_2 V_2$ 

If final normality is N and final volume is V, then

$$\mathbf{N}\mathbf{V} = \mathbf{N}_1\mathbf{V}_1 + \mathbf{N}_2\mathbf{V}_2$$

[dissociation equilibrium of none of these acids will be disturbed as both are strong acid]

$$[H^{+}] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} \qquad \qquad \begin{bmatrix} \text{where} & N = M \times n \\ & n = \text{Basicity of acid} \end{bmatrix}$$

#### 4.4 pH of mixture of two strong bases :

Similar to above calculation

$$\begin{split} [OH^{-}] &= N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} \qquad [H^{+}] = \frac{10^{-14}}{[OH^{-}]} \\ \begin{bmatrix} \text{where} & N = M \times n \\ & n = \text{Acidity of base} \end{bmatrix} \end{split}$$

Ex.8 Calculate pH of mixture of (400 mL,  $\frac{1}{200}MH_2SO_4$ ) + (400 mL,  $\frac{1}{100}MHCl$ ) + (200 mL of water)

Sol. 
$$N_1V_1 = \frac{1}{200} \times \frac{400}{1000} \times 2 = \frac{4}{1000}, N_2V_2 = \frac{4}{1000}, H^+ \text{ ions from water will be neglected}$$
  
 $N_1V_1 + N_2V_2 = 8 \times 10^{-3}$   $[H^+] = \frac{8 \times 10^{-3}}{1} = 8 \times 10^{-3}$   
 $pH = 3 - \log 8 = 2.1$   
8

Ε

nocle06/B0AH.AI/Kota/LEE[Ackanced]/Nurture/Chem/Sheet/Ionic aquilibrium/Eng/01 \_Theory.p65

Ex.9 500 mL of  $10^{-5}$  M NaOH is mixed with 500 mL of  $2.5 \times 10^{-5}$  M of  $Ba(OH)_2$ . To the resulting solution 99 L water is added. Calculate pH.

Sol. 
$$[OH^{-}] = \frac{500 \times 10^{-5} + 500 \times 2 \times 2.5 \times 10^{-5}}{1000} = 3 \times 10^{-5} M$$
  
 $M_1 = 3 \times 10^{-5} M$   
 $V_2 + V_1 = 1 L$   
 $V_F = 100 L$   
no. of moles of  $[OH^{-}]$  initially = no. of moles of  $[OH^{-}]$   
 $3 \times 10^{-5} = M_2 \times 100$   
 $\therefore M_2 = 3 \times 10^{-7} < 10^{-6}$   
 $H_2O \Longrightarrow H^+ + OH^-$   
 $x \quad (x + 3 \times 10^{-7})$   
 $K_w = x (x + 3 \times 10^{-7}) = 10^{-14}$   
 $\therefore x = \left(\frac{\sqrt{13} - 3}{2}\right) \times 10^{-7}$   
 $x = 0.302 \times 10^{-7}$   
 $[OH^{-}]_{Net} = 3.302 \times 10^{-7}$ 

#### 4.5 pH of mixture of a strong acid and a strong base :

- Acid Base neutralisation reaction will take place.
- The solution will be acidic or basic depending on which component has been taken in excess.
- If  $V_1$  volume of a strong acid solution of normality  $N_1$  is mixed with  $V_2$  volume of a strong base solution of normality  $N_2$ , then

Number of  $H^+$  ions from I-solution =  $N_1 V_1$ 

Number of OH<sup>-</sup>ions from II-solution =  $N_2V_2$ 

node06\B0AH.AI\Kota\EE[Advanced]\Nurture\Chem\Sheet\tenic equilibrium\Eng\0]\_[heory.p65

Е

 $Ex.10 Calculate \ pH \ of \ mixture \ of \ (400 \ mL, \ \frac{1}{200} M Ba(OH)_2) + (400 \ mL, \ \frac{1}{50} M HCl) + (200 \ mL \ of \ water)$ 

**Sol.** 
$$[H^+] = \frac{400 \times \frac{1}{50} - 400 \times \frac{1}{200} \times 2}{1000} = 4 \times 10^{-3}$$
, so  $pH = 3 - 2\log 2 = 2.4$ 

- Ex.11 What will be the resultant pH when 150 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 350 mL of an aqueous solution of NaOH (pH = 12.0)?
- **Sol.** pH of HCl = 2
- $\therefore \qquad [\text{HCl}] = 10^{-2} \text{ M}$

| pH of NaOH = 12, | pOH = 2              | $\therefore [\text{NaOH}] = 10^{-2} \text{ M}$ |        |                  |
|------------------|----------------------|------------------------------------------------|--------|------------------|
|                  | HCl                  | + NaOH $\longrightarrow$                       | NaCl + | H <sub>2</sub> O |
| Meq. initial     | $150 \times 10^{-2}$ | 350×10 <sup>-2</sup>                           | 0      | 0                |
|                  | = 1.5                | = 3.5                                          |        |                  |
| Meq. final       | 0                    | 2                                              | 1.5    | 1.5              |

 $\therefore \qquad [OH^{-}] \text{ from NaOH} = \frac{2}{500} = 4 \times 10^{-3} \text{ M}$ 

$$pOH = -\log[OH^{-}] = -\log(4 \times 10^{-3})$$

∴ pOH = 2.3979

t

$$pH = 14 - pOH = 14 - 2.3979 = 11.6021$$

#### 4.6 pH of a weak acid or weak base (monoprotic) Solution :

- Weak acid does not dissociated 100 % therefore we have to calculate the percentage dissociation using K<sub>a</sub> dissociation constant of the acid.
- We have to use Ostwald's Dilution law (as have been derived earlier)

. тт+

$$HA \rightleftharpoons H' + A$$
$$= 0 \qquad C \qquad 0 \qquad 0$$

$$t_{eq}$$
  $C(1-\alpha)$   $C\alpha$   $C\alpha$   $K_a = \frac{[H^+][A^-]}{[HA]} = \frac{C\alpha^2}{1-\alpha}$ 

If 
$$\alpha \ll 1 \Rightarrow (1 - \alpha) \approx 1 \Rightarrow K_a \approx C\alpha^2 \Rightarrow \alpha = \sqrt{\frac{K_a}{C}}$$
 (is valid if  $\alpha < 0.1$  or 10%)

$$[H^{+}] = C\alpha = C\sqrt{\frac{K_{a}}{C}} = \sqrt{K_{a} \times C} \qquad \text{So} \qquad pH = \frac{1}{2}(pK_{a} - \log C)$$

On increasing the dilution  $\Rightarrow C \downarrow = \alpha \uparrow$  and  $[H^+] \downarrow \Rightarrow pH \uparrow$ 

#### ALLEN \_

## Ex.12 Calculate pH of : (a) $10^{-1}M CH_3COOH(b) 10^{-3}M CH_3COOH(c) 10^{-6}M CH_3COOH$ Take $K_a = 2 \times 10^{-5}$

Sol. (a)

) 
$$CH_{3}COOH \implies CH_{3}COO^{-} + H^{+}$$
  
 $C \qquad 0 \qquad 0$   
 $C(1-\alpha) \qquad C\alpha \qquad C\alpha$   
 $K_{a} = \frac{C\alpha^{2}}{1-\alpha} \Rightarrow \alpha = \sqrt{\frac{K_{a}}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-1}}} = \sqrt{2 \times 10^{-4}} \quad (\alpha << 0.1)$   
So,  $[H^{+}] = 10^{-1} \times \sqrt{2} \times 10^{-2} \Rightarrow pH = 3 - \frac{1}{2}\log 2 = 2.85$ 

**(b)** 
$$\alpha = \sqrt{\frac{K_a}{C}} \Rightarrow \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-3}}} = \sqrt{2 \times 10^{-2}} \quad (\alpha > 0.1)$$

So we have to do the exact calculations

$$K_{a} = \frac{C\alpha^{2}}{1-\alpha} \Rightarrow 2 \times 10^{-5} = \frac{10^{-3} \times \alpha^{2}}{1-\alpha} \Rightarrow \alpha = 13.14 \%$$
  
[H<sup>+</sup>] = 10<sup>-3</sup> × 0.1314 = 1.314 × 10<sup>-4</sup>  $\Rightarrow$  pH = 4 - log(1.314)  $\approx$  3.8

(c) If approximation is used the, 
$$\alpha = \sqrt{\frac{2 \times 10^{-5}}{10^{-6}}} = \sqrt{20} > 1$$
,

So we have to do the exact calculation,  $2 \times 10^{-5} = 10^{-6} \frac{\alpha^2}{1-\alpha} \Rightarrow \alpha \approx 0.95$  or 95%  $[H^+] = 0.95 \times 10^{-6} = 9.5 \times 10^{-7} \Rightarrow pH = 7 - \log(9.5) = 6.022$ 

At very low concentration (at infinite dilution) weak electrolyte will be almost 100% dissociate, so behave as strong electrolyte.
 (pH) of 10<sup>-6</sup> M HCl ≈ pH of 10<sup>-6</sup> M CH<sub>3</sub>COOH ≈ 6)

## Ex.13 K<sub>a</sub> for acid HA is $2.5 \times 10^{-8}$ calculate for its decimolar solution at $25^{\circ}$ C.

## (i) % dissociation (ii) pH (iii) $OH^-$ ion concentration

Sol. HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
C 0 0  
C(1- $\alpha$ ) C $\alpha$  C $\alpha$ 

$$\mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]} \Longrightarrow \mathbf{K}_{\mathbf{a}} = \frac{\mathbf{C}\alpha.\mathbf{C}\alpha}{\mathbf{C}(1-\alpha)} = \frac{\mathbf{C}\alpha^2}{(1-\alpha)} \approx \mathbf{C}\alpha^2$$

(i) 
$$\therefore \quad \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2.5 \times 10^{-8}}{1/10}} \quad (C = 1/10 \text{ M})$$
  
= 5 × 10<sup>-4</sup> = 0.05%

(ii) 
$$[H^+] = C\alpha = \frac{1}{10} \times 5 \times 10^{-4} = 5 \times 10^{-5} \text{ mol/L}$$
  
So  $pH = 5 - \log 5 = 4.30$ 

(iii) 
$$[H^+] [OH^-] = 1 \times 10^{-14}$$
  

$$\therefore \quad [OH^-] = \frac{10^{-14}}{5 \times 10^{-5}} = 2 \times 10^{-10} \text{ mol/L}$$

nocle06/B0AH.AI/Kota/LEE[Ackanced]/Nurture/Chem/Sheet/Ionic aquilibrium/Eng/01 \_Theory.p65

Ε

Ex.14 Determine the degree of dissociation of 0.05  $M NH_4 OH$  at 25°C in a solution of pH = 10.

Sol.  $NH_4OH \implies NH_4^+ + OH^ C \qquad 0 \qquad 0$ Given, pH = 10  $[H^+] = 10^{-10}$   $[H^+] [OH^-] = 1 \times 10^{-14}$   $\therefore \qquad [OH^-] = \frac{1 \times 10^{-14}}{10^{-10}} = 10^{-4} = C\alpha$  $\therefore \qquad \alpha = \frac{[OH^-]}{C} = \frac{10^{-4}}{0.05} = 2 \times 10^{-3} \text{ or } 0.2 \%$ 

Ex.15 The concentration of  $[H^+]$  and  $[OH^-]$  of the  $10^{-1}$  M aqueous solution of 2% ionised weak acid is :

(A)  $2 \times 10^{-3}$  M and  $5 \times 10^{-12}$  M (B)  $1 \times 10^{-3}$  M and  $3 \times 10^{-11}$  M (C)  $2 \times 10^{-4}$  M and  $5 \times 10^{-11}$  M (D)  $3 \times 10^{-2}$  M and  $4 \times 10^{-13}$  M

Sol. (A)

- $[H^+] = C\alpha = 2 \times 10^{-3} \, M$  or  $[OH^-] = \frac{10^{-14}}{[H^+]} = 5 \times 10^{-12} \, M$
- Ex.16 When a 0.1 N solution of an acid at 25°C has a degree of ionisation of 4%, the concentration of OH<sup>-</sup> present is :
  - (A)  $2.5 \times 10^{-3}$  (B)  $2.5 \times 10^{-11}$  (C)  $2.5 \times 10^{-12}$  (D)  $2.5 \times 10^{-13}$

**Sol.** (C)

- $[H^+] = C\alpha = 0.1 \times 4 \times 10^{-2} = 4 \times 10^{-3} M$  or  $[OH^-] = \frac{10^{-14}}{[H^+]} = 2.5 \times 10^{-12} N$
- Ex.17 The degree of dissociation of acetic acid in a 0.1 M solution is  $1.32 \times 10^{-2}$ . Calculate dissociation constant of acid and its  $pK_a$  value :

Sol.  $CH_{3}COOH \iff CH_{3}COO^{-} + H^{+}$ Initially 0.1 0 0
at equilibrium 0.1(1-0.0132) 0.1× 0.0132 0.1× 0.0132  $K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = \frac{0.1 \times 0.0132 \times 0.1 \times 0.0132}{0.1(1-0.0132)} = 1.76 \times 10^{-5}$ 

$$pK_a = -\log K_a = -\log (1.76 \times 10^{-5}) = 4.75$$

## 4.7 pH of a mixture of weak acid (monoprotic) and a strong acid solution :

- Weak acid and Strong acid both will contribute H<sup>+</sup>ion.
- For the first approximation we can neglect the H<sup>+</sup> ions coming from the weak acid solution and calculate the pH of the solution from the concentration of the strong acid only.
- To calculate exact pH, we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.
- If  $[SA] = C_1$  and  $[WA] = C_2$ , then  $[H^+]$  from  $SA = C_1$ the weak acid will dissociate as follows.

$$\begin{array}{cccc} HA & \Longrightarrow & H^+ & + & A \\ C_2 & & 0 & & 0 \end{array}$$

ALLEN

$$C_{2}(1-\alpha)$$
  $C_{2}\alpha+C_{1}$   $C_{2}\alpha$   $K_{a}=\frac{(C_{2}\alpha+C_{1})C_{2}\alpha}{C_{2}(1-\alpha)}$  ( $\alpha <<<1$ )

(The weak acids dissociation will be further suppressed because of presence of strong acid, common ion effect)

$$\mathbf{K}_{a} = (\mathbf{C}_{2}\alpha + \mathbf{C}_{1})\alpha$$

Total  $H^+$  ion concentration =  $C_1 + C_2 \alpha$ 

• If the total  $[H^+]$  from the acid is more than  $10^{-6}$  M, then contribution from the water can be neglected, if not then we have to take  $[H^+]$  from the water also.

## 4.8 pH of a mixture of two weak acid (both monoprotic) solution :

- Both acids will dissociate partially.
- Let the acid are  $HA_1 \& HA_2$  and their final concentrations are  $C_1 \& C_2$  respectively, then

(Since  $\alpha_1, \alpha_2$  both are small in comparison to unity)

 $=\sqrt{C_1K_{a_1}+C_2K_{a_2}}$ 

$$K_{a_1} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_1 ; K_{a_2} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_2 \implies \frac{K_{a_1}}{K_{a_2}} = \frac{\alpha_1}{\alpha_2}$$

$$[H^{+}] = C_{1}\alpha_{1} + C_{2}\alpha_{2} = \frac{C_{1}K_{a_{1}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} + \frac{C_{2}K_{a_{2}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} \Rightarrow [H^{+}]$$

So, 
$$[H^+] = C_1 \alpha_1 + C_2 \alpha_2 \approx C_1 \alpha_1$$

mode06 \B0AH-A1\Kota\LEE|Advanced|\Nurture\Chem\Sheet\lonic aquititrium\Eng\01 \_Theory.p65

Ex.18 Calculate pH of solution obtained by mixing equal vol. of 0.02 M HOCl & 0.2 M CH<sub>3</sub>COOH solution given that  $K_{a_1}$  (HOCl) = 2 × 10<sup>-4</sup> ,  $K_{a_2}$  (CH<sub>3</sub>COOH) = 2 × 10<sup>-5</sup> Also calculate OH<sup>-</sup>, OCl<sup>-</sup>, CH<sub>2</sub>COO<sup>-</sup> Sol. Final solution volume become double  $C_1 = 0.01, C_2 = 0.1$  $[H^{+}] = \sqrt{K_{a_1}C_1 + K_{a_2}C_2} = \sqrt{2 \times 10^{-4} \times 0.01 + 2 \times 10^{-5} \times 0.1}$  $=\sqrt{2 \times 10^{-6} + 2 \times 10^{-6}} = 2 \times 10^{-3}$ pH = 3 - log 2 = 3 - 0.3010 = 2.69 $\alpha_1 = \frac{2 \times 10^{-4}}{2 \times 10^{-3}} = 10^{-1}$   $\alpha_2 = \frac{2 \times 10^{-5}}{2 \times 10^{-3}} = 10^{-2}$ HOC1  $\implies$  H<sup>+</sup> +  $= 0.1 \times 10^{-2}$  $= 0.01 \times 10^{-1}$  $= 1 \times 10^{-3}$  $= 1 \times 10^{-3}$  $[OH^{-}] = \frac{K_{w}}{[H^{+}]} = \frac{10^{-14}}{2 \times 10^{-3}} = 0.5 \times 10^{-11} = 5 \times 10^{-12} \,\mathrm{M}$  $[HOC1] = 10^{-2} (1 - 0.1) = 9 \times 10^{-3} M$  $[CH_{3}COOH] = 10^{-1}(1 - 0.01) \approx 10^{-1}$ 

#### 4.9 pH of a solution of a polyprotic weak acid :

• Diprotic acid is the one, which is capable of giving 2 protons per molecule in water. Let us take a weak diprotic acid  $(H_2A)$  in water whose concentration is c M.

II step

In an aqueous solution, following equilbria exist.

#### If

$$\alpha_1$$
 = degree of ionization of H<sub>2</sub>A in presence of HA<sup>-</sup> K<sub>a1</sub> = first ionisation constant of H<sub>2</sub>A

 $\alpha_2$  = degree of ionisation of HA<sup>-</sup> in presence of H<sub>2</sub>A K<sub>a2</sub> = second ionisation constant of H<sub>2</sub>A

#### I step

$$(\mathbf{K}_{eq})_{1}[\mathbf{H}_{2}\mathbf{O}] = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{H}\mathbf{A}^{-}]}{[\mathbf{H}_{2}\mathbf{A}]} = \mathbf{K}_{a_{1}} \qquad (\mathbf{K}_{eq})_{2}[\mathbf{H}_{2}\mathbf{O}] = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{A}^{2-}]}{[\mathbf{H}\mathbf{A}^{-}]} = \mathbf{K}_{a_{2}}$$

Е

## Ionic Equilibrium

#### ALLEN

*.*..

node06\B0AH.AI\Kota\LEE[Advanced]\Nurture\Chem\Sheet\Lonic aqufiltrium\Eng\01\_Theory, p65

Е

Knowing the values of  $K_{a_1}$ ,  $K_{a_2}$  and c, the values of  $\alpha_1$  and  $\alpha_2$  can be calculated using equations (i)

and (ii) After getting the values of  $\alpha_1$  and  $\alpha_2$ , [H<sub>3</sub>O<sup>+</sup>] can be calculated as

 $[\mathbf{H}_{3}\mathbf{O}^{+}]_{\mathrm{T}} = \mathbf{c}\boldsymbol{\alpha}_{1} + \mathbf{c}\boldsymbol{\alpha}_{1}\boldsymbol{\alpha}_{2}$ 

Finally, for calculation of pH

- If the total  $[H_3O^+] < 10^{-6}$  M, the contribution of  $H_3O^+$  from water should be added.
- If the total  $[H_3O^+] > 10^{-6}M$ , then  $[H_3O^+]$  contribution from water can be ignored. Using this  $[H_3O^+]$ , pH of the solution can be calculated.

#### Approximation :

For diprotic acids,  $\mathbf{K}_{a_2} \ll \mathbf{K}_{a_1}$  and  $\alpha_2$  would be even smaller than  $\alpha_1$ 

$$\therefore$$
 1 –  $\alpha_2 \approx 1$  and 1 +  $\alpha_2 \approx 1$ 

Thus, equation (i) can be reduced to  $\mathbf{K}_{\mathbf{a}_1} = \frac{\mathbf{C}\alpha_1 \times \alpha_1}{1 - \alpha_1}$ 

This is expression similar to the expression for a weak monoprotic acid.

• Hence, for a diprotic acid (or a polyprotic acid) the  $[H_3O^+]$  can be calculated from its first equilibrium constant expression alone provided  $K_{a_2} \ll K_{a_1}$ .

# Ex.19 Calculate pH of [HS<sup>-</sup>], [S<sup>2-</sup>], [Cl<sup>-</sup>] in a solution which is 0.1 M HCl & 0.1 M H<sub>2</sub>S given that $K_{a_1}(H_2S) = 10^{-7}$ , $Ka_2(H_2S) = 10^{-14}$ also calculate $\alpha_1 \& \alpha_2$ .

Sol. HCl + H<sub>2</sub>S  
0.1 0.1  

$$C_1 = C_2 = 0.1$$
  
 $\therefore$  pH = 1 (most of [H<sup>+</sup>] comes from HCl]  
 $H_2S \iff H^+ + HS^-$   
 $0.1(1 - \alpha_1) \quad 10^{-1} \quad C\alpha_1 = 0.1 \alpha_1$   
 $Ka_1 = \frac{C\alpha_1 \times 10^{-1}}{C(1 - \alpha_1)} = \frac{10^{-7}}{10^{-1}} = \alpha_1 (\because 1 - \alpha_1 = 1)$   
 $\Rightarrow \alpha_1 = 10^{-6}$   
 $HS^- \iff S^{2-} + H^+$   
 $C\alpha_1(1 - \alpha_2) \quad C\alpha_1\alpha_2 \quad 0.1$   
 $10^{-14} = 0.1 \times \alpha_2$   
 $\Rightarrow \alpha_2 = 10^{-13}$   
 $[S^{2-}] = C\alpha_1\alpha_2$   
 $= 10^{-6} \times 10^{-1} \times 10^{-13} = 10^{-20} M$ 

#### 4.10 ISOHYDRIC SOLUTIONS

- Solutions of electrolytes are said to be isohydric if the concentration of the common ion present in them is the same and on mixing such solutions, there occurs no change in the degree of dissociation of either of the electrolyte.
- (ii) Let the isohydric solution is made by  $HA_1$  and  $HA_2$  acids, then  $[H^+]$  of both acids should be equal i.e.

$$\sqrt{K_{a_1}C_1} = \sqrt{K_{a_2}C_2}$$
 or  $\frac{K_{a_1}}{K_{a_2}} = \frac{C_2}{C_1}$ 

#### 4.11 RELATIVE STRENGTH OF WEAK ACIDS AND BASES

For two acids of equimolar concentrations.

 $\frac{\text{Strength of acid (I)}}{\text{Strength of acid (II)}} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$ 

Similarly for bases,  $\frac{\text{Strength of base (I)}}{\text{Strength of base (II)}} = \sqrt{\frac{K_{b_1}}{K_{b_2}}}$ 

The modern method is to convert  $K_a$  as a power of 10 and express acid strength by power of 10 with sign changed and call this new unit  $pK_a$ . Thus, if  $K_a$  for acid is equal to  $10^{-4}$ ,  $pK_a = 4$ . So higher  $pK_a$  value means lower acid strength, that is,  $pK_a = -\log K_a$ 

Also,  $pK_{b} = -\log K_{b}$ 

## 5. SALTS

- (i) Salts are the ionic compounds formed when its positive part (Cation) come from a base and its negative part (Anion) come from an acid.
- (ii) Salts may taste salty, bitter or sweet or tasteless.
- (iii) Solution of salts may be acidic, basic or neutral.
- (iv) Fused salts and their aqueous solutions conduct electricity and undergo electrolysis.
- (v) The salts are generally crystalline solids.

## 5.1 Classification of salts :

The salts may be classified into four categories.

#### (a) Normal salt :

(i) The salt formed by the loss of all possible protons (replaceable  $H^+$  ions)

Ex. NaCl, NaNO<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Na<sub>3</sub>BO<sub>3</sub>, Na<sub>2</sub>HPO<sub>3</sub>, NaH<sub>2</sub>PO<sub>2</sub> etc.

- (b) Acid salts :
- (i) Salts formed by incomplete neutralisation of polybasic acids. Such salts contain one or more replaceable H atom.
- **Ex.** NaHCO<sub>3</sub>, NaHSO<sub>4</sub>, NaH<sub>2</sub>PO<sub>4</sub>, Na<sub>2</sub>HPO<sub>4</sub> etc.
- (ii) Above salts when neutralized by base form normal salts.

ALLEN

# (c) Basic salts :

- (i) Salts formed by in complete neutralisation of poly acidic bases are called basic salts. These salt contain one or more hydroxyl groups.
- Ex. Zn(OH)Cl, Mg(OH)Cl, Fe(OH), Cl, Bi(OH), Cl etc.
- (ii) Above salts when neutralised by acids form normal salts.

## 5.2 HYDROLYSIS OF SALTS

Salt hydrolysis is defined as the process in which water reacts with cation or anion or both of a salt to change the concentration of  $H^+$  and  $OH^-$  ions of water.

Salt hydrolysis is reverse process of neutralization.

Water + Salt  $\implies$  Acid + Base ;  $\Delta H = +ve$ 

## 5.2.1 Hydrolysis of strong acid - weak base [SA - WB] type salt -

**Ex.**  $CaSO_4$ ,  $NH_4Cl$ ,  $(NH_4)_2SO_4$ ,  $Ca(NO_3)_2$ ,  $ZnCl_2$ ,  $CuCl_2$ ,  $CaCl_2$ 

 $NH_4Cl + H_2O \implies NH_4OH + HCl$ 

$$NH_4^++Cl^- + H_2O \implies NH_4OH + H^+ + Cl^-$$

Net reaction :  $NH_4^+ + H_2O \implies NH_4OH + H^+$ 

- (i) In this type of salt hydrolysis, cation reacts with  $H_2O$ , therefore called as *cationic hydrolysis*.
- (ii) Solution is acidic in nature (SAWB) as  $[H^+]$  is increased.
- (iii) pH of the solution is less than 7.
- (iv) Relation between K<sub>h</sub>, K<sub>w</sub> & K<sub>b</sub>

$$NH_4^+ + H_2O \implies NH_4OH + H^+$$

Hydrolysis constant  $K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$  .....(i)

For weak Base  $NH_4OH \implies NH_4^+ + OH^-$ 

For water

$$\stackrel{\longrightarrow}{\longrightarrow} H^+ + OH^-$$

$$[OH^-] [H^+] \qquad \dots (iii)$$

 $K_{w}^{2} = [OH^{-}] [H^{+}]$ Now multiplying Eq. (1) & (2) = Eq. (3)

H,O

$$\frac{\left[\mathrm{NH}_{4}\mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}\mathrm{OH}\right]} = [\mathrm{H}^{+}] [\mathrm{OH}^{-}]$$

i.e.



(v) **Degree of hydrolysis** – (Represented by h)

$$\begin{split} & \operatorname{NH}_{4}^{+} + \operatorname{H}_{2} O \rightleftharpoons \operatorname{NH}_{4} O H + \operatorname{H}^{+} \\ & C & 0 & 0 \\ & C - Ch & Ch & Ch \\ & K_{h} = \frac{\left[\operatorname{NH}_{4} O H\right]\left[\operatorname{H}^{+}\right]}{\left[\operatorname{NH}_{4}^{+}\right]} = \frac{Ch^{2}}{(1 - h)} \\ & \text{Since } h <<<<1 \\ & \text{then } (1 - h) \approx 1 \\ & \therefore \quad K_{h} = Ch^{2} \\ & \Rightarrow \quad h = \sqrt{\frac{K_{h}}{C}} \\ & \Rightarrow \quad h = \sqrt{\frac{K_{h}}{C}} \\ & \Rightarrow \quad h = \sqrt{\frac{K_{w}}{K_{b}}} \\ & \Rightarrow \quad h = \sqrt{\frac{K_{w}}{K_{w}}} \\ & \Rightarrow$$

(initial concentration at equilibrium)

ALLEN

(vi) **pH of the solution :** 
$$1 = 1 = 5$$

$$pH = -\log [H]$$

$$\Rightarrow [H^{+}] = \sqrt{\frac{K_{w} \times C}{K_{b}}}$$

On taking – log on both sides

$$pH = -\log\left(\frac{K_w \times C}{K_b}\right)^{\frac{1}{2}}$$
$$pH = -\frac{1}{2}\log K_w -\frac{1}{2}\log C -\frac{1}{2} (-\log K_b)$$
$$pH = 7 -\frac{1}{2}pK_b -\frac{1}{2}\log C$$

Ex.20 Find out the  $K_h$  of centi normal  $[10^{-2} N]$  solution of  $NH_4Cl$  (SA - WB) if dissociation constant of  $NH_4OH$  is  $10^{-6}$  and  $K_w = 10^{-14}$ . Find out degree of hydrolysis and also find  $[H^+]$  and pH of solution?

(Given : 
$$K_w = 10^{-14}$$
;  $K_h = 10^{-6}$ )

**Sol.** (1)  $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm h}} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$ 

(2) 
$$h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{10^{-8}}{10^{-2}}} = \sqrt{10^{-6}} = 10^{-3}$$

(3) 
$$[H^+] = Ch$$
  
=  $10^{-2} \times 10^{-3} = 10^{-5}$ 

(4)  $pH = -\log [H^+] = -\log [10^{-5}] = +5 \log 10 = +5 \times 1 = 5$ 

- Ex.21 How many grams of  $NH_4Cl$  should be dissolved per litre of solution to have a pH of 5.13 ?  $K_b$  for  $NH_3$  is  $1.8 \times 10^{-5}$ .
- **Sol.**  $NH_4Cl$  is a salt of strong acid and weak base for solutions of such salts.

$$pH = \frac{1}{2} [pK_{W} - \log C - pK_{b}]$$

$$\Rightarrow 10.26 = 14 - \log C - 4.74$$

$$\Rightarrow \log C = 9.26 - 10.26 = -1.0$$

$$\therefore C = 10^{-1} M$$

$$[NH_{4}Cl] = 10^{-1} M$$

$$W_{NH_{4}NO_{3}} = 10^{-1} \times 53.5 \text{ gL}^{-1}$$

$$= 5.35 \text{ gL}^{-1}$$

## 5.2.2 Hydrolysis of [WA – SB] type salt :

**Ex.** KCN, NaCN,  $K_2CO_3$ , BaCO<sub>3</sub>,  $K_3PO_4$ 

 $NaCN + H_2O \implies NaOH + HCN$ 

 $Na^{+} + CN^{-} + H_2O \implies Na^{+} + OH^{-} + HCN$ 

 $CN^- + H_2O \implies HCN + OH^-$ 

- (i) In this type of salt hydrolysis anion reacts with water therefore called as anionic hydrolysis.
- (ii) Solution is basic in nature as [OH<sup>-</sup>] increases.
- (iii) pH of the solution is greater than 7.
- (iv) Relation between  $K_h, K_w, K_a$

$$CN^{-} + H_{2}O \rightleftharpoons HCN + OH^{-}$$

$$K_{h} = \frac{[HCN][OH^{-}]}{[CN^{-}]} \qquad \dots (i)$$

$$\frac{[HCN][OH^{-}]}{[CN^{-}]} \times \frac{[CN^{-}][H^{+}]}{[HCN]} = [H^{+}][OH^{-}]$$

$$\boxed{K_{h} = \frac{K_{w}}{K_{a}}}$$

(v) Degree of hydrolysis :

 $K_{h} = \frac{\left[HCN\right]\left[OH^{-}\right]}{\left[CN^{-}\right]}$ 

Since  $h \ll 1$ , therefore  $(1 - h) \approx 1$  $K_h = Ch^2$ 

 $h^2 = \frac{K_h}{C} \implies h = \sqrt{\frac{K_h}{C}}$ 

 $K_{h} = \frac{Ch^{2}}{\left(1 - h\right)}$ 

 $h = \sqrt{\frac{K_w}{K_w \times C}}$ 

 $\begin{array}{cccc} CN^- + H_2O & \Longrightarrow & HCN & + & OH^-\\ C & 0 & 0 & \\ C - Ch & Ch & Ch & \\ 1 & & \end{array}$  Initial concentration at equilibrium

÷.

## (vi) **pH of the solution** $[OH^-] = Ch$

$$\begin{bmatrix} OH^{-} \end{bmatrix} = \sqrt{\frac{K_{w} \times C}{K_{a}}}$$
$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{K_{w}}{\sqrt{\frac{K_{w} \times C}{K_{a}}}} \implies \boxed{\begin{bmatrix} H^{+} \end{bmatrix} = \sqrt{\frac{K_{w} \times K_{a}}{C}}}$$

On taking – log on both sides

$$pH = -\frac{1}{2} \left[ \log K_w + \log K_a - \log C \right]$$
$$pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} \log C$$

Ex.22 Calculate the pH and degree of hydrolysis of 0.01 M solution of NaCN,  $K_a$  for HCN is  $6.2 \times 10^{-12}$ .

**Sol.** NaCN is a salt of strong base NaOH and weak acid HCN. Na<sup>+</sup> does not react with water whereas CN<sup>-</sup> reacts with water as here under

$$CN^{-} + H_2O \implies HCN + OH^{-}$$

$$K_{h} = \frac{[HCN][OH^{-}]}{[CN^{-}]} = \frac{K_{w}}{K_{a}} = \frac{10^{-14}}{6.2 \times 10^{-12}} = 1.6 \times 10^{-3}$$
Let x moles of salt undergo hydrolysis then conc

Let, x moles of salt undergo hydrolysis then concentrations of various species would be

$$[CN^{-}] = (0.01 - x) \approx 0.01, [HCN] = x$$
  
 $[OH^{-}] = x$ 

:. 
$$K_{\rm h} = \frac{{\rm x.x}}{0.01} = 1.6 \times 10^{-3}$$

$$\therefore \qquad x^2 = 1.6 \times 10^{-5}$$

: 
$$x = 4 \times 10^{-3}$$
  
[OH<sup>-</sup>] =  $x = 4 \times 10^{-3}$  M

$$[H_{3}O^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{10^{-14}}{4 \times 10^{-3}} = 0.25 \times 10^{-11}$$

$$pH = -\log(0.25 \times 10^{-11}) = 11.6020$$

Degree of hydrolysis  $=\frac{x}{0.01} = \frac{4 \times 10^{-3}}{0.01} = 4 \times 10^{-1}$ 

nade06\B0AH.AI\Kota\LEE[Advanced]\Nurture\Chem\Sheet\Lonic aquitibrium\Eng\01\_Theory.pd5 Е

Ex.23. Calculate for 0.01 N solution of sodium acetate -

- (i) Hydrolysis constant
- (ii) Degree of hydrolysis
- (iii) pH

Given  $K_a$  of  $CH_3COOH = 1.9 \times 10^{-5}$ .

Sol. For  $CH_3COONa + H_2O \implies CH_3COOH + NaOH$ Initial C 0 0

After C(1–h) Ch Ch

(i)  $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{10^{-14}}{1.9 \times 10^{-5}} = 5.26 \times 10^{-10}$ 

(ii) 
$$h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{5.26 \times 10^{-10}}{0.01}} = 2.29 \times 10^{-4} M$$

(iii) [OH<sup>-</sup>] from NaOH, a strong base = Ch = 0.01 × 2.29 × 10<sup>-4</sup> = 2.29 × 10<sup>-6</sup> M
 pOH = 5.64
 ∴ pH = 14 - 5.64 = 8.36

#### 5.2.3 Hydrolysis of (WA - WB) type salt :

**Ex.**  $NH_4CN$ ,  $CaCO_3$ ,  $(NH_4)_2CO_3$ ,  $ZnHPO_3$ 

 $NH_4CN + H_2O \implies NH_4OH + HCN$ 

$$NH_4^+ + CN^- + H_2O \implies NH_4OH + HCN$$

Solution is almost neutral but it may be acidic or basic depending upon the nature of acid & base & pH of the solution is near to 7.

#### For WA - WB types of salt :

|    |            | $\mathbf{K}_{a} > \mathbf{K}_{b}$ | $\mathbf{K}_{\mathbf{b}} > \mathbf{K}_{\mathbf{a}}$ | $\mathbf{K}_{a} = \mathbf{K}_{b}$ |
|----|------------|-----------------------------------|-----------------------------------------------------|-----------------------------------|
| 1. | Hydrolysis | Cationic-anionic                  | Anionic-cationic                                    | Neutral hydrolysis                |
| 2. | Nature     | Acidic                            | Basic                                               | Neutral                           |
| 3. | рН         | pH<7                              | pH>7                                                | pH=7                              |

Relation between K<sub>b</sub>, K<sub>w</sub>, K<sub>a</sub> & K<sub>b</sub> (i)  $NH_4^+ + CN^- + H_2O \implies NH_4OH + HCN$  $K_{h} = \frac{\left[NH_{4}OH\right]\left[HCN\right]}{\left[NH_{4}^{+}\right]\left[CN^{-}\right]}$ ..... (i)  $\frac{\left[\mathrm{NH}_{4}\mathrm{OH}\right]\left[\mathrm{HCN}\right]}{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{CN}^{-}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}\mathrm{OH}\right]} \times \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{\left[\mathrm{HCN}\right]} = [\mathrm{H}^{+}] [\mathrm{OH}^{-}]$  $K_{h} \times K_{h} \times K_{a} = K_{w}$  $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a} \times K_{\rm h}}$ **(ii) Degree of Hydrolysis :** Initial concentration at equilibrium  $C-Ch \qquad C-Ch \qquad$ Ch Ch  $K_{\rm h} = \frac{\left[ NH_4 OH \right] \left[ HCN \right]}{\left[ NH_4^+ \right] \left[ CN^- \right]}$ Since h <<<<1 Then  $(1-h) \approx 1$ or  $h^2 = \frac{K_W}{K_a \times K_b}$  $K_h = h^2$ *.*..  $h = \sqrt{\frac{K_{W}}{K_{x} \times K_{b}}}$ ..... (v) (iii) pH of the solution From eq. (iii)  $K_{a} = \frac{\left[H^{+}\right]\left[CN^{-}\right]}{\left[HCN\right]}$  $\left[H^{+}\right] = \frac{K_{a} \times \left[HCN\right]}{\left[CN^{-}\right]}$ 

 $\begin{bmatrix} H^{+} \end{bmatrix} = \frac{K_{a} \times Ch}{C - Ch} = \frac{K_{a} \times h}{1 - h}$ Since  $h <<<<1, (1 - h) \approx 1$  $[H^{+}] = K_{a} \times h$  [Now put the value of h from eq. (5)]  $= K_{a} \times \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$  $\boxed{[H^{+}] = \sqrt{\frac{K_{w} \times K_{a}}{K_{b}}}}$ 

nade06\B0AH.AI\Kota\LEE[Advanced]\Nurture\Chem\Sheet\Lonic aquitibrium\Eng\01\_Theory.pd5 Ε

On taking – log on both sides

ALLEN.

$$-\log [H^{+}] = -\log \left(\frac{K_{w} \times K_{a}}{K_{b}}\right)^{\frac{1}{2}}$$
$$pH = -\frac{1}{2} [\log K_{w} + \log K_{a} - \log K_{b}]$$

$$pH = 7 + \frac{1}{2} \ pK_{_a} \ - \frac{1}{2} \ pK_{_b}$$

Note : Degree of hydrolysis of [WA–WB] type salt does not depend on the concentration of salt. *Ex.24 Salt of weak acid and weak base* 

(i) Calculate pH of the mixture (25 mL of 0.1 M NH<sub>4</sub>OH + 25 mL of 0.1 M CH<sub>3</sub>COOH). Given that  $K_a : 1.8 \times 10^{-5}$ , and  $K_b = 1.8 \times 10^{-5}$ 

| Sol.                | NH <sub>4</sub> OH + | $CH_3COOH \rightarrow$ | CH <sub>3</sub> COONH <sub>4</sub> + | H <sub>2</sub> O |
|---------------------|----------------------|------------------------|--------------------------------------|------------------|
| Initial milli moles | 25 	imes 0.1         | $25 \times 0.1$        | 0                                    | 0                |
|                     | = 2.5                | = 2.5                  | _                                    |                  |
| Final milli moles   | 0                    | 0                      | 2.5                                  | 2.5              |

As salt is formed (salt of weak acid and weak base) and pH will be decided by salt hydrolysis

$$pH = \frac{pK_w + pK_a - pK_b}{2} = \frac{1}{2} \left( -\log 10^{-14} - \log 1.8 \times 10^{-5} + \log 1.8 \times 10^{-5} \right) = 7$$

Ex.25 In the following which one has highest / maximum degree of hydrolysis.

| (1) $0.01 M - NH_4 Cl$ | (2) $0.1 M - NH_4 Cl$ |
|------------------------|-----------------------|
| $(3) 0.001 M - NH_4Cl$ | (4) Same              |

Sol. [3]

$$\left(h = \sqrt{\frac{K_h}{C}}\right)$$
 if C decreases, h increases

Ex.26 In the following which one has lowest value of degree of hydrolysis.

(1) 
$$0.01 M - CH_3COONH_4$$
 (2)  $0.1 M - CH_3COONH_4$   
(3)  $0.001 M - CH_3COONH_4$  (4) Same

Sol. [4]

**Ex.27** Find out the concentration of  $[H^+]$  in 0.1M CH<sub>3</sub>COONa solution ( $K_a = 10^{-5}$ ) Sol. Salt is [WA - SB] type

$$\therefore \quad [H^+] = \sqrt{\frac{K_w \times K_a}{C}} = \sqrt{\frac{10^{-14} \times 10^{-5}}{10^{-1}}} = \sqrt{10^{-19} \times 10^{+1}} = \sqrt{10^{-18}} = 10^{-9}$$

Е

node06 \B0\AH-Al \Kots\LEE(Advanced)\Nurture\Chem \Sheet\Ionic equilibrium\Eng \0] \_Theory.pd5

Ex.28 Calculate the degree of hydrolysis of a mixture containing 0.1N NH<sub>4</sub>OH and 0.1N HCN  $K_a = 10^{-5}$  &  $K_b = 10^{-5}$ 

**Sol.** Salt is [WA - WB]

$$h = \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 10^{-5}}}$$
$$= \sqrt{10^{-14} \times 10^{+10}} = \sqrt{10^{-4}} = 10^{-2}$$

#### 5.2.4 Hydrolysis of [SA – SB] type salt :

**Ex.** NaCl,  $BaCl_2$ ,  $Na_2SO_4$ ,  $KClO_4$  etc.

 $NaCl + H_2O \implies NaOH + HCl$ 

$$Na^+ + Cl^- + H_2O \implies Na^+ + OH^- + H^+ + Cl^-$$

 $H_2O \implies H^+ + OH^-$  (It is not salt hydrolysis)

- (1) Hydrolysis of salt of [SA SB] is not possible
- (2) Solution is neutral in nature (pH = pOH = 7)
- (3) pH of the solution is 7

#### 5.2.5 Hydrolysis of Amphiprotic Anion :

NaHCO<sub>3</sub>, NaHS, etc., can undergo ionisation to from H<sup>+</sup> ion and can undergo hydrolysis to from OH<sup>-</sup> (Na<sup>+</sup> ion is not hydrolysed)

(a) (i) 
$$HCO_3^- + H_2O \xrightarrow{\text{ionisation}} CO_3^{2-} + H_3O^+$$
 (acid)  
(ii)  $HCO_3^- + H_2O \xrightarrow{\text{hydrolysis}} H_2CO_3 + OH^-$  (base)  
 $pH(HCO_3^-) = \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right)$ 

(b) Similarly for  $H_2PO_4^-$  and  $HPO_4^{2-}$  amphiprotic anions.

$$pH_{(H_2PO_4^-)} = \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right) \quad \text{and} \quad pH_{(HPO_4^{2-})} = \left(\frac{pK_{a_2} + pK_{a_3}}{2}\right)$$

$$NaHCO_3 \longrightarrow N_c^{a^+} + H_CO_3^{-}$$

$$HCO_3^{-} + H_2O \xleftarrow{Ka/Ka_1} H_2CO_3 + OH^{-}$$

$$HCO_3^{-} + H_2O \xleftarrow{Ka_2} CO_3^{-2} + H_3O^{+}$$

$$\because H^+ \text{ and } OH^- \text{ also react}$$

:. We can safely assume that both reactions have nearly same degree of dissociation

$$\therefore [H_2CO_3] \approx [CO_3^{-2}] \qquad \dots (1)$$

$$\frac{K_W}{Ka_1} = \frac{[H_2CO_3][OH^{-}]}{[HCO_3^{-}]} \Rightarrow \frac{1}{Ka_1} = \frac{[H_2CO_3]}{[H^+][HCO_3^{-}]} \qquad \dots (2)$$

....(3)

## ALLEN

$$\frac{\left[CO_{3}^{-2}\right]\left[H^{+}\right]}{\left[HCO_{3}^{-}\right]} = Ka_{2}$$
  
Divide (2) by (3)

 $[H^{\scriptscriptstyle +}] = \sqrt{\mathsf{Ka}_1\mathsf{Ka}_2} \ \Rightarrow pH = \frac{p\mathsf{Ka}_1 + p\mathsf{Ka}_2}{2}$ 

Ex.29 Calculate the pH of 0.5  $M Na_3 PO_4$  in aqueous solution ?

 $PO_4^{3-} + H_2O \implies HPO_4^{2-} + OH^-$ ;  $K_b (PO_4^{-3}) = 2.4 \times 10^{-2}$ Sol.  $HPO_4^{2-}$  and  $PO_4^{-3}$  are conjugate acid and base so  $K_a \times K_b = 10^{-14}$ 

$$K_{a}(HPO_{4}^{2-}) = \frac{10^{-14}}{2.4 \times 10^{-2}} = 4.17 \times 10^{-13}$$

$$pK_{a} = -\log K_{a} = 12.38$$
or
$$pH = 7 + \frac{1}{2} pK_{a} + \frac{1}{2} \log C$$

$$pH = 13.04$$

#### **6 BUFFER SOLUTIONS**

A solution that resists change in pH value upon addition of small amount of strong acid or base or when solution is diluted is called buffer solution.

The capacity of a solution to resist alteration in its pH value is known as buffer capacity and the mechanism of buffer solution is called buffer action.

#### 6.1 Types of buffer solutions

(A) Simple buffer solution

(B) Mixed buffer solution

## 6.2 SIMPLE BUFFER SOLUTION :

A salt of weak acid and weak base in water e.g. CH<sub>3</sub>COONH<sub>4</sub>, HCOONH<sub>4</sub>, AgCN, NH<sub>4</sub>CN.

## Buffer action of simple buffer solution

Consider a simple buffer solution of CH<sub>3</sub>COONH<sub>4</sub>, since it is a salt will dissociated completely.

$$CH_{3}COONH_{4} \longrightarrow CH_{3}COO^{-} + NH_{4}^{+}$$

If a strong acid such as HCl is added then

 $HCl \longrightarrow H^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -}$ 

The H<sup>+</sup> ions from the added acid (HCl) combine with  $CH_3COO^-$  ions to form  $CH_3COOH$ , which is a weak acid so will not further ionized.

Thus there is no rise in  $H^+$  ion concentration and the pH remains constant.

 $CH_3COO^- + H^+ \Longrightarrow CH_3COOH$  (Weak acid)

If a strong base is added as NaOH

 $NaOH \longrightarrow Na^+ + OH^-$ 

 $NH_{4}^{+} + OH^{-} \Longrightarrow NH_{4}(OH)$  (Weak base)

Thus change in  $OH^-$  ion concentration is resisted by  $NH_4^+$  ions by forming  $NH_4OH$  which is a weak base. So it will not further ionized and pH remains constant.

pH of a simple buffer solution :-

$$pH = 7 + \frac{1}{2}pk_a - \frac{1}{2}pk_b$$

#### 6.3 **MIXED BUFFER SOLUTIONS:**

#### **6.3.1 Acidic buffer solution :**

An acidic buffer solution consists of solution of a weak acid and its salt with strong base. The best known example is a mixture of solution of acetic acid and its salt with strong base (CH<sub>3</sub>COONa). Other example :

HCN + KCN, 
$$(H_2CO_3 + NaHCO_3) \longrightarrow blood$$
  
CH<sub>3</sub>COOH  $\Longrightarrow$  CH<sub>3</sub>COO<sup>-</sup> + H<sup>+</sup> (Weakly ionised)  
CH<sub>2</sub>COONa  $\longrightarrow$  CH<sub>2</sub>COO<sup>-</sup> + Na<sup>+</sup> (Highly ionised)

When a few drops of an acid (HCl) are added to it, the H<sup>+</sup> ions from the added acid (HCl) combine with the CH<sub>3</sub>COO<sup>-</sup> ions to form CH<sub>3</sub>COOH. Thus there is no rise in H<sup>+</sup> ion concentration and the pH of solution remains constant. On the other hand, when a few drops of base(NaOH) are added, the OH<sup>-</sup> of the added base reacts with acetic acid to form unionise water and acetate ions.

 $CH_{3}COOH + OH^{-} \Longrightarrow H_{3}O + CH_{3}COO^{-}.$ 

Thus there is no increase in OH<sup>-</sup> ion concentration and hence the pH of the solution remains constant.

#### pH of a acidic buffer solution (Henderson equation) :

Consider a buffer mixture (acidic buffer)

HA + NaA (CH<sub>3</sub>COOH + CH<sub>3</sub>COONa)  
where A = CH<sub>3</sub>COO, A<sup>-</sup> = CH<sub>3</sub>COO<sup>-</sup>  
HA 
$$\rightleftharpoons$$
 H<sup>+</sup> + A<sup>-</sup>  
NaA  $\longrightarrow$  Na<sup>+</sup> + A<sup>-</sup>

Applying law of mass action to dissociation equilibrium of HA

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
; so  $[H^+] = \frac{K_a[HA]}{[A^-]}$ 

taking log,

$$\log [H^+] = \log K_a + \log \frac{[HA]}{[A^-]}$$
$$-\log [H^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$
$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

 $[A^{-}] =$  Initial concentration of salt as it is mainly comes from salt.

[HA] = Initial concentration of the acid.

.

 $pH = pK_a + log \frac{[Salt]}{[Acid]}$  (it is known as Henderson-Hasselbalch equation.)

Note : A solution can act as buffer only if ratio of concentration of salt to acid is between 0.1 to 10.

$$\begin{array}{rcl} CH_{3}COOH & : & CH_{3}COONa \\ 1 & 10 & pH = pK_{a} + 1 \\ 10 & 1 & pH = pK_{a} - 1 \end{array}$$

Thus pH range of an acidic buffer solution is  $(pK_a + 1)$  to  $(pK_a - 1)$ 

pH range =  $pK_a \pm 1$ 

Maximum buffer action will be only when ratio of concentration of acid and salt is 1. So for maximum buffer action,  $pH = pK_a$ 

Ex.30 How much volume of 0.2 M solution of acetic acid should be added to 100 mL of 0.2 M solution of sodium acetate to prepare a buffer solution of pH = 6.00? ( $pK_a$  for acetic acid is 4.74)

Sol. 
$$pH = pK_a + \log \frac{[Salt]}{[Acid]}$$
  
 $\log \frac{[Salt]}{[Acid]} = pH - pK_a = 6.00 - 4.74 = 1.26$   $\therefore$   $\frac{[Salt]}{[Acid]} = 18.2$   
Moles of CH<sub>3</sub>COONa in solution  $\frac{100 \times 0.2}{1000} = 0.02$ 

Let, volume of 0.2 acetic acid added = V mL

$$\therefore \qquad \text{Moles of acetic acid} = \frac{V \times 0.2}{1000}$$

$$\therefore \qquad \frac{0.02}{V \times \frac{0.2}{1000}} = 18.2$$

 $\therefore$  V = 5.49 mL

Ex.31 Calculate the pH after the addition of 80 mL and 100 mL respectively of 0.1 N NaOH to 100 mL, 0.1 N CH<sub>3</sub>COOH. (Given  $pK_a$  for CH<sub>3</sub>COOH = 4.74)

Sol. If 80 mL of 0.1 N NaOH is added to 100 mL of 0.1 N CH<sub>3</sub>COOH, acidic buffer will form as

 $\begin{array}{rcl} H_{3}CCOOH &+ & NaOH &\longrightarrow & H_{3}CCOONa &+ & H_{2}O\\ Initial & 0.01 \ eq. & 0.008 \ eq. & 0 & 0\\ Final & 0.002 \ eq. & 0 & 0.008 \ eq. \\ pH &= pK_{a} + log \ \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} = 4.74 + log \ \frac{0.008}{0.002} = 5.342\\ If \ 100 \ mL \ of \ 0.1 \ N \ NaOH \ is \ added \ is \ added \ to \ 100 \ mL \ of \ 0.1 \ N \ CH_{3}COOH, \ complete \end{array}$ 

neutralization takes place and the concentration of  $H_3CCOONa = \frac{0.1}{2}M = 0.05 M$ 

Now, 
$$pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} log C = 8.72$$

 $Ex.32 \ Calculate \ the \ pH \ of \ a \ solution \ when \ 0.20 \ moles \ of \ HCl \ is \ added \ to \ one \ litre \ solution \ containing \ -$ 

- (a) 1 M each of acetic acid and acetate ion ?
- (b) 0.1 M each of acetic acid and acetate ion ?

Given  $K_a$  for acetic acid is  $1.8 \times 10^{-5}$ .

**Sol.** (a) Initially [Acetic acid] 
$$= 1 M$$

[Acetate] = 1 M

Е

node06 \B0AH:AI \Kota \LEE[Advanced]\Nurture\Chem \Sheer\tonic equilibrium \Eng \01 \_Theory. p65

| HC                                                                         | ′           |                           | <b>`</b>                  | СН СООН                  | _L_   | CE                |
|----------------------------------------------------------------------------|-------------|---------------------------|---------------------------|--------------------------|-------|-------------------|
| Mole before reaction 0.2                                                   | Т           | $\frac{1}{1}$             | $\rightarrow$             | 1                        | Т     | $\mathcal{C}_{l}$ |
| Mole after reaction 0.2                                                    |             | 0.8                       |                           | 1.2                      |       | 0.2               |
| $\therefore$ New [CH <sub>3</sub> COOH] =                                  | 1.2 ; [0    | $CH_3COO^-] =$            | = 0.8                     |                          |       |                   |
| $\therefore  pH = pk_a + \log \frac{[\text{conjught}]}{[\text{activity}]}$ | gate]<br>d] |                           |                           |                          |       |                   |
| $\therefore  pH = -\log 1.8 \times 10^{-5}$                                | + log       | $\frac{0.8}{1.2} = 4.566$ | 86                        |                          |       |                   |
| (b) In II case initially [Act                                              | etic aci    | d] = 0.1 M                |                           |                          |       |                   |
| [Acetate] = 0.1 M                                                          |             |                           |                           |                          |       |                   |
| Now 0.2 mole of HCl                                                        | are ada     | led to it                 |                           |                          |       |                   |
|                                                                            | HCl         | $+ CH_3$                  | <i>COO</i> <sup>-</sup> - | $\rightarrow CH_{3}COOH$ | H +   | $Cl^{-}$          |
| Mole before reaction                                                       | 0.2         | 0.1                       | !                         | 0.1                      |       | 0                 |
| Mole after reaction                                                        | 0.1         | 0                         |                           | 0.2                      |       | 0.1               |
| $\therefore$ [H <sup>+</sup> ] from free HCl =                             | 0.1 M       |                           |                           |                          |       |                   |
| $\therefore pH = 1$                                                        |             |                           |                           |                          |       |                   |
| Note CH COOH no doubt                                                      | oives H     | + hut heing               | weak ac                   | id as well as in         | nrese | nce of H(         |

n presence of HCl does es H but being weak acid as well as not dissociate appreciably and thus,  $H^+$  from  $CH_3COOH$  may be neglected.

#### 6.3.2 Basic buffer solution :

A basic buffer solution consists of a mixture of a weak base and its salt with strong acid. The best known example is a mixture of  $NH_4OH$  and  $NH_4Cl$ .

| $NH_4OH \Longrightarrow NH_4^+ + OH^-$     | (Weakly ionised) |
|--------------------------------------------|------------------|
| $\rm NH_4Cl \rightarrow \rm NH_4^+ + Cl^-$ | (Highly ionised) |

 $NH_{4}OH \sim NH_{4}^{-1} + \cdots$   $n a few drops of a base (NaOr<sub>1</sub>), m feebly ionised NH_{4}OH thus there is no rsc. mains constant.$  $<math display="block">NH_{4}^{+} + OH^{-1} \iff NH_{4}OH$   $f a few drops of a acid (HCl) are added the H<sup>+</sup> from acid combine with NH_{4}O_{1}.$  $<math display="block">NH_{4}OH + H^{+} \iff NH_{4}^{+} + H_{2}O$ Thus the addition of acid does not increase the H<sup>+</sup> ion concentration and hence pH remains unchanged. pH of basic buffer solution :  $NH_{4}OH \iff NH_{4}^{+} + OH^{-1} \implies NH_{4}^{+} + CI^{-1}$  T

$$\begin{split} \mathrm{NH}_{4}\mathrm{OH} &\rightleftharpoons \mathrm{NH}_{4}^{+} + \mathrm{OH}^{-} \\ \mathrm{NH}_{4}\mathrm{Cl} &\to \mathrm{NH}_{4}^{+} + \mathrm{CI}^{-} \\ \mathrm{K}_{b} &= \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}\mathrm{OH}\right]} \\ &\left[\mathrm{OH}^{-}\right] &= \frac{\mathrm{K}_{b}\left[\mathrm{NH}_{4}\mathrm{OH}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} &= \frac{\mathrm{K}_{b}\left[\mathrm{Base}\right]}{\left[\mathrm{Salt}\right]} \end{split}$$

taking –log on both side

$$-\log OH^{-} = -\log \frac{K_{b}[Base]}{[Salt]} \Rightarrow pOH = -\log K_{b} - \log \frac{[Base]}{[Salt]}$$
$$pOH = pK_{b} + \log \frac{[Salt]}{[Base]} \Rightarrow pH = 14 - pOH$$

#### pOH range :

A solution can act as buffer solution only if ratio of concentration of salt to base is from 0.1 to 10.

| $\rm NH_4OH$ | : | NH <sub>4</sub> Cl |                  |
|--------------|---|--------------------|------------------|
| 1            |   | 10                 | $pOH = pK_b + 1$ |
| 10           |   | 1                  | $pOH = pK_b - 1$ |

So pOH range is  $pK_{h} \pm 1$ 

\* Condition for maximum buffer action :

$$\begin{bmatrix} NH_4OH \end{bmatrix} : \begin{bmatrix} NH_4Cl \end{bmatrix}$$

$$1 \qquad 1$$

$$pOH = pK_b + log \frac{1}{1}$$

$$pOH = pK_b \quad and \quad pH = 14 - pK_b$$

Maximum buffer action because pH remains constant.

 $\Rightarrow \quad 7 = -\log\ (10^{-8}) + \log \frac{[BH^+]}{[B]} \Rightarrow 7 = 8 + \log \frac{[BH^+]}{[B]}$ 

Ex.33An organic base B has  $K_b$  value equal to  $1 \times 10^{-8}$ . In what amounts should 0.01 M HCl and 0.01 M solution of B be mixed to prepare 1 L of a buffer solution having pH = 7.0?

**Sol.**  $B + H_2O \implies BH^+ + OH^-$ 

 $\log \frac{[BH^+]}{[B]} = -1$ 

 $\therefore \frac{[BH^+]}{[B]} = 10^{-1} = 0.1$ 

 $K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]} = 1 \times 10^{-8}$ 

 $pOH = pK_{b} + log \frac{[BH^{+}]}{[B]}$ 

Let, volume of HCl taken = xL

 $\therefore$  Volume of base taken = (1 - x) L

After the reaction, millimole of BH<sup>+</sup> formed =  $0.01 \times (x)$ 

Millimoles of base left = 0.01 (1 - 2x)

:. 
$$\frac{[BH^+]}{[B]} = \frac{x}{[1-2x]} = 0.1$$

- $\therefore$  x = 0.083 L = Volume of HCl
- $\therefore$  Volume of base = 0.917 L

## Ex.34 Which of the following buffers containing NH<sub>4</sub>OH and NH<sub>4</sub>Cl show the lowest pH value?

| conc. of     |                       | conc. of               |  |
|--------------|-----------------------|------------------------|--|
|              | $NH_4OH (mol L^{-1})$ | $NH_4Cl (mol  L^{-1})$ |  |
| (A)          | 0.50                  | 0.50                   |  |
| ( <b>B</b> ) | 0.10                  | 0.50                   |  |
| ( <i>C</i> ) | 0.50                  | 1.50                   |  |
| ( <b>D</b> ) | 0.50                  | 0.10                   |  |

**Sol.** (B) 
$$pOH = pk_b + \log \frac{[salt]}{[base]}$$
 for  $NH_4Cl = 0.5$  and  $NH_4OH = 0.1$ 

pOH will be maximum and so pH will be minimum.

# Ex.35 A solution of weak base BOH was titrated with 0.1 N HCl. The pH of the solution was found to be 10.04 and 9.14 after the addition of 5 mL and 20 mL of the acid respectively. Find the dissociation constant of the base.

Sol. Case I:

|                                           | BOH                         | +         | HCl    | $\longrightarrow$ | BCl | + | $H_2O$ |
|-------------------------------------------|-----------------------------|-----------|--------|-------------------|-----|---|--------|
| Millimole before reac.                    | a                           | 0.        | 1×5=0  | ).5               | 0   |   | 0      |
| Millimole after reac.                     | (a–0.5)                     |           | 0      |                   | 0.5 |   | 0.5    |
| $\therefore$ pOH = - log K <sub>b</sub> - | $+\log \frac{ BC }{ BO }$   | 2]]<br>H] | (i)    |                   |     |   |        |
| : $pH = 10.04$ s                          | o pOH                       | = 3.9     | 6      |                   |     |   |        |
| $\therefore  3.96 = -\log K_{\rm b} +$    | $-\log \frac{0.3}{(a-0.3)}$ | 5<br>).5) | (ii)   |                   |     |   |        |
| Case II :                                 |                             |           |        |                   |     |   |        |
|                                           | BOH                         | +         | HCl    | $\longrightarrow$ | BCl | + | $H_2O$ |
| Millimole before reac.                    | а                           | 0.        | 1×20 = | = 2               | 0   |   | 0      |
| Millimole after reac.                     | (a–2)                       |           | 0      |                   | 2   |   | 2      |
| $\therefore$ pOH = $-\log K_{\rm b}$ -    | $+\log\frac{[BC]}{[BO]}$    | 21]<br>H] | (iii)  |                   |     |   |        |

. 
$$4.86 = -\log K_{\rm b} + \log \frac{2}{(a-2)}$$
 .....(iv)

Solving Eqs. (ii) and (iv),  $K_{\rm b} = 1.81 \times 10^{-5}$ 

## 7. INDICATORS

·

The stage of titration when complete reaction occur between the solution is called **equivalent point.** The stage of titration when sudden change in colour of solution is observed is called **end point.** A perfect indicator response sudden colour change exactly on completion of reaction. An **indicator** is a substance which response sudden change in colour of solution at the end point or neutral point of the acid-base titration. At **end point**  $N_1V_1 = N_2V_2$ 

- (i) The indicators in acid-base titration changes colour on changing the pH of solution.
- (ii) All the acid-base indicators are either weak organic acid or base and having different colour for unionized and ionised form.
- (iii) A mixture of two colour is recognized in a single colour if the conc. of one is 10 times or more than that of others. (This 10 time is flexible)

HA  $A^-$  + H<sup>+</sup> colour X colour Y

Diss. const. or (Ionisation const) =  $K_a = K_{in} = \frac{[H^+][A]}{[HA]}$ 

$$pH = pK_{in} + log \frac{[A^-]}{[HA]}$$

- (a) The solution will appear only of colour Y, if  $\frac{[A^-]}{[HA]} \ge 10 \implies pH \ge (pK + 1)$
- (b) The solution will appear only of colour X, if  $\frac{[A^-]}{[HA]} \le \frac{1}{10} \implies pH \le (pK 1)$

pH of solution below and above which solution appears in a single colour is called pH range of indicator.

| Indicator      | pH range   | Colour change      | pK <sub>a</sub> |
|----------------|------------|--------------------|-----------------|
| Methyl orange  | 3.2 - 4.5  | Pink to yellow     | 3.7             |
| Methyl red     | 4.4 - 6.5  | Red to yellow      | 5.1             |
| Litmus         | 5.5 - 7.5  | Red to blue        | 7.0             |
| Phenol red     | 6.8 - 8.4  | Yellow to red      | 7.8             |
| Phenolpthalein | 8.3 - 10.5 | Colourless to pink | 9.6             |

Ex.36 The disso. const. of a basic indicator is  $2 \times 10^{-7}$ . Calculate its pH range.

**Sol.** 5.7 - 7.7 = pOH  $\therefore$  pH = 6.3 - 8.3

Ex.37 The pH range of an acidic indicator HIn is 4.0 - 5.2. Calculate dissociation constant. Also

calculate  $\frac{\text{In}^-}{\text{HIn}}$  for the appearence of solution in single colour.

**Sol.** Diss. constant =  $2.5 \times 10^{-5}$ , 4

#### 9.1 TITRATION OF STRONG ACID AGAINST STRONG ALKALI :

The graph (A) shows how pH changes during the titration of 50 cm<sup>3</sup> of 0.1 M HCl with 0.1 M NaOH.

NaOH (aq) + HCl (aq)  $\longrightarrow$  NaCl (aq) + H<sub>2</sub>O ( $\ell$ )

The pH of 0.1 M solution of HCl in the beginning would be 1. As alkali is added, the pH changes slowly in the beginning. However, at the equivalence point pH changes rapidly from about 3.5 to 10. It can be shown by simple calculations that pH of the solution is 3.7 when 49.8 cm<sup>3</sup> of 0.1 M NaOH solution have been added. The pH suddenly changes to 10 after addition of 50.1 cm<sup>3</sup> of the NaOH solution. Thus, any indicator having pH range between 3.5 to 10 will identify the equivalence point. This means that any one of phenolphthalein, methyl orange or bromothymol blue could be used as an indicator.



Titration curves : (A) strong base with strong acid ; (B) weak base with strong acid ; (C) strong base with weak acid ; (D) weak base with weak acid.

## 7.2 TITRATION OF STRONG ACID AGAINST WEAK ALKALI :

The graph (B) shows how pH changes during titration of 50 cm<sup>3</sup> of 0.1 M HCl with 0.1 M NH<sub>3</sub>.

 $HCl (aq) + NH_4OH (aq) \longrightarrow NH_4Cl (aq) + H_2O (\ell)$ 

In this case, the pH changes rapidly from 3.5 to 7.0 at the equivalence point. Methyl orange, methyl red and bromocresol green are suitable indicators for this type of titration. Phenolphthalein is unsuitable because its pH range lies outside the vertical portion of the curve.

#### 7.3 TITRATION OF WEAK ACID AGAINST STRONG BASE :

The graph (C) shows how pH changes during titration of 50 cm<sup>3</sup> of 0.1 M CH<sub>3</sub>COOH with 0.1 M NaOH.

 $CH_3COOH (aq) + NaOH (aq) \longrightarrow CH_3COONa (aq) + H_2O (\ell)$ 

The vertical portion of this titration curve lies between pH range 7 to 10.6. Phenolphthalein is suitable indicator for this titration. Methyl orange is not suitable for this titration because its pH range lies on the flat portion of the curve.

#### 7.4 TITRATION OF WEAK ACID AGAINST WEAK BASE :

The graph (D) represents the titration curve obtained for titration of 50 cm<sup>3</sup> of 0.1 M CH<sub>3</sub>COOH with 0.1 M NH<sub>2</sub>.

 $CH_{3}COOH(aq) + NH_{4}OH(aq) \longrightarrow CH_{3}COONH_{4}(aq) + H_{2}O(\ell)$ 

For this type of titration there is no sharp increase in pH at the equivalence point. No indicator is suitable for this type of titration.

# Ex.38 Bromophenol blue is an indicator with a value of $K_a = 6.84 \times 10^{-6}$ . At what pH it will work as an indicator? Also report the % of this indicator in its basic form at a pH of 5.84.

**Sol.** HBPh  $\implies$  H<sup>+</sup> + BPh<sup>-</sup>

ALLEN

$$K_{a} = \frac{[H^{+}][BPh^{-}]}{[HBPh]}, \text{ when } BPh^{-} = HBPh, \text{ indicator will work. Thus}$$

$$[H^{+}] = 6.84 \times 10^{-6}$$

$$\therefore \quad pH = 5.165$$
Also if pH = 5.84  
or \quad [H^{+}] = 1.44 \times 10^{-6}, \text{ then}
$$K_{a} = \frac{[H^{+}][BPh^{-}]}{[HBPh]} \quad \text{or} \quad 6.84 \times 10^{-6} = \frac{1.44 \times 10^{-6}.C\alpha}{C(1-\alpha)} \quad \text{or} \quad \alpha = 0.83 \text{ or } 83 \%$$

librium\Eng\01\_Theory.p65



node06/B0AH-A1/Kota/EEEAdvanced/NNuture/Chem/Sheet/Ionic aquitibrium/Eng/01\_Theory.p65

## 10. SOLUBILITY (s) & SOLUBILITY PRODUCT (K<sub>sp</sub>)

## **10.1 SOLUBILITY :**

ALLEN \_

At constant temperature, the maximum number of moles of solute which can be dissolved in a solvent to obtain 1 litre of saturated solution is called solubility.

Solubility depends on the following -

- (i) Temperature
- (ii) Presence of common ion
- (iii) Nature of solvent

## **10.2 SOLUBILITY PRODUCT**(K<sub>sp</sub>) :

When a sparingly soluble salt such as AgCl is put into water, a very small amount of AgCl dissolves in water and most of the salt remains undissolved in its saturated solution.

- A solution which remains in contact with undissolved solute is said to be saturated.
- The salt AgCl is an elecrolyte, its dissociation occurs in solution. Hence, the quantity of AgCl that dissolves in water dissociates into Ag<sup>+</sup> and Cl<sup>-</sup> ions. Thus, in the saturated solution of AgCl an equilibrium exists between undissolved solid AgCl and its ions, Ag<sup>+</sup> and Cl<sup>-</sup> ions.

$$\operatorname{AgCl}_{(s)} \xrightarrow{\operatorname{Dissolution}} \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$$

according to law of mass action

$$K = \frac{\left[Ag^{+}\right] \cdot \left[Cl^{-}\right]}{\left[AgCl\right]}$$

Since, the concentration of undissolved solid AgCl is constant. Thus, the product K.[AgCl] gives another constant which is designated as  $K_{sn}$ 

So,  $K.[AgCl] = [Ag^+].[Cl^-]$  $\therefore$   $K_{sp} = [Ag^+].[Cl^-]$ 

- $\mathbf{K}_{sp}$  for CaCl<sub>2</sub> CaCl<sub>2</sub>(s)  $\implies$  Ca<sup>+2</sup>(aq) + 2Cl<sup>-</sup>(aq) Solubility product in terms of concentration of ions  $\mathbf{K}_{sp} = [Ca^{+2}] [Cl^{-}]^2$
- $\mathbf{K}_{sp}$  for AlCl<sub>3</sub> AlCl<sub>3</sub>(s)  $\implies$  Al<sup>+3</sup>(aq) + 3Cl<sup>-</sup>(aq) Solubility product in terms of concentration of ions  $\mathbf{K}_{sp} = [Al^{+3}] [Cl^{-}]^3$
- General form  $A_x B_y(s) \rightleftharpoons xA^{+y}(aq) + yB^{-x}(aq)$  $K_{sp} = [A^{+y}]^x [B^{-x}]^y$

Thus, solubility product is defined as the product of concentrations of the ions raised to a power equal to the number of ions given by the dissociation of electrolyte at a given temperature when the solution is saturated.

## 10.3 APPLICATION OF SOLUBILITY PRODUCT $(K_{sp})$ :

- **10.3.1** To find out the solubility (S) :
  - (i) K<sub>sp</sub> of AB (Mono-mono, di-di, tri-tri valency) type salt –

**Ex.** NaCl, BaSO<sub>4</sub>, CH<sub>3</sub>COONa, CaCO<sub>3</sub>, NaCN, KCN, NH<sub>4</sub>CN, NH<sub>4</sub>Cl etc.

 $AB(s) \iff A^{+}(aq) + B^{-}(aq)$   $a \qquad 0 \qquad 0$   $(a-s) \qquad s \qquad s$   $K_{sp} = [A^{+}] [B^{-}]$   $K_{sp} = s^{2} \quad \text{or} \quad s = \sqrt{K_{sp}}$ 

## (ii) $K_{sp}$ of $AB_2$ or $A_2B$ (Mono-di or di-mono valency) type salt –

**Ex.** CaCl<sub>2</sub>, CaBr<sub>2</sub>, K<sub>2</sub>S,  $(NH_4)_2SO_4$ , K<sub>2</sub>SO<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub> etc.

$$AB_{2}(s) \xrightarrow{} A^{+2}(aq) + 2B^{-}(aq)$$

$$a \qquad 0 \qquad 0$$

$$a - s \qquad s \qquad 2s$$

$$K_{sp} = [A^{+2}] [B^{-}]^{2}$$

$$K_{sp} = s \times (2s)^{2} = s \times 4s^{2} = 4s^{3}$$

$$s = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$$

#### (iii) General form :

## **10.4 COMMON ION EFFECT ON SOLUBILITY :**

Solubility of substances always decreases in the presence of common ion. According to Le-Chatelier's principle, on increasing common ion concentration equilibrium shifts in backward direction until the equilibrium is reestablished so, the solubility of substances decreases.

Ex. Find out the solubility of AgCl in water and in the presence of CM – NaCl solution?

AgCl ⇒  $Ag^+$  + Cl-CM.NaCl (Let solubility of AgCl is S mol L<sup>-1</sup>) SM SM  $K_{sp} = [Ag^+] [Cl^-]$  $K_{sp}^{sp} = S^2$ In NaCl solution NaCl  $\longrightarrow$  Na<sup>+</sup> Cl-+С С С

#### ALLEN \_\_\_\_

Let solubility of AgCl in the presence of NaCl solution is S' mol L<sup>-1</sup>

$$\begin{array}{l} AgCl \longleftrightarrow Ag^{+} + Cl^{-} \\ S' S'+C \\ K_{sp} = [Ag^{+}]' [Cl^{-}]' \\ K_{sp} = S' (S'+C) = S'^{2+}S'C \\ K_{sp} = S' C \\ \hline S' = \frac{K_{sp}}{C} \end{array}$$
(Neglecting the higher power terms of S')

#### **10.5 SIMULTANEOUS SOLUBILITY :**

When two sparingly soluble salts are added in water simultaneously, there will be two simultaneous equilibria in the solution.

#### **10.6 SOLUBILITY IN APPROPRIATE BUFFER SOLUTIONS :**

Appropriate buffer means that the components of buffer should not interfere with the salt or only  $H^+$  or  $OH^-$  ions should be interacting with the ions of the salt.

#### 10.7 EFFECT ON SOLUBILITY BECAUSE OF COMPLEX FORMATION :

Solubility of AgCl in aqueous  $NH_3$  is roughly 10,000 times as its solubility in water, due to complex formation.

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$Ag^{+}(aq) + 2NH_{3}(aq) \rightleftharpoons Ag(NH_{3})_{2}^{+}(aq); \qquad K_{eq} = K_{stability} = K_{formation}$$

and  $\frac{1}{K_{\text{stability}}} = K_{\text{dissociation}} = K_{\text{instability}}$ 

## 10.8 CONDITION OF PRECIPITATION /IONIC PRODUCT (IP OR $\mathbf{Q}_{\text{SP}})$ :

• Ionic product (IP) of an electrolyte is defined in the same way as  $K_{sp}$ . The only difference is that ionic product expression contains the initial concentration of ions or the concentration at any time whereas the expression of  $K_{sp}$  contains only equilibrium concentration. Thus, for AgCl.

$$IP = [Ag^+]_i [Cl^-]_i \text{ and } K_{sp} = [Ag^+]_{eq} \cdot [Cl^-]_{eq}$$

- Ionic product changes with concentration but  $K_{sp}$  does not.
- To decide whether an ionic compound will precipitate, its K<sub>sp</sub> is compared with the value of ionic product. The following three cases arise :
  - (i)  $IP < K_{sn}$  : The solution is unsaturated and precipitation will not occur.
  - (ii)  $IP = K_{sn}$  : The solution is saturated and solubility equilibrium exists.

(iii) IP >  $K_{sp}$  : The solution is supersaturated and hence precipitation of the compound will occur. Thus, a salt is precipitated when its ionic product exceeds the solubility product of the salt.

#### **10.9 SELECTIVE PRECIPITATION :**

When the  $k_{sp}$  values differ then one of the salt can be selectively precipitated.

Ex. 39. (i) 
$$Al_{2}(SO_{4})_{3}(s) \Longrightarrow 2Al^{+3}(aq) + 3SO_{4}^{-2}(aq)$$
  
 $K_{sp} = 2^{2} \times 3^{3} \times (S)^{2+3} = 4 \times 27 \times S^{5} = 108 S^{5}$   
(ii)  $Na_{2}KPO_{4}(s) \Longrightarrow 2Na^{+}(aq) + K^{+}(aq) + PO_{4}^{-3}(aq)$   
 $K_{sp} = 2^{2} \times 1^{1} \times 1^{1}(S)^{2+1+1} = 4S^{4}$   
(iii)  $NaKRbPO_{4}(s) \Longrightarrow Na^{+}(aq) + K^{+}(aq) + Rb^{+}(aq) + PO_{4}^{-3}(aq)$   
 $K_{sp} = 1^{1} \times 1^{1} \times 1^{1} \times 1^{1} \times (S)^{1+1+1+1} = S^{4}$   
Ex. 40. If solubility product of the base  $M(OH)_{3}$  is 2.7 × 10<sup>-11</sup>, the concentration of OH<sup>-</sup> will be

(1) 
$$3 \times 10^{-3}$$
 (2)  $3 \times 10^{-4}$  (3)  $10^{-3}$  (4)  $10^{-11}$ 

Answer:(3)

Ex. 41. The solubility of  $BaSO_4$  in water is  $1.07 \times 10^{-5}$  mol dm<sup>-3</sup>. Estimate its solubility product.

**Sol.** Solubility equilibrium for  $BaSO_4$  is

Now, 
$$S = 1.07 \times 10^{-5} M$$
  
Hence,  $K_{sp} = (1.07 \times 10^{-5})^2 = 1.145 \times 10^{-10}$ 

- Ex. 42. The solubility product of AgBr is  $5.2 \times 10^{-13}$ . Calculate its solubility in mol dm<sup>-3</sup> and g dm<sup>-3</sup>. (Molar mass of AgBr. = 187.8 g mol<sup>-1</sup>)
- Sol. The solubility equilibrium of AgBr is

 $AgBr_{(s)} \longrightarrow Ag^{+}_{(aq)} + Br^{-}_{(aq)}$ 

 $BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO^{2-}_{4(aq)}$ 

The molar solubility S of AgBr is given by

$$S = \sqrt{K_{sp}} = \sqrt{5.2 \times 10^{-13}} = 7.2 \times 10^{-7} \ mol \ dm^{-3}$$

The solubility in g  $dm^{-3} = molar$  solubility (mol  $dm^{-3}$ ) × molar mass (g mol<sup>-1</sup>)

$$= 7.2 \times 10^{-7} \times 187.8 = 1.35 \times 10^{-4} \text{ g dm}^{-3}$$

Ex. 43. What is the maximum volume of water required to dissolve 1 g of calcium sulphate at 25°C. For calcium sulphate,  $K_{sn} = 9.0 \times 10^{-6}$ .

Sol.  $CaSO_4(aq) \Longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq)$ If S is the solubility of  $CaSO_4$  in moles  $L^{-1}$   $K_{sp} = [Ca^{2+}] \times [SO_4^{2-}] = S^2$   $\therefore S = \sqrt{K_{sp}} = \sqrt{9.0 \times 10^{-6}}$   $= 3 \times 10^{-3} \mod L^{-1}$   $= 3 \times 10^{-3} \times 136 \text{ g } L^{-1} = 0.408 \text{ g} L^{-1}$ For dissolving 0.408 g of  $CaSO_4$  water required = 1 L

 $\therefore$  For dissolving 1g CaSO<sub>4</sub> water required =  $\frac{1}{0.408}L = 2.45 L$ 

Ex. 44.Equal volumes of 0.04 M CaCl<sub>2</sub> and 0.0008 M Na<sub>2</sub>SO<sub>4</sub> are mixed. Will a precipitate form?  $K_{sp}$  for CaSO<sub>4</sub> = 2.4 × 10<sup>-5</sup>

Sol.

ALLEN

$$CaCl_{2} + Na_{2}SO_{4} \rightarrow CaSO_{4} + 2NaCl$$
  
Millimole added 0.04 V 0.0008×V 0 0  
Suppose V mL of both are mixed

Suppose V mL of both are mixed

$$\therefore \quad [Ca^{2+}] = \frac{0.04 \,\text{V}}{2 \,\text{V}}$$

$$[SO_4^{2-}] = \frac{0.0008 \,\text{V}}{2 \,\text{V}}$$

$$\therefore \quad [Ca^{2+}] \, [SO_4^{2-}] = \frac{0.04 \,\text{V}}{2 \,\text{V}} \times \frac{0.0008 \,\text{V}}{2 \,\text{V}} = 8 \times 10^{-6}$$
Thus,  $[Ca^{2+}] \, [SO_4^{2-}] \text{ in solution} < K_{sp}$ 

$$8 \times 10^{-6} < 2.4 \times 10^{-5}$$

 $\therefore$  CaSO<sub>4</sub> will not precipitate.

Ex. 45.Calculate simultaneous solubility of silverthiocyanate and sliver bromide in water given that  $k_{sp}$  of silver thiocyanate =  $10^{-12}$  and  $k_{sp}$  of silver bromide =  $5 \times 10^{-13}$  respectively.

Sol. Let the solubility of AgSCN be x and that of AgBr is y, then

AgSCN 
$$\Longrightarrow$$
 Ag<sup>+</sup> + SCN<sup>-</sup>AgBr  $\Longrightarrow$  Ag<sup>+</sup> + Br<sup>-</sup> $x + y$  $x$  $y + y$  $x + y$  $10^{-12} = x (x + y)$ ...... (i) $5 \times 10^{-13} = y(x + y)$ ...... (ii)On solving we get, $x = 2y$ So $y = 4.08 \times 10^{-7}$  and $x = 8.16 \times 10^{-7}$ 

Е

node06/B0AH:AI\Kota\EE[Advanced]\Nurture\Chem\Sheer\tonic equilibrium\Eng\0]\_fheory.p65

nade06 \B0AH-A1\Kota\LEE[Advanced]\Nurture\Chem\Sheet\lonic aquilibrium\Eng\01 \_Theory.p6

Е

Ex. 46.What  $[H^+]$  must be maintained in saturated  $H_2S(0.1 \ M)$  to precipitate CdS but not ZnS, if  $[Cd^{2+}] = [Zn^{2+}] = 0.1$  initially ?

$$K_{sp} = (CdS) = 8 \times 10^{-27}$$
$$K_{sp} = (ZnS) = 1 \times 10^{-21}$$
$$K_{sp} = (H_{s}S) = 1.1 \times 10^{-21}$$

Sol. In order to prevent precipitation of ZnS

 $[Zn^{2+}] [S^{2-}] < K_{sp}(ZnS) = 1 \times 10^{-21}$ (ionic product) or (0.1) [S^{2-}] < 1 × 10^{-21} or [S^{2-}] < 1 × 10^{-20}

This is the maximum value of  $[S^{2-}]$  before ZnS will precipitate. Let  $[H^+]$  to maintain this  $[S^{2-}]$  be x.

Thus for 
$$H_2S \implies 2H^+ + S^{2-}$$

$$K_{a} = \frac{[\mathrm{H}^{+}]^{2}[\mathrm{S}^{2-}]}{[\mathrm{H}_{2}\mathrm{S}]} = \frac{\mathrm{x}^{2}(1 \times 10^{-20})}{0.1} = 1.1 \times 10^{-21}$$

$$or \quad x = [H ] = 0.1 M$$

 $\therefore$  No ZnS will precipitate at a concentration of  $H^+$  greater than 0.1 M

# Ex. 47. What must be the concentration of aq. $NH_3(eq.)$ which must be added to a solution containing $4 \times 10^{-3} M Ag^+$ and 0.001 M NaCl, to prevent the precipitation of AgCl.

Given that  $K_{sp}(AgCl) = 1.8 \times 10^{-10}$  and the formation constant of  $[Ag(NH_3)_2]^+$  is  $K_{formation} = \frac{10^8}{6}$ .

Sol. Calculate silver ion concentration which can be allowed to remain in the solution,

$$1.8 \times 10^{-10} = [Ag^+][Cl^-]$$

$$[Ag^+] = \frac{1.8 \times 10^{-10}}{0.001} = 1.8 \times 10^{-7} M_{\odot}$$

This quantity is so small that almost all the  $Ag^+$  ion will be consumed.

$$Ag^{+} + 2NH_{3} \iff [Ag(NH_{3})_{2}]^{+} \qquad K = \frac{10^{8}}{6}$$

$$4 \times 10^{-3} \qquad b \qquad 0$$

$$1.8 \times 10^{-7} \quad (b - 8 \times 10^{-3}) \qquad 4 \times 10^{-3} \qquad K = \frac{10^{8}}{6} = \frac{4 \times 10^{-3}}{1.8 \times 10^{-7} \times (b - 8 \times 10^{-3})^{2}}$$

$$\implies b = 0.0445$$

Ex. 48. 0.10 mol sample of AgNO<sub>3</sub> is dissolved in one litre of 2.00 M NH<sub>3</sub>. Is it possible to form AgCl(s) in the solution by adding 0.010 mol of NaCl ?

$$(K_{sp(AgCl)} = 1.8 \times 10^{-10}, K_{f[Ag(NH_3)_2^+]} = 1.6 \times 10^7)$$
  
 $Ag^+ + 2NH_2 \implies [Ag(NH_2)_2^+]$ 

Sol.

node06 \B0AH:AI \Kota \LEE[Advanced]\Nurture\Chem \Sheer\tonic equilibrium \Eng \01 \_Theory. p65

Е

$$Ag^{+} + 2NH_{3} \iff [Ag(NH_{3})_{2}^{+}]$$
  
0.10 M 2.00 0  
0.10-0.10 (2-0.20 M) 0.10 M  
= 0 = 1.80 M

It is assumed that all  $Ag^+$  ions have been complexed and only x amount is left

$$K_{f} = \frac{[\text{Ag}(\text{NH}_{3})_{2}^{+}]}{[\text{Ag}^{+}][\text{NH}_{3}]^{2}} \implies 1.6 \times 10^{7} = \frac{0.10}{\text{x}(1.80)^{2}}$$
  

$$\therefore \quad x = 1.93 \times 10^{-9} M = [\text{Ag}^{+}] \text{ undisolved}$$
  

$$[C\Gamma] = 1.0 \times 10^{-2} M$$
  

$$\therefore \quad [\text{Ag}^{+}] [C\Gamma] = 1.93 \times 10^{-9} \times 1.0 \times 10^{-2} = 1.93 \times 10^{-11} < 1.8 \times 10^{-10} [K_{sp(AgCl)}]$$
  
Hence,  $AgCl(s)$  will not precipitate.

# Ex. 49.What is the concentration of Ag<sup>+</sup> ions in 0.01 M AgNO<sub>3</sub> that is also 1.0 M NH<sub>3</sub>? Will AgCl precipitate from a solution that is 0.01 M AgNO<sub>3</sub>, 0.01 M NaCl and 1 M NH<sub>3</sub>?

$$K_d(Ag[NH_3]_2^+) = 5.88 \times 10^{-8}$$
;  $K_{sp}(AgCl) = 1.8 \times 10^{-10}$ .

Sol. Let us first assume that  $0.01 \text{ MAgNO}_3$  shall combine with  $0.02 \text{ NH}_3$  to form  $0.01 \text{ MAg(NH}_3)_2^+$  and the consider its dissociation.

$$K_{d} = \frac{[\text{Ag}^{+}][\text{NH}_{3}]^{2}}{[\text{Ag}(\text{NH}_{3})_{2}^{+}]} = 5.88 \times 10^{-8}$$

$$\therefore \qquad [Ag^+] = \frac{5.88 \times 10^{-8} \times 0.01}{(0.98)^2} = 6.12 \times 10^{-10} M$$

Further, ionic product of  $AgCl = [Ag^+][Cl^-] = (6.12 \times 10^{-10})(0.01) = 6.12 \times 10^{-12}$ Because the ionic product is smaller than  $K_{sp} = 1.8 \times 10^{-10}$ , no precipitate should form.

## EXERCISE # S-I

## **IONIZATION CONSTANTS AND pH**

- Q.1 Calculate the number of  $H^+$  present in one ml of solution whose pH is 13.
- Q.2 (i)  $K_w$  for H<sub>2</sub>O is 9 × 10<sup>-14</sup> at 60°C. What is pH of water at 60°C. (log 3 = 0.47)
  - (ii) What is the nature of solution at 60°C whose
  - (a) pH = 6.7 (b) pH = 6.35
- Q.3 The value of K<sub>w</sub> at the physiological temperature (37°C) is  $2.56 \times 10^{-14}$ . What is the pH at the neutral point of water at this temperature? (log 2 = 0.3)
- Q.4 Calculate pH of following solutions :
  - (a) 0.1 M HCl
  - (b) 0.1 M CH<sub>3</sub>COOH (K<sub>a</sub>=  $1.8 \times 10^{-5}$ ) (log  $\sqrt{1.8} = 0.13$ )
  - (c) 0.1 M NH<sub>4</sub>OH (K<sub>b</sub>= $1.8 \times 10^{-5}$ )
  - (d)  $10^{-8}$  M HCl  $[\sqrt{401} = (20.02)] [log 1.051 = 0.03]$
  - (e) 10<sup>-10</sup> M NaOH
  - (f)  $10^{-6}$  M CH<sub>3</sub>COOH (K<sub>a</sub> =  $1.8 \times 10^{-5}$ )
  - (g)  $10^{-8}$  M CH<sub>3</sub>COOH (K<sub>a</sub> =  $1.8 \times 10^{-5}$ ) [ $\sqrt{401}$  = (20.02)] [log 1.051 = 0.03]
  - (h) Decimolar solution of Baryta  $(Ba(OH)_2)$ , diluted 100 times. (log2 = 0.3)
  - (i)  $10^{-3}$  mole of KOH dissolved in 100 L of water.
  - (j) Equal volume of HCl solution (PH = 4) + 0.0019 N HCl solution

## Q.5 Calculate :

- (a)  $K_a$  for a monobasic acid whose 0.10 M solution has pH of 4.50.
- (b)  $K_b$  for a monoacidic base whose 0.10 M solution has a pH of 10.50.
- Q.6 Calculate the ratio of degree of dissociation  $(\alpha_2/\alpha_1)$  when an acetic acid solution is diluted 100 times. Assume  $\alpha < < 1$ , even on dilution. [Given  $K_a = 10^{-5} M$ ]
- Q.7 Calculate the ratio of degree of dissociation of acetic acid and hydrocyanic acid (HCN) in 1 M their respective solution of acids.[Given  $K_{a(CH_3COOH)} = 1.8 \times 10^{-5}$ ;  $K_{a(HCN)} = 6 \times 10^{-10}$ ]
- Q.8 How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3 ?
- Q.9 pH of a dilute solution of HCl is 6.95. Calculate molarity of HCl solution.

 $\begin{bmatrix} 10^{-6.95} = 11.22 \times 10^{-8} \\ 10^{-7.05} = 8.90 \times 10^{-8} \end{bmatrix}$ 

#### ALLEN \_

- Q.10 The pH of aqueous solution of ammonia is 10. Find molarity of solution.  $K_{h}$  (NH<sub>4</sub>OH) = 10<sup>-5</sup>.
- Q.11 The solution of weak monoprotic acid which is 0.01 M, has pH = 3. Calculate K<sub>a</sub> of weak acid.
- Q.12 Boric acid is a weak monobasic acid. It ionizes in water as

$$B(OH)_3 + H_2O \implies B(OH)_4^- + H^+ : K_a = 8 \times 10^{-10}$$

Calculate pH of 0.5 M boric acid.

#### **MIXTURE OF TWO OR MORE ACIDS / BASES**

- Q.13 The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :-
- Q.14 Calculate pH of following solutions :  $[\log 0.3 = -0.522]$

(a)  $0.1 \text{ M H}_2\text{SO}_4 (50 \text{ ml}) + 0.4 \text{ M HCl} 50 (\text{ml})$ 

(b) 0.1 M HA + 0.1 M HB [  $K_a$  (HA) = 5 × 10<sup>-5</sup> ;  $K_a$  (HB) = 4 × 10<sup>-5</sup> ]

- Q.15 Calculate pH of a solution containing 0.1M HA (Ka =  $10^{-5}$ ) & 0.1 M HCl.
- Q.16 Calculate [H<sup>+</sup>] and [CHCl<sub>2</sub>COO<sup>-</sup>] in a solution that is 0.01 M in HCl and 0.01 M in CHCl<sub>2</sub>COOH.

Take (K<sub>a</sub> = 3 × 10<sup>-2</sup>) ( $\sqrt{28}$  = 5.3)

Q.17 Calculate [H<sup>+</sup>], [CH<sub>3</sub>COO<sup>-</sup>] and [C<sub>7</sub>H<sub>5</sub>O<sub>2</sub><sup>-</sup>] in a solution that is 0.02 M in acetic acid and 0.01M in benzoic acid. K<sub>a</sub>(acetic) =  $1.8 \times 10^{-5}$ , K<sub>a</sub> (benzoic) =  $6.4 \times 10^{-5}$ .

## **POLYPROTIC ACIDS & BASES**

Q.18 What are the concentration of H<sup>+</sup>,  $H_2C_2O_4$ ,  $HC_2O_4^-$  and  $C_2O_4^{2-}$  in a 0.1 M solution of oxalic acid ?

$$[K_1 = 10^{-2} \text{ M and } K_2 = 10^{-5} \text{ M}] \left[\sqrt{41} = 6.4\right]$$

Q.19 Calculate  $[H^+]$ ,  $[H_2PO_4^-]$ ,  $[HPO_4^{2-}]$  and  $[PO_4^{3-}]$  in a 0.01M solution of  $H_3PO_4$ .

Take  $K_1 = 10^{-3}$ ,  $K_2 = 10^{-8}$ ,  $K_3 = 10^{-13}$ ,  $\sqrt{41} = 6.4$ 

Q.20 Calculate pH of  $0.2 \text{ M} - \text{B(OH)}_2$  solution.

$$(K_{b_1} = 2 \times 10^{-5}; K_{b_2} = 4 \times 10^{-11}, \log 2 = 0.3)$$

#### HYDROLYSIS

Q.21 What is the OH<sup>-</sup> concentration of a 0.18 M solution of CH<sub>3</sub>COONa. [K<sub>a</sub>(CH<sub>3</sub>COOH)= $1.8 \times 10^{-5}$ ]

- Q.22 Calculate the pH of a 2.0 M solution of  $NH_4Cl$ . [K<sub>b</sub> (NH<sub>3</sub>) = 2 × 10<sup>-5</sup>]
- Q.23 0.25 M solution of pyridinium chloride  $C_5H_6N^+Cl^-$  was found to have a pH of 2.699. What is  $K_b$  for pyridine,  $C_5H_5N$ ? (log2 = 0.3010)

Q.24 Calculate the extent of hydrolysis & the pH of 0.02 M  $CH_3COONH_4$ .

 $[K_{b} (NH_{3})= 1.8 \times 10^{-5}, K_{a} (CH_{3}COOH)=1.8 \times 10^{-5}]$ 

Q.25 Calculate the percent hydrolysis in a 0.06 M solution of KCN. [K<sub>a</sub>(HCN) =  $6 \times 10^{-10}$ ]

Ε

 $Q.26\,$  Calculate the extent of hydrolysis of 0.005 M  $\rm K_2CrO_4.\,[K_2$  =  $3.2\times10^{-7}\,for\,H_2CrO_4]$ 

(It is essentially strong for first ionization).

- Q.27 A 0.010 M solution of  $PuO_2(NO_3)_2$  was found to have a pH of 4.0. What is the hydrolysis constant, K<sub>h</sub>, for  $PuO_2^{2+}$ , and what is K<sub>b</sub> for  $PuO_2OH^+$ ?
- Q.28 What is the pH of 0.1M NaHCO<sub>3</sub>?  $K_1 = 5 \times 10^{-7}$ ,  $K_2 = 5 \times 10^{-11}$  for carbonic acids.
- Q.29 Calculate pH of 0.05M potassium hydrogen phthalate,  $KHC_8H_4O_4$ .

$$H_2C_8H_4O_4 + H_2O \xrightarrow{} H_3O^+ + HC_8H_4O_4^- \qquad pK_1 = 2.94$$

$$HC_8H_4O_4^- + H_2O \longrightarrow H_3O^+ + C_8H_4O_4^{2-} pK_2 = 5.44$$

- Q.30 The acid ionization (hydrolysis) constant of  $Zn^{2+}$  is  $1.0\times 10^{-9}$ 
  - (a) Calculate the pH of a 0.001 M solution of  $ZnCl_2$
  - (b) What is the basic dissociation constant of  $Zn(OH)^+$ ?

## **BUFFER SOLUTION**

- Q.31 Calculate the pH of solution containing 0.1M HCN and 0.1M NaCN. Ka of HCN =  $10^{-9}$
- Q.32 Calculate the pH of solution containing 0.2 M  $NH_4OH$  and 0.1 M  $NH_4Cl$ .  $K_b$  of  $NH_4OH$ =  $1.8 \times 10^{-5}$ . (log2 = 0.3, log 1.8 = 0.26)
- Q.33 0.4 mole CH<sub>3</sub>COONa is added in 500 ml 0.4 M –CH<sub>3</sub>COOH solutions. What is the pH of final solution ? K<sub>a</sub> of CH<sub>3</sub>COOH =  $1.8 \times 10^{-5}$ . (log2 = 0.3, log 1.8 = 0.26).
- Q.34 A buffer of pH 9.26 is made by dissolving x moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK<sub>b</sub> of ammonia is 4.74, calculate value of x.
- Q.35 Determine [OH<sup>-</sup>] of a 0.050 M solution of ammonia to which sufficient NH<sub>4</sub>Cl has been added to make the total [NH<sub>4</sub><sup>+</sup>] equal to 0.100.[K<sub>b(NH<sub>2</sub>)</sub>= $1.8 \times 10^{-5}$ , pK<sub>b</sub>=4.74]
- Q.36 Calculate the pH of a solution containing 0.2 M  $HCO_3^-$  and 0.1 M  $CO_3^{2-}$ [K<sub>1</sub>(H<sub>2</sub>CO<sub>3</sub>) = 4 × 10<sup>-7</sup>; K<sub>2</sub> (HCO<sub>3</sub><sup>-</sup>) = 4 × 10<sup>-11</sup>]
- Q.37 Calculate the pH of a solution prepared by mixing 50.0 mL of 0.200 M  $HC_2H_3O_2$  and 50.0 mL of 0.100 M NaOH.[ $K_{a(CH_3COOH)}=1.8 \times 10^{-5}$ , pK<sub>a</sub> = 4.74]
- Q.38 50 mL of 0.1 M NaOH is added to 75 mL of 0.1 M  $NH_4Cl$  to make a basic buffer. If  $pK_a$  of  $NH_4^+$  is 9.26, calculate pH.
- Q.39 Calculate the pH of a solution which results from the mixing of 50.0 ml of 0.3 M HCl with 50.0 ml of 0.4 M  $NH_3$ . [K<sub>b</sub> (NH<sub>3</sub>) =  $1.8 \times 10^{-5}$ , pK<sub>b</sub> = 4.74]

Q.40 In 100 ml buffer solution of 0.1M CH<sub>3</sub>COOH & 0.1M CH<sub>3</sub>COONa, how many millimoles of NaOH should be added to increase it's pH by 0.3.

Given (log 2 = 0.3)

## ACID BASE REACTIONS & TITRATIONS

- Q.41 Calculate OH<sup>-</sup> concentration at the equivalent point when a solution of 0.2 M acetic acid is titrated with a solution of 0.2 M NaOH.  $K_a$  for the acid = 10<sup>-5</sup>.
- Q.42 Calculate the hydronium ion concentration and pH at the equivalence point in the reaction of 22.0 mL of 0.10M acetic acid, CH<sub>3</sub>COOH, with 22.0 mL of 0.10 M NaOH. [K<sub>a</sub> =  $2 \times 10^{-5}$ ]
- Q.43 Calculate the hydronium ion concentration and the pH at the equivalence point in a titration of 50.0 mL of 0.40 M NH<sub>3</sub> with 0.40M HCl.[K<sub>b</sub> =  $2 \times 10^{-5}$ ]
- Q.44  $CH_3COOH$  (50 ml, 0.1 M) is titrated against 0.1 M NaOH solution. Calculate the pH at the addition of 0 ml, 10 ml 20 ml, 25 ml, 40 ml, 50 ml of NaOH. K<sub>a</sub> of  $CH_3COOH$  is  $2 \times 10^{-5}$ .

 $[\log 2 = 0.3010, \log 3 = 0.4771]$ 

## INDICATORS

- Q.45 For the acid indicator thymol blue, pH is 3 when half the indicator is in unionised form. Find the % of indicator in unionised form in the solution with  $[H^+] = 4 \times 10^{-3}$  M.
- Q.46 Bromophenol blue is an acid indicator with a  $K_a$  value of  $6 \times 10^{-5}$ . What % of this indicator is in its basic form at a pH of 5 ?
- Q.47 At what pH does an indicator change colour if the indicator is a weak acid with  $K_{ind} = 4 \times 10^{-4}$ . For which one(s) of the following neutralizations would the indicator be useful ? Explain.
  - (a)  $NaOH + CH_3COOH$  (b)  $HCl + NH_3$  (c) HCl + NaOH
- Q.48 An acid indicator has a  $K_a$  of  $3 \times 10^{-5}$ . The acid form of the indicator is red & the basic form is blue. By how much must the pH change in order to change the indicator form 75% red to 75% blue? [log 3 = 0.4771]

## SOLUBILITY & SOLUBILITY PRODUCT'S

- Q.49 The values of  $K_{sp}$  for the slightly soluble salts MX and  $QX_2$  are each equal to  $4.0 \times 10^{-18}$ . Which salt is more soluble? Explain your answer fully.
- Q.50 The solubility of  $PbSO_4$  in water is 0.0608 g/L. Calculate the solubility product constant of  $PbSO_4$ . Molar mass  $PbSO_4 = 304$  g/mole
- Q.51 How many mole CuI ( $K_{sp} = 5 \times 10^{-12}$ ) will dissolve in 1.0 L of 0.10 M NaI solution ?
- Q.52 A solution of saturated  $CaF_2$  is found to contain  $4 \times 10^{-4}$  M fluoride ion. Calculate the  $K_{sp}$  of  $CaF_2$ . Neglect hydrolysis.
- Q.53 The solubility of ML<sub>2</sub> (formula weight = 60 g/mol) in water is  $2.4 \times 10^{-5}$  g/100 mL solution. Calculate the solubility product constant for ML<sub>2</sub>.

- Q.54 Calculate the solubility of  $A_2X_3$  in pure water, assuming that neither kind of ion reacts with water. For  $A_2X_3$ ,  $K_{sp} = 1.08 \times 10^{-23}$
- Q.55 Determine the solubility of AgCl in 0.1 M BaCl<sub>2</sub>. [ $K_{sp}$  for AgCl = 1 × 10<sup>-10</sup>]
- Q.56 Calculate solubility of  $Ca_3(PO_4)_2$  ( $K_{sp} = 10^{-15}$ ) in presence of 0.1 M CaCl<sub>2</sub> solution.

## SIMULTANEOUS SOLUBILITY

- Q.57 Calculate the Simultaneous solubility of AgSCN and AgBr.  $K_{sp}$  (AgSCN) = 3.2 × 10<sup>-12</sup>,  $K_{sp}$ (AgBr) = 8 × 10<sup>-13</sup>.
- Q.58 Calculate F<sup>-</sup> in a solution saturated with respect of both MgF<sub>2</sub> and SrF<sub>2</sub>.  $K_{sp}(MgF_2) = 9.5 \times 10^{-9}$ ,

 $K_{sp}(SrF_2) = 4 \times 10^{-9}.$ 

#### **COMPLEX FORMATION**

Q.59 Calculate the solubility of AgCl in 0.2 M - NH<sub>3</sub> solution.

Given :  $K_{sp}$  of AgCl = 2 × 10<sup>-10</sup> ,  $K_f$  of Ag(NH<sub>3</sub>)<sub>2</sub><sup>+</sup> = 8 × 10<sup>6</sup>.

Q.60 Calculate the solubility of AgCN in 0.4 M - KCN solution

(i) neglecting complex formation

(ii) considering complex formation. Given : Ksp of AgCN =  $8 \times 10^{-10}$ , K<sub>d</sub> of Ag(CN)<sub>2</sub><sup>-</sup> =  $4 \times 10^{-8}$ .

## SOLUBILITY, CONSIDERING HYDROLYSIS

Q.61 Calculating the solubility of MX in water. Also calculate pH of solution.

Given :  $K_{sp}$  of MX = 4 × 10<sup>-8</sup> ;  $K_a$  of HX = 2 × 10<sup>-6</sup> and MOH is strong base.

Q.62 Calculate the solubility of AgCN in a buffer solution at pH = 3.0.

Given :  $K_{sp}$  of AgCN =  $8 \times 10^{-10}$  ,  $K_a$  of HCN =  $5 \times 10^{-10}$ .

#### PRECIPITATION

- Q.63 A solution has a Mg<sup>2+</sup> concentration of 0.0010 mol/L. Will Mg(OH)<sub>2</sub> precipitate if the OH<sup>-</sup> concentration of the solution is  $[K_{sp} = 1.2 \times 10^{-11}]$ 
  - (a)  $10^{-5}$  mol/L (b)  $10^{-3}$  mol/L ?
- Q.64 200 ml of  $2 \times 10^{-4}$ M AgNO<sub>3</sub> solution is mixed with 400 ml of  $1.2 \times 10^{-6}$  M NaCl solution. Predict whether precipitation of AgCl will occur or not. K<sub>sp</sub> of AgCl =  $2 \times 10^{-10}$ .
- Q.65 Calculate the minimum mass of Na<sub>2</sub>SO<sub>4</sub> needed to just start precipitation of BaSO<sub>4</sub> from 500 ml of  $2 \times 10^{-5}$ M BaCl<sub>2</sub> solution. K<sub>sp</sub> of BaSO<sub>4</sub> =  $8 \times 10^{-8}$ .

rode06\B0AH-A1\Kota\LEE(Advanced)\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex..p65

Ε

## EXERCISE # S-II

Q.1 What are the concentrations of H<sup>+</sup>,  $HSO_4^-$ ,  $SO_4^{2-}$  and  $H_2SO_4$  in a 0.20 M solution of sulphuric acid?

Given :  $H_2SO_4 \longrightarrow H^+ + HSO_4^-$ ; strong

 $\text{HSO}_4^- \rightleftharpoons \text{H}^+ + \text{SO}_4^{2-}$ ;  $\text{K}_2 = 10^{-2} \text{ M}$ 

- Q.2 Calculate the pH of a 0.1M solution of  $H_2NCH_2CH_2NH_2$ ; ethylenediamine (en). Determine the en  $H_2^{2+}$  concentration in the solution.  $K_{b_1}$  and  $K_{b_2}$  values of ethylenediamine are  $9 \times 10^{-5}$  and  $7.1 \times 10^{-8}$  respectively.
- Q.3 Nicotine,  $C_{10}H_{14}N_2$ , has two basic nitrogen atoms and both can react with water to give a basic solution

Nic (aq) + H<sub>2</sub>O (l)  $\rightleftharpoons$  NicH<sup>+</sup> (aq) + OH<sup>-</sup> (aq) NicH<sup>+</sup> (aq) + H<sub>2</sub>O (l)  $\rightleftharpoons$  NicH<sub>2</sub><sup>2+</sup> (aq) + OH<sup>-</sup> (aq) K<sub>b1</sub> is 8 × 10<sup>-7</sup> and K<sub>b2</sub> is 10<sup>-10</sup>. Calculate the approximate pH of a 0.20 M solution.

- Q.4 Determine the [S<sup>2-</sup>] in a saturated (0.1M) H<sub>2</sub>S solution to which enough HCl has been added to produce a [H<sup>+</sup>] of  $2 \times 10^{-4}$ . K<sub>1</sub> =  $10^{-7}$ , K<sub>2</sub> =  $10^{-14}$ .
- Q.5 An aqueous solution contains 0.01 M RNH<sub>2</sub> ( $K_b = 2 \times 10^{-6}$ ) & 10<sup>-4</sup> M NaOH. The concentration of OH<sup>-</sup> is nearly :
- Q.6 Calculate the pH of  $1.0 \times 10^{-3}$  M sodium phenoxide, NaOC<sub>6</sub>H<sub>5</sub>. K<sub>a</sub> for HOC<sub>6</sub>H<sub>5</sub> is  $0.6 \times 10^{-10}$ .
- Q.7 Calculate the OH<sup>-</sup> concentration and the H<sub>3</sub>PO<sub>4</sub> concentration of a solution prepared by dissolving 0.1 mol of Na<sub>3</sub> PO<sub>4</sub> in sufficient water to make 1L of solution.  $K_1 = 7.1 \times 10^{-3}$ ,  $K_2 = 6.3 \times 10^{-8}$ ,  $K_3 = 4.5 \times 10^{-13}$ .
- Q.8 Calculate the pH of 0.1 M solution of (i) NaHCO<sub>3</sub>, (ii) Na<sub>2</sub>HPO<sub>4</sub> and (iii) NaH<sub>2</sub>PO<sub>4</sub>. Given that:

| $CO_2 + H_2O \longrightarrow H^+ + HCO_3^-;$                                      | $K_1 = 4.2 \times 10^{-7} M$         |
|-----------------------------------------------------------------------------------|--------------------------------------|
| $HCO_3^- \longrightarrow H^+ + CO_3^{2-};$                                        | $K_2 = 4.8 \times 10^{-11} M$        |
| $H_3PO_4 \longrightarrow H^+ + H_2PO_4^-;$                                        | $K_1 = 7.5 \times 10^{-3} \text{ M}$ |
| $H_2PO_4^- \longrightarrow H^+ + HPO_4^{2-};$                                     | $K_2 = 6.2 \times 10^{-8} \text{ M}$ |
| $\mathrm{HPO}_{4}^{2-} \rightleftharpoons \mathrm{H}^{+} + \mathrm{PO}_{4}^{3-};$ | $K_3 = 1.0 \times 10^{-12} M$        |

 $(\log 4.2 = 0.62, \log 4.8 = 6.8, \log 6.2 = 0.80, \log 7.5 = 0.88)$ 

- Q.9 An ammonia-ammonium chloride buffer has a pH value of 9 with  $[NH_3] = 0.25$ . What will be the new pH if 500 ml 0.1 M KOH is added to 200 ml buffer solution ( $K_b = 2 \times 10^{-5}$ ) [log 2 = 0.3]
- Q.10 A weak base (50.0mL) was titrated with 0.1 M HCl. The pH of the solution after the addition of 10.0 mL and 25.0 mL were found to be 9.84 and 9.24, respectively. Calculate  $K_b$  of the base and pH at the equivalence point. [log2 = 0.3]
- Q.11 A weak acid (50.0mL) was titrated with 0.1 M NaOH. The pH values when 10.0 mL and 25.0 mL of base have been added are found to be 4.16 and 4.76, respectively. Calculate  $K_a$  of the acid and pH at the equivalence point. [log2 = 0.3]

## JEE-Chemistry

- Q.12 10 ml of 0.1M weak acid HA( $k_a = 10^{-5}$ ) is mixed with 10 ml 0.2M HCl and 10 ml 0.1M NaOH. Find the value of [A<sup>-</sup>] in the resulting solution.
- Q.13 150 ml of 0.5 M HCN (Ka =  $3.75 \times 10^{-9}$ ) was reacted with 1.5 M KOH for complete neutralisation. What will be molarity of HCN at equilibrium.
- Q.14 The indicator phenol red is half in the ionic form when pH is 7.2. If the ratio of the undissociated form to the ionic form is 1 : 5, find the pH of the solution. With the same pH for solution, if indicator is altered such that the ratio of undissociated form to dissociated form becomes 1 : 4, find the pH when 50 % of the new indicator is in ionic form. [log2 = 0.3]
- Q.15 How much AgBr could dissolve in 1.0 L of 0.40 M NH<sub>3</sub>? Assume that  $Ag(NH_3)_2^+$  is the only complex formed.  $[K_f(Ag(NH_3)_2^+) = 1 \times 10^8; K_{sp}(AgBr) = 5 \times 10^{-13}]$  $[\sqrt{50} \approx 7]$
- Q.16 Calculate solubility of PbI<sub>2</sub> ( $K_{sp} = 1.4 \times 10^{-8}$ ) in water at 25°, which is 90% dissociated.

$$\left(\frac{1.4}{(0.81)(3.6)}\right)^{1/3} = 0.78$$

Q.17 A recent investigation of the complexation of SCN<sup>-</sup> with Fe<sup>3+</sup> led to 130, 16, and 1.0 for K<sub>1</sub>, K<sub>2</sub>, and K<sub>3</sub>, respectively. What is the overall formation constant of Fe(SCN)<sub>3</sub> from its component ions, and what is the dissociation constant of Fe(SCN)<sub>3</sub> into its simplest ions on the basis of these data ?

|        |                                              | EXERC                                | ISE #                | <i>0-I</i>                                                   |                                   |
|--------|----------------------------------------------|--------------------------------------|----------------------|--------------------------------------------------------------|-----------------------------------|
| Single | correct                                      |                                      |                      |                                                              |                                   |
| Q.1    | The conjugate acid of                        | f $NH_2^-$ is                        |                      |                                                              |                                   |
|        | (A) NH <sub>3</sub>                          | (B) NH <sub>2</sub> OH               | (C) N                | $H_4^+$                                                      | (D) N <sub>2</sub> H <sub>4</sub> |
| Q.2    | Which of the follow                          | ing is not a Bronsted                | acid:-               | ·                                                            |                                   |
|        | (A) $CH_{3}NH_{4}^{+}$                       | (B) CH <sub>3</sub> COO <sup>-</sup> | (C) H                | I <sub>2</sub> O                                             | (D) $\text{HSO}_{4}^{-}$          |
| Q.3    | In the reaction                              |                                      |                      |                                                              |                                   |
|        | $HNO_3 + H_2O$                               | $H_{3}O^{+} + NO_{3}^{-}$ , the      | conjuga              | te base of HN                                                | O <sub>3</sub> is :-              |
|        | (A) H <sub>2</sub> O                         | (B) $H_3O^+$                         | (C) N                | $IO_3^-$                                                     | (D) $H_3O^+$ and $NO_3^-$         |
| Q.4    | Out of the following,                        | amphiprotic species in               | aqueou               | s medium are                                                 |                                   |
|        | I: HPO <sub>3</sub> <sup>2–</sup>            | II OH-                               | III                  | $H_2PO_4^{-}$                                                | IV HCO <sub>3</sub> <sup>-</sup>  |
|        | (A) I, III, IV                               | (B) I and III                        | (C) II               | I and IV                                                     | (D) All                           |
| Q.5    | When ammonia is ad                           | lded to water, it decre              | ases the             | e concentration                                              | of which of the following ion     |
|        | (A) OH <sup>_</sup>                          | (B) $H_{3}O^{+}$                     | (C) N                | $\mathbb{H}_{4}^{+}$                                         | (D) $NH_4^+ \& OH^-$              |
| Q.6    | Which of the followi                         | ng pair is Lewis acid                | & Lewis              | s base & Produ                                               | ct of these is also Lewis base    |
|        | (A) $BF_3$ , $NH_3$                          | (B) $SiCl_4$ , 2                     | 2Cl                  | (C) $\operatorname{CH}_{3}^{\circ}$ , $\operatorname{E}_{3}$ | $OC_2H_5$ (D) All of these        |
| Q.7    | Ionic product of wat                         | er will increase, if :-              |                      |                                                              |                                   |
|        | (A) Pressure is decre                        | eased                                | (B) H                | <sup>+</sup> is added                                        |                                   |
|        | (C) OH <sup>-</sup> is increase              | d                                    | (D) T                | emperature is i                                              | ncreased                          |
| Q.8    | At 60°C, pure water                          | has $[H_3O^+]=10^{-6.7}mc$           | ol/lit. wł           | hat is the value                                             | of K <sub>w</sub> at 60°C :-      |
| 0.0    | (A) 10 <sup>-6</sup>                         | (B) $10^{-12}$                       | (C) 1                | 0-67                                                         | (D) $10^{-13.4}$                  |
| Q.9    | Liquid $NH_3$ ionises                        | to a slight extent. At               | t a cert             | ain temperatur                                               | e its self ionization constant    |
|        | $K_{SIC(NH_3)} = 10^{-30}$ . The             | e number of $NH_4^+$ ions            | s present            | t per 100 cm <sup>3</sup> c<br>$022 \times 10^7$             | (D) Name                          |
| 0.10   | (A) 10 <sup>10</sup><br>The pH of solution i | (B) $0.022 \times 10^{\circ}$        | (C) 0.               | $1022 \times 10^{\circ}$                                     | (D) None                          |
| Q.10   | (A) Reduced to half                          | is increased from 5 to               | (B) D                | oubled                                                       |                                   |
|        | (C) Reduced by 100                           | 0 times                              | (D) I                | creased by 100                                               | 00 times                          |
| Q.11.  | pOH of [ <b>1/200</b> ] mol/                 | $m^3 H_3 SO_4$ (aq.) solution        | on at $25^{\circ}$   | °C is-                                                       |                                   |
|        | (A) 2 (B) 5                                  | (C) 9 (D) 12                         |                      |                                                              |                                   |
| Q.12   | Degree of dissociation                       | on of 0.1 N CH <sub>3</sub> COO      | H is :-              | (Dissociation                                                | constant = $1 \times 10^{-5}$ )   |
|        | (A) 10 <sup>-5</sup>                         | (B) 10 <sup>-4</sup>                 | (C) 1                | 0-3                                                          | (D) 10 <sup>-2</sup>              |
| Q.13   | The pH of a 0.02 M                           | I ammonia solution w                 | hich is              | 5% ionised wil                                               | l be :-                           |
|        | (A) 2                                        | (B) 11                               | (C) 5                |                                                              | (D) 7                             |
| Q.14   | The pH of an aqueous                         | s solution of 1.0 M solu             | ution of             | a weak monopro                                               | otic acid which is 1% ionised is  |
|        | (A) 1                                        | (B) 2                                | (C) 3                |                                                              | (D) 11                            |
| Q.15   | The concentration of                         | [H <sup>+</sup> ] and concentration  | n of [OI             | H] <sup>–</sup> of a 0.1 M a                                 | queous solution of 2% ionised     |
|        | weak acid is [ionic p                        | product of water =1 $\times$         | (10 <sup>-14</sup> ] |                                                              |                                   |
|        | (A) $0.02 \times 10^{-3}$ M a                | and $5 \times 10^{-11}$ M            | (B) 1                | $\times$ 10 <sup>-3</sup> M and                              | $3 \times 10^{-11} \text{ M}$     |
|        | (C) $2 \times 10^{-3}$ M and                 | $5 \times 10^{-12} \text{ M}$        | (D) 3                | $\times$ 10 <sup>-2</sup> M and                              | $4 \times 10^{-13} \text{ M}$     |

Е

node06\B0AH.A1VKob\EE[Advanced]\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex.p65

# JEE-Chemistry

| Q.16  | 5 What is the quantity of NaOH present in 250 cc of the solution, so that it gives a $pH = 13$ :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                     |                                                  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------------------|--|
| -     | (A) 10 <sup>-13</sup> g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) $10^{-1}$ g                                          | (C) 1.0 g                           | (D) 4.0 g                                        |  |
| Q.17  | An aqueous solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of HCl is 10 <sup>-9</sup> M H                           | Cl. The pH of the sol               | ution should be:-                                |  |
|       | (A) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) Between 6 and 7                                      | 7 (C) 7                             | (D) Unpredictable                                |  |
| Q.18. | The moles of H <sup>+</sup> from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m H <sub>2</sub> O in a 1 <i>l</i> , $\sqrt{5} \times 1$ | 0 <sup>-7</sup> M HCl solution at   | 25°C, is                                         |  |
|       | $(\sqrt{5} = 2.23)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                     |                                                  |  |
|       | (A) 10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) $6.85 \times 10^{-8}$                                | (C) $3.85 \times 10^{-8}$           | (D) 10 <sup>-8</sup>                             |  |
| Q.19  | Which one of the following the | llowing has highest pH                                   | I:-                                 |                                                  |  |
|       | (A) Distilled water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | (B) 1 M NH <sub>3</sub>             |                                                  |  |
|       | (C) 1 M NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | (D) Water saturated                 | with chlorine                                    |  |
| Q.20  | 8 gm NaOH and 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gm H <sub>2</sub> SO <sub>4</sub> are presen             | t in one litre of the so            | olution. What is its pH                          |  |
|       | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 13                                                   | (C) 12                              | (D) 2                                            |  |
| Q.21  | 10 ml of $\frac{M}{200}$ H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is mixed with 40 ml of                                   | $f \frac{M}{200} H_2 SO_4$ . The pH | of the resulting solution is                     |  |
|       | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 2                                                    | (C) 2.3                             | (D) none of these                                |  |
| Q.22  | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g solution will have pH                                  | I close to 1.0?                     |                                                  |  |
|       | (A) 100 ml of M/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCl + 100 ml of M/10                                     | NaOH                                |                                                  |  |
|       | (B) 55 ml of M/10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl + 45  ml of  M/10  Nat                                | ОН                                  |                                                  |  |
|       | (C) 10 ml of M/10 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl + 90 ml of M/10 Na                                    | OH                                  |                                                  |  |
|       | (D) 75 ml of M/5 HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l + 25  ml of  M/5  NaOH                                 | ł                                   |                                                  |  |
| Q.23  | A solution with pH 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 is more acidic than the                                | ne one with pH 6.0 by a             | a factor of:                                     |  |
|       | (A) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 4                                                    | (C) 3000                            | (D) 10000                                        |  |
| Q.24  | The first and second di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ssociation constants of a                                | in acid $H_2A$ are $1.0 \times 10$  | $)^{-5}$ and $5.0 \times 10^{-10}$ respectively. |  |
|       | The overall dissociation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on constant of the acid                                  | will be :                           |                                                  |  |
|       | (A) $5.0 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) $5.0 \times 10^{15}$                                 | (C) $5.0 \times 10^{-15}$           | (D) $0.2 \times 10^5$                            |  |
| Q.25  | If $pK_b$ for fluoride ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h at $25^{\circ}$ C is 10.4, the id                      | nisation constant of hy             | drofluoric acid in water at this                 |  |
|       | $(A)  4 \times 10^{-11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( <b>P</b> ) $3 \times 10^{-3}$                          | (C) $2.5 \times 10^{-4}$            | (D) $2 \times 10^{-2}$                           |  |
| 0.26  | (A) $4 \times 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) $3 \times 10$                                        | (C) $2.3 \times 10$                 | $(D) \ 2 \times 10$                              |  |
| Q.20  | $(\Lambda)$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(\mathbf{P}) > 7$                                       | (C) < 7                             | (D) (                                            |  |
| 0.27  | $(\mathbf{A})$ / 1 or of 0.1 N HCl is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\mathbf{D}) > 1$                                       | (C) < 7                             | (D) 0                                            |  |
| Q.27  | $1 \oplus 01 \oplus 1 \oplus$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(\mathbf{P}) 2$                                         | (C) A                               | (D) 1                                            |  |
| 0.28  | (A) /<br>The degree of hydroly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( <b>B</b> ) 5                                           | (C) 4<br>id and weak base in it?    | (D) I                                            |  |
| Q.20  | 50%. If the molarity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of the solution is 0.2 M,                                | the percentage hydroly              | ysis of the salt should be                       |  |
|       | (A) 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 50%                                                  | (C) 25%                             | (D) none of these                                |  |
| Q.29  | What is the percentage HCN is $2 \times 10^{-9}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ge hydrolysis of NaCN<br>$K_{} = 1.0 \times 10^{-14}$    | in N/80 solution when               | n the dissociation constant for                  |  |
|       | (A) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 5.26                                                 | (C) 8.2                             | (D) 9.6                                          |  |

node06\B0AH.A1\Kob\LEE[Advanced]\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex.p65

| ALI         | LEN                                                        |                                       | lonic Equilibrium                           |
|-------------|------------------------------------------------------------|---------------------------------------|---------------------------------------------|
| Q.30        | ) The compound whose 0.1 M solution is b                   | asic is                               |                                             |
|             | (A) Ammonium acetate                                       | (B) Ammonium chl                      | oride                                       |
|             | (C) Ammonium sulphate                                      | (D) Sodium acetate                    |                                             |
| Q.31        | I If equilibrium constant of                               |                                       |                                             |
|             | $CH_{3}COOH + H_{2}O \implies CH_{3}COO^{-} -$             | $+ H_3O^+$                            |                                             |
|             | is $1.8 \times 10^{-5}$ , equilibrium constant for         | 5                                     |                                             |
|             | $CH_3COOH + OH^- \implies CH_3COO^$                        | $+ H_2O$ is                           |                                             |
|             | (A) $1.8 \times 10^{-9}$ (B) $1.8 \times 10^{9}$           | (C) $5.55 \times 10^{-9}$             | (D) $5.55 \times 10^{10}$                   |
| Q.32        | 2 The $pK_a$ of a weak acid, HA, is 4.80. The              | e pK <sub>b</sub> of a weak base, BOl | H, is 4.78. The pH of an aqueous            |
|             | solution of the corresponding salt, BA,                    | will be :                             |                                             |
|             | (A) 8.58 (B) 4.79                                          | (C) 7.01                              | (D) 9.22                                    |
| Q.33        | 3 The highest pH value is of :-                            |                                       |                                             |
|             | (A) 0.1 M NaCl                                             | (B) 0.1 M NH <sub>4</sub> Cl          |                                             |
|             | (C) 0.1 M $CH_3COONa$                                      | (D) 0.1 M $CH_3CC$                    | DONH <sub>4</sub>                           |
| Q.34        | 4 pH of $K_2S$ solution is:-                               |                                       |                                             |
|             | (A) 7 (B) Less than 7                                      | (C) More than 7                       | (D) 0                                       |
| Q.35        | 5 Degree of Hydrolysis of $\frac{N}{100}$ solution         | of KCN is (Given Ka =                 | $= 1.6 \times 10^{-9}$ )                    |
|             | (A) $2.5 \times 10^{-3}$ (B) $2.5 \times 10^{-2}$          | (C) $2.5 \times 10^{-4}$              | (D) $2.5 \times 10^{-5}$                    |
| Q.36        | 5 A solution of $\operatorname{FeCl}_3$ in water acts as a | cidic due to :-                       |                                             |
|             | (A) Acidic impurities (B) Ionisation                       | (C) Hydrolysis of l                   | Fe <sup>3+</sup> (D) Dissociation           |
| Q.37        | 7 If 40 ml of 0.2 M KOH is added to 16                     | 50 ml of 0.1 M HCOOH                  | $[K_a = 2 \times 10^{-4}]$ , the pOH of the |
|             | resulting solution is                                      |                                       |                                             |
|             | (A) 3.4 (B) 3.7                                            | (C) 7                                 | (D) 10.3                                    |
| Q.38        | 8 1 M NaCl and 1M HCl are present in ar                    | aqueous solution. The so              | olution is                                  |
|             | (A) not a buffer solution and with $pH <$                  | 7                                     |                                             |
|             | (B) not a buffer solution with $pH > 7$                    |                                       |                                             |
|             | (C) a buffer solution with $pH < 7$                        |                                       |                                             |
| Q.39        | 9 The $pK_a$ of a weak acid (HA) is 4.5. The               | pOH of an aqueous buffer              | red solution of HA in which 50%             |
|             | of the acid is ionized is :                                |                                       |                                             |
| 5           | (A) 4.5 (B) 2.5                                            | (C) 9.5                               | (D) 7.0                                     |
| Q.40        | To a 50 ml. of 0.05M formic acid, how                      | much volume of 0.10M so               | odium formate must be added to              |
| ibrium/Eng  | get a buffer solution of $pH = 4.0$ ?                      |                                       |                                             |
| \bnic equil | $(pK_a \text{ of the acid is } 3.7) (log2 = 0.3)$          |                                       |                                             |
| hem \Sheet  | (A) 40 ml. (B) 4 ml.                                       | (C) 50 ml.                            | (D) 100 ml.                                 |
| Q.41        | Which can act as buffer :-                                 |                                       |                                             |
| dvanced     | (A) $NH_4OH + NaOH$                                        |                                       |                                             |
| Kota/JEE(z  | (B) HCOOH + HCl                                            |                                       |                                             |
| \B0AH-AI'   | (C) 40 ml. of 0.1 M NaCN + 20 ml.                          | of 0.1 M HCl                          |                                             |
| node06      | (D) All of them                                            |                                       |                                             |
| _           |                                                            |                                       | F 3                                         |

## JEE-Chemistry

| JEE-0                                                                  | Lnemistry                                                                    |                                                   | ALLEN                                                   |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--|
| Q.42                                                                   | If equal volume of 0.05 M ammonit                                            | um hydroxide solution is dissolv                  | ed in 0.001 M ammonium chloride                         |  |
| solution. What will be the $OH^-$ ion concentration of this solution : |                                                                              |                                                   |                                                         |  |
|                                                                        | $K_b(NH_4OH) = 1.8 \times 10^{-5}$                                           |                                                   |                                                         |  |
|                                                                        | (A) $3.0 \times 10^{-3}$ (B) $4.6 \times$                                    | 10 <sup>-4</sup> (C) $9.0 \times 10^{-3}$         | (D) $9.0 \times 10^{-4}$                                |  |
| Q.43                                                                   | Calculate the pH of a buffer prepa                                           | red by mixing 600 cc of 0.6 M                     | $NH_3$ and 400 cc of 0.5 M $NH_4Cl$ .                   |  |
|                                                                        | $K_{\rm b}$ for $NH_3$ = 1.8 $\times$ 10^{-5} , (log                         | 1.8 = 0.26)                                       |                                                         |  |
|                                                                        | (A) 11.3 (B) 9.0                                                             | (C) 9.52                                          | (D) 5                                                   |  |
| Q.44                                                                   | $pK_b$ for $NH_4OH$ at certain temp<br>concentration of $NH_4OH$ and $N_4OH$ | erature is 4.74. The pH of bath $H_4Cl$ will be:- | asic buffer containing equimolar                        |  |
|                                                                        | (A) 7.74 (B) 4.74                                                            | (C) 2.37                                          | (D) 9.26                                                |  |
| Q.45                                                                   | On addition of NaOH to CH <sub>3</sub> COC                                   | OH solution, 60% of the acid is                   | neutralised. If pK <sub>a</sub> of CH <sub>3</sub> COOH |  |
|                                                                        | is 4.7 then the pH of the resulting                                          | ng solution is :-                                 |                                                         |  |
|                                                                        | (A) More than 4.7 but less than                                              | 5.0 (B) Less than 4.7                             | but more than 4.0                                       |  |
|                                                                        | (C) More than 5.0                                                            | (D) Remains unch                                  | anged                                                   |  |
| Q.46                                                                   | Henderson equation $pH - pK_a$                                               | = 5 will be applicable to an a                    | cidic buffer when :-                                    |  |
|                                                                        | (A) [Acid] = [Conjugate base]                                                | (B) [Acid] $\times 10^5 =$                        | = [Conjugate base]                                      |  |
|                                                                        | (C) [Acid] = [Conjugate base] ×                                              | (D) $[acid] = 2 [co$                              | njugate base]                                           |  |
| Q.47                                                                   | What amount of sodium propanoa                                               | te should be added to one litre                   | of an aqueous solution containing                       |  |
|                                                                        | 0.02 mole of propanoic acid (K <sub>a</sub>                                  | = $3 \times 10^{-5}$ at 25°C) to obtain           | n a buffer solution of pH 4.7                           |  |
|                                                                        | (A) $4.52 \times 10^{-2}$ mol                                                | (B) $3.52 \times 10^{-2}$ m                       | nol                                                     |  |
|                                                                        | (C) $2.52 \times 10^{-2}$ mol                                                | (D) $3 \times 10^{-2}$ mol                        |                                                         |  |
| Q.48                                                                   | In a buffer solution the ratio of c                                          | concentration of NH₄Cl and N                      | $H_4OH$ is 1 : 1. When it changes                       |  |
|                                                                        | in 2 : 1, what will be the value                                             | of pH of buffer ?                                 |                                                         |  |
|                                                                        | (A) Increase (B) Decrea                                                      | ase (C) No effect                                 | (D) None                                                |  |
| Q.49                                                                   | The buffer solution play an impo                                             | ortant role in :-                                 |                                                         |  |
|                                                                        | (A) Increasing the pH value                                                  | (B) Decreasing the                                | e pH value                                              |  |
|                                                                        | (C) Keeping the pH constant                                                  | (D) Solution will                                 | be neutral                                              |  |
| Q.50                                                                   | The total number of different kine                                           | d of acidic buffers obtained du                   | ring the titration of $H_3PO_4$ with                    |  |
| -                                                                      | NaOH are :                                                                   |                                                   |                                                         |  |
|                                                                        | (A) 3 (B) 1                                                                  | (C) 2                                             | (D) 0                                                   |  |
| 0.51                                                                   | Which of the following solutions                                             | does not act as buffer :                          | 2_Ex.p6                                                 |  |
|                                                                        | (A) $H_{PO}$ + $NaH_{PO}$                                                    | (B) NaHCO <sub>2</sub> + H                        | L.CO.                                                   |  |
|                                                                        | (C) NH Cl + HCl                                                              | (D) CH COOH +                                     | CH COONa                                                |  |
| 0.52                                                                   | Half of the formic acid solution                                             | on is neutralised on addition                     | n of a KOH solution to it. If                           |  |
| 2.02                                                                   | K <sub>a</sub> (HCOOH) = $2 \times 10^{-4}$ then p                           | H of the solution is : - $(\log 2)$               | z = 0.3010)                                             |  |
|                                                                        | (A) 3.6990 (B) 10.301                                                        | .0 (C) 3.85                                       | (D) 4.3010                                              |  |
| 0.53                                                                   | When 0.02 moles of NaOH are a                                                | dded to a litre of buffer soluti                  | on, its pH changes from 5.75 to                         |  |
|                                                                        | 5.80. What is its buffer capacity                                            | :-                                                |                                                         |  |
|                                                                        | (A) 0.4 (B) 0.05                                                             | (C) - 0.05                                        | (D) 2.5                                                 |  |
| 52                                                                     |                                                                              |                                                   |                                                         |  |
|                                                                        |                                                                              |                                                   |                                                         |  |

| Q.54 | Calculate pH w    | hen 100 ml of 0.2M N | NaOH is reacted with 1 | 00 ml of 0.2 M CH <sub>3</sub> COO | H |
|------|-------------------|----------------------|------------------------|------------------------------------|---|
|      | $(K_a = 10^{-5})$ |                      |                        |                                    |   |
|      | (A) 9             | (B) 7                | (C) 5                  | (D) 2                              |   |

At 90°C , pure water has  $[H^+] = 10^{-6}$  M, if 100 ml of 0.2 M HNO<sub>3</sub> is added to 20 ml of 1 M NaOH 0.55 at 90°C then pH of the resulting solution will be (A) 5 (B) 6 (C) 7 (D) None of these

When 20 ml of  $\frac{M}{20}$  NaOH are added to 10 ml of  $\frac{M}{10}$  HCl, the resulting solution will:-Q.56

(A) Turn blue litmus red

- (B) Turn phenolphthalein solution pink colour
- (C) Turn methyl orange red
- (D) Will have no effect on either red or blue litmus
- Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In<sup>-</sup>) forms of the indicator by the expression :-

(A) 
$$\log \frac{[Hln]}{[ln^-]} = pK_{In} - pH$$
  
(B)  $\log \frac{[Hln]}{[ln^-]} = pH - pK_{In}$   
(C)  $\log \frac{[In^-]}{[Hln]} = pH + pK_{In}$   
(D)  $\log \frac{[In^-]}{[Hln]} = pK_{In} - pH$ 

Calculate the pH range in which an acid indicator with  $K_{acid}$  (indicator) = 1.0 × 10<sup>-5</sup> changes Q.58 colour when the concentration of the indicator is  $1 \times 10^{-3}$ M. (B) 11 ± 1 (A)  $5 \pm 1$ (C)  $3 \pm 1$ (D)  $8 \pm 1$ 

In what pH range will a  $1 \times 10^{-4}$  M solution of an indicator will K<sub>b</sub> (indicator) =  $1 \times 10^{-11}$  change Q.59 colour?

(A)  $7.0 \pm 1$ (D)  $11.0 \pm 1$ (B)  $3.0 \pm 1$ (C)  $5.5 \pm 1$ 

Indicator which is used in the titration of CH<sub>2</sub>COOH & NaOH :-0.60 (A) Methyl orange (B) Methyl red (C) Phenolphthalein (D) Litmus

Q.61 Phenolphthalein is a :-(A) Strong acid (B) Strong base (C) Weak base (D) Weak acid Q.62 pH-range of Methyl red indicator is :-

(A)  $4 \cdot 2 - 6 \cdot 2$ (B)  $6 \cdot 8 - 10 \cdot 8$ (C) 8 - 9.6(D) 6.8 - 8.2

Q.63 In the volumetric estimation of HCl, if we make use of phenolphthalein as an indicator, which base is unsuitable for the titration :-

(A) NaOH (B) RbOH (C) KOH (D)  $NH_4OH$ 

Q.64 Phenolphthalein does not act as an indicator for the titration between :-

- (B) NaOH and CH<sub>3</sub>COOH
- (C) Oxalic acid and KMnO<sub>4</sub> (D)  $Ba(OH)_2$  and HCl
- Q.65 For weak acid and strong base titration, the indicator used is :-

(A) KOH and  $H_2SO_4$ 

- (A) Potassium di-chromate (B) Methyl orange (C) Litmus
  - (D) Phenolphthalein

node06\B0AH-A1\Kots\JEE(Advanced)\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex..p65

## JEE-Chemistry

| JEE-C        | .nemisiry                                                  |                                                        |                                                         | ALLEN                                                        |
|--------------|------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| Q.66         | The solubility of $A_2 X_3$                                | is y mol dm <sup>-3</sup> . Its solubi                 | lity product is                                         |                                                              |
|              | (A) 6 y <sup>2</sup>                                       | (B) 64 y <sup>4</sup>                                  | (C) 36 y <sup>5</sup>                                   | (D) 108 y <sup>5</sup>                                       |
| Q.67         | If K <sub>sp</sub> for HgSO <sub>4</sub> is 6              | $5.4 \times 10^{-5}$ , then solubilit                  | y of this substance in m                                | ole per m <sup>3</sup> is                                    |
|              | (A) 8 ×10 <sup>-3</sup>                                    | (B) 6.4 ×10 <sup>-5</sup>                              | (C) $8 \times 10^{-6}$                                  | (D) 8                                                        |
| Q.68         | If the solubility of Ag                                    | gCl (formula mass=143                                  | ) in water at 25°C is 1.4                               | $43 \times 10^{-4}$ gm/100 ml of solution                    |
|              | then the value of $K_{s}$                                  | <sub>p</sub> will be :-                                |                                                         |                                                              |
|              | (A) $1 \times 10^{-5}$                                     | (B) $2 \times 10^{-5}$                                 | (C) $1 \times 10^{-10}$                                 | (D) $2 \times 10^{-10}$                                      |
| Q.69         | One litre of saturated                                     | d solution of $CaCO_3$ is                              | s evaporated to dryness                                 | s, 7.0 g of residue is left. The                             |
|              | solubility product for                                     | r CaCO <sub>3</sub> is:-                               |                                                         |                                                              |
|              | (A) $4.9 \times 10^{-3}$                                   | (B) $4.9 \times 10^{-5}$                               | (C) $4.9 \times 10^{-9}$                                | (D) $4.9 \times 10^{-7}$                                     |
| <b>Q</b> .70 | $A_3B_2$ is a sparingly so                                 | oluble salt of molar mas                               | ss M (g mol <sup>-1</sup> ) and solu                    | bility x g lit <sup><math>-1</math></sup> . The ratio of the |
|              | molar concentration                                        | of $B^{3-}$ to the solubility                          | product of the salt is                                  |                                                              |
|              | <b>x</b> <sup>5</sup>                                      | $1 M^4$                                                | $1 M^4$                                                 |                                                              |
|              | (A) 108 $\frac{M}{M^5}$                                    | (B) $\frac{1}{108} \frac{1}{x^4}$                      | (C*) $\frac{1}{54} \frac{1}{x^4}$                       | (D) None                                                     |
| Q.71.        | Solubility of Ag <sub>2</sub> CrO                          | $0_4 (K_{sp} = 4 \times 10^{-13})$ in (                | 0.1 M $K_2$ CrO <sub>4</sub> solution                   | will be :-                                                   |
|              | (A) 10 <sup>-3</sup> M                                     | (B) 10 <sup>-6</sup> M                                 | (C) $4 \times 10^{-6}$ M                                | (D) $5 \times 10^{-7}$ M                                     |
| Q.72.        | How many times solu                                        | bility of $CaF_2$ is decrea                            | sed in $4 \times 10^{-3}$ M KF (ad                      | q.) solution as compare to pure                              |
|              | water at 25°C. Given                                       | n K <sub>sp</sub> (CaF <sub>2</sub> ) = $3.2 \times 1$ | 0-11                                                    |                                                              |
|              | (A) 50                                                     | (B*) 100                                               | (C) 500                                                 | (D) 1000                                                     |
| Q.73         | At 30°C, In which o                                        | of the one litre solution                              | n, the solubility of Ag <sub>2</sub>                    | $CO_3$                                                       |
|              | (solubility product =                                      | $8 \times 10^{-12}$ ) will be max                      | imum :-                                                 |                                                              |
|              | (A) 0.05 M Na <sub>2</sub> CO <sub>3</sub>                 | (B) Pure water                                         | (C) 0.05 M AgNO <sub>3</sub>                            | (D) 0.05 M NH <sub>3</sub>                                   |
| Q.74         | What will happen if                                        | f the pH of the solut                                  | ion of 0.001 M Mg(M                                     | $NO_3)_2$ solution is adjusted to                            |
|              | $pH = 9 (K_{sp} \text{ of } Mg(0))$                        | $\text{OH})_2 = 8.9 \times 10^{-12}$                   |                                                         |                                                              |
|              | (A) ppt will take pla                                      | ice                                                    | (B) ppt will not take                                   | place                                                        |
|              | (C) Solution will be                                       | saturated                                              | (D) None of these                                       |                                                              |
| Q.75         | $Na_{3}PO_{4}$ which should                                | be added in 10 L of 1.                                 | $.0 \times 10^{-5} \mathrm{M}$ - $\mathrm{BaCl}_2$ solu | ution without any precipitation                              |
|              | of Ba <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> is [Ksp | o of $Ba_3(PO_4)_2] = 4 \times$                        | 10 <sup>-23</sup>                                       |                                                              |
|              | (A) $2 \times 10^{-4}$ gm                                  | (B) 0.328 gm                                           | (C) 0.164 gm                                            | (D) 0.82 gm                                                  |
|              |                                                            |                                                        |                                                         |                                                              |
|              |                                                            |                                                        |                                                         |                                                              |
|              |                                                            |                                                        |                                                         |                                                              |

| <b>EXERCISE</b> | # | <i>0-II</i> |
|-----------------|---|-------------|
|-----------------|---|-------------|

|            | Single | gle correct :                                                                                                                                               |                                                |                                     |                                               |  |  |  |
|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|--|--|--|
|            | Q.1    | The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :- |                                                |                                     |                                               |  |  |  |
|            |        | (A) 3.3                                                                                                                                                     | (B) 3.5                                        | (C) 4.5                             | (D) 4.0                                       |  |  |  |
|            | Q.2    | How many moles of                                                                                                                                           | HCl must be removed                            | from 1 litre of aqueo               | ous HCl solution to change its                |  |  |  |
|            |        | pH from 2 to 3 :-                                                                                                                                           |                                                |                                     |                                               |  |  |  |
|            |        | (A) 1                                                                                                                                                       | (B) 0.02                                       | (C) 0.009                           | (D) 0.01                                      |  |  |  |
|            | Q.3    | Which of the following                                                                                                                                      | ng is most soluble in wa                       | ater?                               |                                               |  |  |  |
|            |        | (A) MnS ( $K_{sp} = 8 \times 10$                                                                                                                            | <sup>-37</sup> )                               | (B) ZnS ( $K_{sp} = 7 \times 10$    | <sup>-16</sup> )                              |  |  |  |
|            | 0.4    | (C) $Bi_2S_3$ ( $K_{sp} = 1 \times 10$                                                                                                                      | ) <sup>-/2</sup> )                             | (D) $Ag_3(PO_4)$ (K <sub>sp</sub> = | $(1.8 \times 10^{-18})$                       |  |  |  |
|            | Q.4    | Solubility of AgBr v                                                                                                                                        | vill be minimum in :-                          |                                     | $(\mathbf{D}) = 0.1 \mathbf{M} + \mathbf{NO}$ |  |  |  |
|            | 0.5    | (A) Pure water                                                                                                                                              | (B) 0.1 M CaBr <sub>2</sub>                    | (C) 0.1  M NaBr                     | (D) 0.1 M AgNO <sub>3</sub>                   |  |  |  |
|            | Q.5    | pH of solution at firs                                                                                                                                      | st 1/4 <sup>th</sup> equivalence poi           | int of $Na_2CO_3$ when the          | rated with HCI will be                        |  |  |  |
|            |        | (for $H_2 CO_3 K_{a_1} = 10$                                                                                                                                | $^{-7}$ ; $K_{a_2} = 10^{-11}$ )               |                                     |                                               |  |  |  |
|            |        | (A) $7 + \log 3$                                                                                                                                            | (B) 7 – log3                                   | (C) $11 + \log 3$                   | (D) 11 – log3                                 |  |  |  |
|            | Q.6    | An acid-base indicate                                                                                                                                       | or has a $K_a = 1.0 \times 10^{-10}$           | <sup>5</sup> . The acid form of the | e indicator is red and the basic              |  |  |  |
|            |        | form is blue. Calcula                                                                                                                                       | te the pH change requ                          | ired to change the col              | our of the indicator from 80%                 |  |  |  |
|            |        | red to 80% blue.                                                                                                                                            |                                                |                                     |                                               |  |  |  |
|            |        | (A) 1.20                                                                                                                                                    | (B) 0.80                                       | (C) 0.20                            | (D) 1.40                                      |  |  |  |
|            | Assert | tion /Reason :                                                                                                                                              |                                                |                                     |                                               |  |  |  |
|            | Q.7    | Statement-1 pH of                                                                                                                                           | 10 <sup>-7</sup> M NaOH solution               | is exist between 7 to 7             | 7.3 at 25°C.                                  |  |  |  |
|            |        | Statement-2 Due to                                                                                                                                          | common ion effect ior                          | nization of water is red            | uced.                                         |  |  |  |
|            |        | (A) Statement-1 is tru                                                                                                                                      | ie, statement-2 is true a                      | and statement-2 is corre            | ect explanation for statement-1.              |  |  |  |
|            |        | (B) Statement-1 is true                                                                                                                                     | , statement-2 is true and s                    | statement-2 is NOT the co           | prrect explanation for statement-1.           |  |  |  |
|            |        | (C) Statement-1 is true                                                                                                                                     | ue, statement-2 is false.                      |                                     |                                               |  |  |  |
|            |        | (D) Statement-1 is fa                                                                                                                                       | (D) Statement-1 is false, statement-2 is true. |                                     |                                               |  |  |  |
|            | Q.8    | Statement-1 In gene                                                                                                                                         | ral phenolphthalein is u                       | used as an indicator for            | the titration of weak acid (HA)               |  |  |  |
|            |        | against strong base (                                                                                                                                       | NaOH)                                          |                                     |                                               |  |  |  |
|            |        | Statement-2 At equivalent point solution is basic.                                                                                                          |                                                |                                     |                                               |  |  |  |
|            |        | (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.                                                        |                                                |                                     |                                               |  |  |  |
| p65        |        | (B) Statement-1 is true                                                                                                                                     | , statement-2 is true and s                    | statement-2 is NOT the co           | prrect explanation for statement-1.           |  |  |  |
| ng\02_Ex   |        | (C) Statement-1 is tru                                                                                                                                      | ie, statement-2 is false.                      |                                     |                                               |  |  |  |
| librium∖E  | 0.0    | (D) Statement-1 is fa                                                                                                                                       | lse, statement-2 is true                       | • • • • • • • •                     |                                               |  |  |  |
| h\bnicequ  | Q.9    | Statement-1: Moles                                                                                                                                          | s of Sr <sup>2+</sup> furnished by s           | paringly soluble substa             | ance $Sr(OH)_2$ decreases due to              |  |  |  |
| hem\Shee   |        | Statement 2 · Soluh                                                                                                                                         | ility product constant                         | of $Sr(OU)$ is not offer            | tad by dilution                               |  |  |  |
| Nurture\C  |        | $(\Lambda)$ Statement 1 is true                                                                                                                             | inty product constant of                       | and statement 2 is corre            | et explanation for statement 1                |  |  |  |
| dvanced) \ |        | (R) Statement-1 is true                                                                                                                                     | statement-2 is true and s                      | tatement_2 is NOT the co            | presect explanation for statement-1.          |  |  |  |
| ota/JEE(A  |        | (C) Statement-1 is true                                                                                                                                     | statement-2 is false                           |                                     | siteet explanation for statement-1.           |  |  |  |
| 0AH-AI/K   |        | (D) Statement-1 is fals                                                                                                                                     | e. statement-2 is true                         |                                     |                                               |  |  |  |
| node06 \B  |        |                                                                                                                                                             | -,                                             |                                     |                                               |  |  |  |
| F          |        |                                                                                                                                                             | <u> </u>                                       | -                                   | <b>E E</b>                                    |  |  |  |
| E          |        |                                                                                                                                                             |                                                |                                     | 33                                            |  |  |  |

- Statement-1: On dilution of a concentrated solution of  $CH_3COOH$ , the concentration of  $[H^+]$  decreases. Q.10 **Statement-2** : Increase in volume is more than the increase in degree of ionisation.
  - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
  - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
  - (C) Statement-1 is true, statement-2 is false.
  - (D) Statement-1 is false, statement-2 is true.

## Multiple correct :

- Q.11 Which of the following is correct for 0.1 M BOH solution ( $K_b = 10^{-5}$ )
  - (A) pH of solution is 11
  - (B) OH<sup>-</sup> concentration is 10<sup>-3</sup> mol/L
  - (C) it's salt with HCl (i.e. BCl) form the acidic solution in water
  - (D) Phenolphthalein indicator can be used during the titration of BOH with HCl
- For weak monobasic acid, HA, the dissociation constant is  $2 \times 10^{-6}$ , at 25°C. Which of the following Q.12 is/are correct regarding this acid? [log2=0.3]
  - (A)  $A^- + H_2O \rightleftharpoons HA + OH^-; K_{eq} = 5 \times 10^{-9}$
  - (B) The equilibrium constant for the reaction of HA with aq. NaOH is  $2 \times 10^8$
  - (C) The pH of 0.1 M, HA solution is 3.35
  - (D) solution of  $A^{-}$  is basic
- Select correct statement for 50ml 0.1M  $H_2A(aq.)$  solution ;  $K_{a_1} = 10^{-5}$  ;  $K_{a_2} = 10^{-8}$ Q.13 (A)  $[H^+] = 2[A^{2-}]$ 
  - (B) pH of 0.1M H<sub>o</sub>A solution is 3

(C) In above H<sub>2</sub>A solution when 5 milimoles of NaHA are added then pH increases by 2 units

- (D) 50 ml of 0.1M NaOH required to neutralised completely 50 ml of 0.1M  $H_2A$  solution
- A solution containing 0.01M each of Pb2+, Ag+ , Zn2+ & Cr3+ ion. If solid Na2S is added slowly Q.14 to the solution then correct statement is based on given data -

**Precipitate** PbS Ag<sub>2</sub>S ZnS Cr<sub>2</sub>S<sub>3</sub>  $10^{-11} \quad 10^{-12} \quad 10^{-8} \quad 10^{-10}$ Ksp

- (A) Pb<sup>2+</sup> will start precipitating first
- (B)  $Cr^{3+}$  will start precipitating last
- (C)  $Zn^{2+}$  will start precipitating before  $Ag^{+}$
- (D) When  $Zn^{2+}$  just starts precipitating then  $Pb^{2+}$  ion gets 99.9% precipitated

## Q.15 If $K_1 \& K_2$ be first and second ionisation constant of $H_3PO_4$ and $K_1 \gg K_2$ which is/are incorrect.

- (B) [H<sup>+</sup>] =  $\sqrt{K_1[H_3PO_4]}$ (A)  $[H^+] = [H_2 PO_4^-]$
- (D)  $[H^+] = 3[PO_4^{3-}]$ (C)  $K_2 = [HPO_4^{--}]$
- Q.16 10 ml. of a solution contains 0.1 M NH<sub>4</sub>Cl + 0.01M NH<sub>4</sub>OH. Which addition would not change the pH of solution :-
  - (A) Adding 1 ml. water
- (B) Adding 5 ml. of 0.1 M  $NH_4Cl$
- (C) Adding 5 ml. of 0.1 M NH<sub>4</sub>OH
- (D) Adding 10 ml. of 0.1 M NH<sub>4</sub>Cl

node06\B0AH+A1\Kota\EE[Advanaed]\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex.

|              | F N                                                           |                                                           |                                     | ιοπις εquilibrium                                                                |
|--------------|---------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|
| 0.17         | Wh                                                            | en equal volumes of                                       | f the following                     | solutions are mixed, precipitation of                                            |
| •            | AgCl ( $K_{en} = 1.8 \times 10^{-10}$ ) will occur only with: |                                                           |                                     |                                                                                  |
|              | (A)                                                           | $10^{-4} {}^{\text{sp}}{\text{M}}$ (Ag <sup>+</sup> ) and | 10 <sup>-4</sup> M (Cl <sup>-</sup> | ) (B) $10^{-5}$ M (Ag <sup>+</sup> ) and $10^{-5}$ M (Cl <sup>-</sup> )          |
|              | (C)                                                           | 10 <sup>-6</sup> M (Ag <sup>+</sup> ) and                 | 10 <sup>-6</sup> M (Cl <sup>-</sup> | ) (D) $10^{-10}$ M (Ag <sup>+</sup> ) and $10^{-10}$ M (Cl <sup>-</sup> )        |
|              |                                                               |                                                           | Para                                | graph for Q.18 to Q.20                                                           |
|              | 8 gi                                                          | m weak acid HX (1                                         | molecular ma                        | ss = 80) is dissolved is 100 ml water. ( $K_a = 10^{-4}$ )                       |
| 0.18         | Find                                                          | d pH of solution-                                         |                                     | a a a                                                                            |
| <b>Q</b> .10 | (A)                                                           | 33                                                        | (B) 2                               | (C) 2 3 (D) 3                                                                    |
| 0 19         | If it                                                         | is titrated with $0$                                      | 25 M NaOH                           | find pH at equivalence point $(\log 5 = 0.7)$                                    |
| <b>X</b> .17 | (A)                                                           | 9 15                                                      | (B) 8 65                            | (C) $4.65$ (D) $4.85$                                                            |
|              | (11)                                                          | <i>..</i>                                                 | ( <b>D</b> ) 0.05                   |                                                                                  |
| Q.20         | Fine                                                          | d [H <sup>+</sup> ] if 10 <sup>-3</sup> mol               | HCl is added                        | I to 100 ml original solution $(\sqrt{41} = 6.4 ; \sqrt{5} = 2.24)$              |
|              | (A)                                                           | $0.62 \times 10^{-2}$                                     | (B) 1.62 × 1                        | 10 <sup>-2</sup> (C) $2.7 \times 10^{-2}$ (D) $0.27 \times 10^{-2}$              |
| MAT          | СН                                                            | THE COLUMN                                                | :                                   |                                                                                  |
| Q.21         | Μ                                                             | atch the effect of a                                      | addition of 1                       | M NaOH to 100 mL 1 M CH <sub>3</sub> COOH (in Column I) with pH                  |
|              | (in                                                           | Column II):                                               |                                     |                                                                                  |
|              |                                                               | Column-I                                                  |                                     | Column-II                                                                        |
|              | (A                                                            | A) 25 mL of NaOH                                          | [                                   | (P) pK <sub>a</sub>                                                              |
|              | (B                                                            | 50 mL of NaOH                                             | I                                   | (Q) $pK_a + \log 3$                                                              |
|              | (C                                                            | C) 75 mL of NaOH                                          | [                                   | (R) $pK_a - \log 3$                                                              |
|              | (D                                                            | 0) 100 mL of NaO                                          | Н                                   | (S) $\frac{1}{2} [pK_w + pK_a - \log 2]$                                         |
| Q.22         |                                                               | Column-I                                                  |                                     | Column-II                                                                        |
|              |                                                               | РН                                                        |                                     | Solution                                                                         |
|              | (A)                                                           | 3                                                         | (P)                                 | When equal volumes of 0.2M NH <sub>4</sub> OH ( $K_{b} = 10^{-5}$ ) & 0.2M       |
|              |                                                               |                                                           |                                     | HCl are mixed                                                                    |
|              | (B)                                                           | 5                                                         | (Q)                                 | When equal volumes of 0.2M CH <sub>3</sub> COONa & 0.2M                          |
|              |                                                               |                                                           |                                     | HCl are mixed ( $K_{a(CH-COOH)} = 10^{-5}$ )                                     |
|              | (C)                                                           | 8                                                         | (R)                                 | 0.1M Na <sub>2</sub> HPO <sub>4</sub>                                            |
|              |                                                               |                                                           |                                     | (for $H_3PO_4$ ; $K_{31} = 10^{-4}$ ; $K_{32} = 10^{-6}$ ; $K_{33} = 10^{-10}$ ) |
|              | (D)                                                           | 9                                                         | <b>(S)</b>                          | At 1 <sup>st</sup> half equivalence point of $H_2CO_2$ when titrated against     |
|              |                                                               |                                                           |                                     | 0.1M NaOH , $K_{a_1} = 10^{-5}$ , $K_{a_2} = 10^{-9}$                            |
|              |                                                               |                                                           | (T)                                 | Mg(OH) <sub>2</sub> ; $K_{ep} = 5^{a_1} \times 10^{-16}^{a_2}$                   |
|              |                                                               |                                                           |                                     | ۲ مهر<br>۲                                                                       |

TABLE TYPE QUESTION :

|      | Column-I                                                | Col            | umn-                              | -II                   |                          | Column-III                    |                             |
|------|---------------------------------------------------------|----------------|-----------------------------------|-----------------------|--------------------------|-------------------------------|-----------------------------|
|      | (solution)                                              | (pH            | l of so                           | olution)              | ion) (Introduction about |                               | bout                        |
|      |                                                         |                |                                   |                       |                          | solution)                     |                             |
|      | (A) CH <sub>3</sub> COOH(0.2M, 1L                       | <i>i</i> ) +   | (P)                               | 1.3                   | (1)                      | pH is determ                  | nined by strong acid        |
|      | NaOH (0.1M, 1 L )                                       |                |                                   |                       |                          |                               |                             |
|      | (B) CH <sub>3</sub> COOH(0.1M ,1 I<br>HCl (0.1 M, 1 L ) | _)+            | (Q)                               | 7                     | (2)                      | Buffer solution<br>maximum bu | on at its<br>offer capacity |
|      | (C) CH <sub>3</sub> COOH(0.1M, 1 I                      | ·) +           | (R)                               | 9                     | (3)                      | pH is determ                  | nined by salt               |
|      | $\rm NH_4OH$ (0.1M, 1 L )                               |                |                                   |                       |                          | hydrolysis.                   |                             |
|      | (D) $NH_4Cl$ (200 ml, 0.1M)<br>+ NaOH (100 ml, 0.1      | Í)<br>.M)      | (S)                               | 5                     | (4)                      | pH is determ<br>solution      | nined by buffer             |
|      | (Given: $(K_a)_{CH_3COOH} = 1$                          | $10^{-5}$ , (K | K <sub>b</sub> ) <sub>NH4</sub> C | $_{\rm DH} = 10^{-5}$ |                          |                               |                             |
| Q.23 | Which of the following i                                | s incorr       | ectly                             | matched               |                          |                               |                             |
|      | (A) A - S - 4 (H                                        | B) B - P       | - 1                               |                       | (C) D - R                | - 2                           | (D) C - Q - 1               |
| Q.24 | If 0.15 mole NaOH is add                                | ded in so      | olutior                           | n (B) of c            | olumn-I t                | hen which of t                | the following is correct    |
|      | (A) S - 3 (I                                            | B) S - 4       |                                   |                       | (C) R - 1                |                               | (D) P - 3                   |
| Q.25 | If 0.1mole HCl is added i                               | in soluti      | on (A)                            | ) of colur            | nn-I then                | pH of the res                 | sulting solution will be    |
|      | (A) 7 (I                                                | B) 13          |                                   |                       | (C) 3.0                  |                               | (D) 1                       |

ALLEN

|              |                                         | EXE                                                   | RCISE # J-MA                                           | IN                                           |                                            |
|--------------|-----------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Q.1          | The solubility in                       | water of a sparingly so                               | oluble salt $AB_2$ is 1.0 >                            | $\times 10^{-5} \text{ mol } \text{L}^{-1}.$ | Its solubility product will                |
|              | be                                      |                                                       |                                                        |                                              | [AIEEE-2003]                               |
|              | (1) $1 \times 10^{-15}$                 | (2) $1 \times 10^{-10}$                               | (3) $4 \times 10^{-15}$                                | (4) 4 ×                                      | 10- 10                                     |
| Q.2          | The solubility o                        | f Mg(OH) <sub>2</sub> is x mole                       | e/lit. then its solubilit                              | y product is-                                | [AIEEE-2002]                               |
|              | (1) $x^3$                               | (2) $5x^3$                                            | (3) $4x^3$                                             | (4) $2x^2$                                   |                                            |
| Q.3          | The molar solub                         | vility in mol $L^{-1}$ of a s                         | sparingly soluble salt                                 | MX <sub>4</sub> is 's'. The                  | corresponding solubility                   |
|              | product is K <sub>SP</sub> .            | 's' is given in terms                                 | of K <sub>SP</sub> by relation :                       |                                              | [AIEEE-2004]                               |
|              | (1) $s = (K_{SP} / 1)$                  | $(28)^{1/4}$                                          | (2) $s = (128K_{SP})$                                  | ) <sup>1/4</sup>                             |                                            |
|              | (3) $s = (256K_{SF})$                   | $(2)^{1/5}$                                           | (4) s = (K <sub>SP</sub> /256                          | $(5)^{1/5}$                                  |                                            |
| Q.4          | The solubility p                        | product of a salt have                                | ving general formula                                   | MX <sub>2</sub> , in wate                    | er is : 4 $\times$ 10 <sup>-12</sup> . The |
|              | concentration of                        | f M <sup>2+</sup> ions in the aqu                     | eous solution of the                                   | salt is -                                    | [AIEEE-2005]                               |
|              | (1) $1.0 \times 10^{-4}$                | M(2) 2.0 $\times$ 10 <sup>-6</sup> M                  | (3) $4.0 \times 10^{-10}$                              | M (4) 1.6 ×                                  | imes 10 <sup>- 4</sup> M                   |
| Q.5          | Hydrogen ion c                          | concentration in mol/I                                | L in a solution of pH                                  | I = 5.4 will be                              | - [AIEEE-2005]                             |
|              | (1) $3.88 \times 10^{6}$                | (2) $3.98 \times 10^8$                                | (3) $3.98 \times 10^{-6}$                              | (4) $3.68 \times 10^{-10}$                   | - 6                                        |
| Q.6          | In a saturated set                      | olution of the sparing                                | gly soluble strong ele                                 | ctrolyte AglO <sub>3</sub>                   | (molecular mass $= 283$ )                  |
|              | the equilibrium                         | which sets in is -                                    |                                                        |                                              | [AIEEE-2007]                               |
|              | $AglO_3 =$                              | $ = Ag^+_{(aq)} + IO^{3(aq)} $                        |                                                        |                                              |                                            |
|              | If the solubility                       | product constant K <sub>sn</sub>                      | of AgIO <sub>3</sub> at a given                        | temperature is                               | $1.0 \times 10^{-8}$ , what is the         |
|              | mass of AgIO <sub>3</sub>               | contained in 100 ml                                   | of its saturated solut                                 | tion ?                                       |                                            |
|              | (1) $28.3 \times 10^{-2}$               | $^2$ g (2) 2.83 × 10                                  | $0^{-3}g$ (3) $1.0 \times 10^{-3}$                     | $10^{-7}$ g(4) 1.0 ×                         | × 10 <sup>-4</sup> g                       |
| Q.7          | The pK <sub>a</sub> of a w              | veak acid, HA, is 4.8                                 | 80. The pK <sub>b</sub> of a we                        | eak base, BOH,                               | , is 4.78. The pH of an                    |
|              | aqueous solutio                         | n of the correspondi                                  | ng salt. BA, will be -                                 |                                              | [AIEEE-2008]                               |
|              | (1) 9.58                                | (2) 4.79                                              | (3) 7.01                                               | (4) 9.22                                     |                                            |
| Q.8          | Solid Ba(NO <sub>3</sub> ) <sub>2</sub> | is gradully dissolved in                              | a $1.0 \times 10^{-4} \mathrm{M}\mathrm{Na_2CO}$       | O3 solution.At w                             | hat concentration of Ba2+                  |
|              | will a precipitate                      | begin to form?                                        |                                                        |                                              |                                            |
|              | (K <sub>SP</sub> for Ba CO              | $\theta_3 = 5.1 \times 10^{-9}$ )                     |                                                        |                                              | [AIEEE-2009]                               |
| •            | (1) $8.1 \times 10^{-8}$ M              | A (2) 8.1 × 10 <sup>-7</sup>                          | <sup>7</sup> M (3) $4.1 \times 1$                      | $0^{-5}$ M (4) 5.1 >                         | < 10 <sup>-5</sup> M                       |
| Q.9          | Solubility produ                        | ct of silver bromide is $a_{1}^{-1}$ to be added to 1 | $5.0 \times 10^{-13}$ . The quality of 0.05 M solution | antity of potassi                            | um bromide (molar mass                     |
|              | of AgBr is :-                           |                                                       | litte of 0.05 Wi solution                              |                                              | [AIEEE–2010]                               |
|              | (1) $5.0 \times 10^{-8}$ g              | $(2) 1.2 \times 10^{-1}$                              | <sup>10</sup> g (3) $1.2 \times 1$                     | $0^{-9}$ g (4) 6.2 >                         | < 10 <sup>-5</sup> σ                       |
| 0 10         | In aqueous solu                         | tion the ionization $co$                              | $g$ (3) $1.2 \times 1$                                 | cid are                                      |                                            |
| <b>X</b> .10 | $K_1 = 4.2 \times 10^{-7}$              | and $K_{2} = 4.8 \times 10^{-12}$                     | 11                                                     |                                              | [AIEEE-2010]                               |
|              | Select the correct                      | ct statement for a satu                               | urated 0.034 M soluti                                  | on of the carbo                              | nic acid :-                                |
|              | (1) The concent                         | ration of $H^+$ is double                             | e that of $CO_2^{2-}$                                  |                                              |                                            |
|              | (2) The concent                         | $\frac{1}{2}$ (ration of $CO_2^{2-}$ is 0 (           | 034 M                                                  |                                              |                                            |
|              | (3) The concent                         | ration of $CO_2^{2-}$ is or                           | eater than that of HC                                  | $\Omega_2^{-}$                               |                                            |
|              | (4) The concent                         | $rations of H^+$ and HC                               | $CO_2^-$ are approximate                               | elv equal                                    |                                            |
|              | () The concent                          | and the und fit                                       | cog are approximate                                    | -) oquu                                      | 50                                         |
|              |                                         | •                                                     |                                                        |                                              | 59                                         |

| Q.11         | 11 At 25° C, the solubility product of Mg(OH) <sub>2</sub> is $1.0 \times 10^{-11}$ . At which pH, will Mg <sup>2+</sup> ions start precipitating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                     |                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|              | in the form of Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $g(OH)_2$ from a solution                                                                                                                 | tion of 0.001 M Mg <sup>2</sup>                                                                                                           | + ions ?                                                                                                                                                                            | [AIEEE-2010]                           |
|              | (1) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 9                                                                                                                                     | (3) 10                                                                                                                                    | (4) 11                                                                                                                                                                              |                                        |
| Q.12         | The $K_{sp}$ for Cr(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(OH)_3$ is $1.6 \times 10^{-30}$                                                                                                         | . The molar solubili                                                                                                                      | ty of this compound                                                                                                                                                                 | l in water is :-<br>[AIEEE–2011]       |
|              | (1) $\sqrt[2]{1.6 \times 10^{-30}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) $\sqrt[4]{1.6 \times 10^{-30}}$                                                                                                       | (3) $\sqrt[4]{1.6 \times 10^{-3}}$                                                                                                        | $(4) 1.6 \times$                                                                                                                                                                    | 10-30/27                               |
| Q.13         | An acid HA ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ises as                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                     |                                        |
|              | $HA \rightleftharpoons H^+ +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - A-                                                                                                                                      |                                                                                                                                           |                                                                                                                                                                                     |                                        |
|              | The pH of 1.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I solution is 5. Its o                                                                                                                    | dissociation constant                                                                                                                     | would be :-                                                                                                                                                                         | [AIEEE-2011]                           |
|              | (1) 1 × 10 <sup>-10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) 5                                                                                                                                     | (3) $5 \times 10^{-8}$                                                                                                                    | (4) 1 × 10                                                                                                                                                                          | <b>⊢</b> <sup>5</sup>                  |
| Q.14         | If K <sub>sp</sub> of CaF <sub>2</sub> at 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25°C is $1.7 \times 10^{-10}$ ,                                                                                                           | the combination amo                                                                                                                       | ongst the following w                                                                                                                                                               | which gives a precipitate              |
|              | of $CaF_2$ is :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                           | [JEE-MA                                                                                                                                                                             | IN(online)–2012]                       |
|              | (1) $1 \times 10^{-2}$ M (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ca <sup>2+</sup> and $1 \times 10^{-5}$                                                                                                   | M F <sup>-</sup> (2) $1 \times 10^{-4}$ M                                                                                                 | A Ca <sup>2+</sup> and $1 \times 10^{-4}$                                                                                                                                           | $^{4}$ M F <sup>-</sup>                |
|              | (3) $1 \times 10^{-3}$ M (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ca <sup>2+</sup> and $1 \times 10^{-5}$                                                                                                   | M F <sup>-</sup> (4) $1 \times 10^{-2}$ M                                                                                                 | A Ca <sup>2+</sup> and $1 \times 10^{-3}$                                                                                                                                           | <sup>3</sup> M F <sup>-</sup>          |
| Q.15         | The pH of a 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | molar solution of th                                                                                                                      | ne acid HQ is 3. The                                                                                                                      | value of the ionizati                                                                                                                                                               | on constant, Ka of this                |
|              | acid is :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                     | [AIEEE-2012]                           |
|              | (1) $1 \times 10^{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2) $3 \times 10^{-7}$                                                                                                                    | (3) $1 \times 10^{-3}$                                                                                                                    | (4) 1 × 10                                                                                                                                                                          | -5                                     |
| Q.16         | How many litres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of water must be a                                                                                                                        | dded to 1 litre of an                                                                                                                     | aqueous solution of                                                                                                                                                                 | HCl with a pH of 1 to                  |
|              | create an aqueou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s solution with pH                                                                                                                        | of 2 ?                                                                                                                                    | -                                                                                                                                                                                   | [AIEEE-2013]                           |
|              | (1) 0.1 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) 0.9 L                                                                                                                                 | (3) 2.0 L                                                                                                                                 | (4) 9.0 L                                                                                                                                                                           |                                        |
| 0.17         | Solid Ba(NO.). is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gradually dissolved                                                                                                                       | in a $1.0 \times 10^{-4}$ M Na.                                                                                                           | CO. solution. At whic                                                                                                                                                               | ch concentration of Ba <sup>2+</sup> . |
|              | precipitate of Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO, begins to form                                                                                                                        | $^{2}$ (K for BaCO =                                                                                                                      | $5.1 \times 10^{-9}$ )                                                                                                                                                              | ·····,                                 |
|              | (1) 5 1 $\times$ 10 <sup>-5</sup> M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [                                                                                                                                         | $(2) \ 8 \ 1 \times 10^{-7}$                                                                                                              | M LIEE-MA                                                                                                                                                                           | IN(Online)–2013]                       |
|              | (1) $5.1 \times 10^{-5}$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [                                                                                                                                         | (2) $0.1 \times 10^{-81}$<br>(4) $7.1 \times 10^{-81}$                                                                                    |                                                                                                                                                                                     |                                        |
| 0 18         | NaOH is a stron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng base. What will l                                                                                                                      | be pH of 5.0 $\times 10^{-2}$                                                                                                             | M<br>M NaOH solution ?                                                                                                                                                              | $2(\log 2 = 0.3)$                      |
| <b>Q</b> .10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                                                                                                           | [IFF-MA                                                                                                                                                                             | (10g2 = 0.5)<br>IN(Online)_2013]       |
|              | (1) 13 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) 13 00                                                                                                                                 | (3) 14.00                                                                                                                                 | (4) 12 70                                                                                                                                                                           |                                        |
| 0 10         | Which one of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) 13.00                                                                                                                                 | (5) 14.00                                                                                                                                 | (4) 12.70                                                                                                                                                                           | ition of anoringly coluble 8           |
| Q.19         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           | d G-Gl and a stimula                                                                                                                      |                                                                                                                                                                                     |                                        |
|              | saits $Hg_2Cl_2$ , $Cr_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $_{2}(SO_{4})_{3}$ , BaSO <sub>4</sub> and                                                                                                | a CrCl <sub>3</sub> respectively                                                                                                          | / / [JEE-MA                                                                                                                                                                         | IN(Online)–2015]                       |
|              | $(1)\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4}\right)^{\frac{1}{3}},\left(\frac{\mathrm{K}_{\mathrm{s}}}{10}\right)^{\frac{1}{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left(\frac{s_{p}}{8}\right)^{\frac{1}{5}}, \left(K_{sp}\right)^{\frac{1}{2}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{2}}$             | $\int_{-\frac{1}{4}}^{\frac{1}{4}} (2) \left( K_{sp} \right)^{\frac{1}{2}}, \left( \frac{1}{4} \right)^{\frac{1}{4}}$                     | $\left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{s}}{10}\right)^{\frac{1}{4}}$                                            | $\frac{p}{8}$ ) <sup>1/5</sup>         |
|              | (3) $(K_{sp})^{\frac{1}{2}}, (\frac{K_{sp}}{108})^{\frac{1}{2}}, (K$ | $\left(\frac{K_{sp}}{27}\right)^{\frac{1}{5}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{sp}}{4}\right)^{\frac{1}{5}}$ | $\int_{-\frac{1}{2}}^{\frac{1}{2}}$ (4) $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$ , $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$ | $\left(\frac{\mathrm{K}_{\mathrm{sp}}}{27}\right)^{\frac{1}{4}}, \left(\mathrm{K}_{\mathrm{sp}}\right)^{\frac{1}{2}}, \left(\frac{\mathrm{K}_{\mathrm{s}}}{4}\right)^{\frac{1}{2}}$ | $\frac{p}{p}$                          |

$$(3) \left(K_{sp}\right)^{\frac{1}{2}}, \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}} \qquad (4) \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(K_{sp}\right)^{\frac{1}{2}}, \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$$

Е

# Ionic Equilibrium

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |

| Q.20 | What would                 | be the pH of                      | of a solution obtain              | ed by mixing 5 g of acetic                          | acid and 7.5 g of sodium acetate and               |
|------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------------------------------|
|      | making the v               | olume equa                        | l to 500 mL?                      |                                                     | [JEE-MAIN(Online)-2013]                            |
|      | (Ka = 1.75                 | × 10 <sup>-5</sup> , pK           | a = 4.76)                         |                                                     |                                                    |
|      | (1) 4.76 < p               | H < 5.0                           |                                   |                                                     |                                                    |
|      | (2) pH < 4.7               | 70                                |                                   |                                                     |                                                    |
|      | (3) pH of so               | olution will                      | be equal to pH                    | of acetic acid                                      |                                                    |
|      | (4) $pH = 4.7$             | 70                                |                                   |                                                     |                                                    |
| Q.21 | In some solu               | utions, the                       | concentration of                  | H <sub>3</sub> O <sup>+</sup> remains constant e    | even when small amounts of strong                  |
|      | acid or stron              | ng base are                       | added to them. T                  | hese solutions are knowr                            | n as :-[JEE-MAIN(Online)–2014]                     |
|      | (1) Collo                  | idal soluti                       | ons                               | (2) True solutions                                  |                                                    |
|      | (3) Ideal                  | solutions                         |                                   | (4) Buffer solutions                                |                                                    |
| Q.22 | Zirconium p                | ohosphate                         | $[Zr_3(PO_4)_4]$ disso            | ociates into three zirconi                          | um cations of charge +4 and four                   |
|      | phosphate a                | nions of cl                       | narge –3. If mola                 | r solubility of zirconium                           | phosphate is denoted by S and its                  |
|      | solubility pro             | oduct by K                        | <sub>sp</sub> then which of th    | ne following relationship be                        | tween S and K <sub>sp</sub> is correct ?           |
|      | (1) $S = \{K_{s}\}$        | <sub>p</sub> /144} <sup>1/7</sup> | -                                 | (2) S = {K <sub>sp</sub> /(6912) <sup>1/7</sup>     | } [JEE-MAIN(Online)-2014]                          |
|      | (3) $S = (K_{sp})^{2}$     | ,/6912) <sup>1/7</sup>            |                                   | (4) $S = \{K_{sp}/6912\}^7$                         |                                                    |
| Q.23 | pK <sub>a</sub> of a we    | ak acid (H                        | A) and pK <sub>b</sub> of a       | weak base (BOH) are 3.                              | 2 and 3.4, respectively. The pH of                 |
|      | their salt (AF             | B) solution                       | is                                |                                                     | [JEE-MAIN(Offine)-2017]                            |
|      | (1) 7.2                    | (2) 6                             | .9                                | (3) 7.0                                             | (4) 1.0                                            |
| Q.24 | Addition of                | sodium hy                         | droxide solution t                | to a weak acid (HA) resu                            | lts in a buffer of pH 6. If ionisation             |
|      | constant of                | HA is 10-5                        | <sup>5</sup> , the ratio of salt  | to acid concentration ir                            | the buffer solution will be :                      |
|      |                            |                                   |                                   |                                                     | [JEE-MAIN(Online)-2017]                            |
|      | (1) 4 : 5                  | (2) 1                             | : 10                              | (3) 10 : 1                                          | (4) 5 : 4                                          |
| Q.25 | 50 mL of 0.2               | 2 M ammor                         | nia solution is trea              | ated with 25 mL of 0.2 M                            | HCl. If $pK_b$ of ammonia solution is              |
|      | 4.75, the pH               | of the mix                        | ture will be:-                    |                                                     | [JEE-MAIN(Online)-2017]                            |
|      | (1) 8.25                   | (2) 4                             | .75                               | (3) 9.25                                            | (4) 3.75                                           |
| Q.26 | Which of the               | e following                       | salts is the most b               | basic in aqueous solution                           | ? [JEE-MAIN(Offine)–2018]                          |
|      | (1) CH <sub>3</sub> CO     | OK (2) F                          | FeCl <sub>3</sub>                 | (3) $Pb(CH_3COO)_2$                                 | $(4) \operatorname{Al}(\operatorname{CN})_3$       |
| Q.27 | An alkali is t             | itrated aga                       | inst an acid with n               | nethyl orange as indicator                          | r, which of the following is a correct             |
|      | combination                | n ?                               |                                   |                                                     |                                                    |
|      | Base                       | Acid                              | End point                         |                                                     | [JEE-MAIN(Offine)-2018]                            |
|      | (1) Strong                 | Strong                            | Pinkish red to y                  | ellow                                               |                                                    |
|      | (2) Weak                   | Strong                            | Yellow to pink                    | ish red                                             |                                                    |
|      | (3) Strong                 | Strong                            | Pink to colourle                  | SS                                                  |                                                    |
| •    | (4) Weak                   | Strong                            | Colourless to p                   | ink                                                 |                                                    |
| Q.28 | An aqueous                 | solution c                        | contains 0.10 M                   | $H_2S$ and 0.20 M HCl. I                            | t the equilibrium constants for the                |
|      | formation of               | HS <sup>-</sup> from H            | $H_2S$ is $1.0 \times 10^{-7}$ at | nd that of S <sup>2–</sup> from HS <sup>–</sup> ior | as is $1.2 \times 10^{-13}$ then the concentration |
|      | of S <sup>2–</sup> ions in | n aqueous s                       | olution is :                      |                                                     | [JEE-MAIN(Offine)–2018]                            |
|      | (1) 3×10 <sup>-</sup>      | -20                               | (2) $6 \times 10^{-21}$           | (3) $5 \times 10^{-19}$                             | (4) 5×10 <sup>-8</sup>                             |
|      |                            |                                   |                                   |                                                     | /1                                                 |

node06 \B0AH:A1\Kob\LEE(Advanced)\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex.p65

## JEE-Chemistry

- Q.29 A aqueous solution contains an unknown concentration of Ba<sup>2+</sup>. When 50 mL of a 1 M solution of Na<sub>2</sub>SO<sub>4</sub> is added, BaSO<sub>4</sub> just begins to precipitate. The final volume is 500 mL. The solubility product of BaSO<sub>4</sub> is  $1 \times 10^{-10}$ . What is the original concentration of Ba<sup>2+</sup>? [JEE-MAIN(Offine)–2018] (1)  $2 \times 10^{-9}$  M (2)  $1.1 \times 10^{-9}$  M (3)  $1.0 \times 10^{-10}$  M (4)  $5 \times 10^{-9}$  M
- Q.30 Following four solutions are prepared by mixing different volumes of NaOH and HCl of different concentrations, pH of which one of them will be equal to 1 ? [JEE-MAIN(Online)–2018]

(1) 
$$75\text{mL}\frac{M}{5}\text{HCl} + 25\text{mL}\frac{M}{5}\text{NaOH}$$
 (2)  $100\text{mL}\frac{M}{10}\text{HCl} + 100\text{mL}\frac{M}{10}\text{NaOH}$ 

(3) 
$$55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$$
 (4)  $60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$ 

Q.31 The minimum volume of water required to dissolve 0.1 g lead (II) chloride to get a saturated solution $(K_{sp} \text{ of } PbCl_2 = 3.2 \times 10^{-8}$ ; atomic mass of Pb = 207 u) is :[JEE-MAIN(Online)-2018](1) 0.36 L(2) 0.18 L(3) 17.98 L(4)1.798 L

ALLEN

63

## EXERCISE # J-ADVANCE

Q.1 What will be the resultant pH when 200 ml of an aqueous solution of HCl (pH = 2.0) is mixed with 300 ml of an aqueous solution of NaOH (pH = 12.0)? [JEE '1998] Q.2 The pH of 0.1 M solution of the following salts increases in the order [JEE 1999] (A)  $NaCl < NH_4Cl < NaCN < HCl$ (B)  $HCl < NH_4Cl < NaCl < NaCN$ (C)  $NaCN < NH_4Cl < NaCl < HCl$ (D)  $HCl < NaCl < NaCN < NH_{4}Cl$ Q.3 A buffer solution can be prepared from a mixture of [JEE 1999] (A) sodium acetate and acetic acid in water (B) sodium acetate and hydrochloric acid in water (C) ammonia and ammonium chloride in water (D) ammonia and sodium hydroxide in water. The solubility of  $Pb(OH)_2$  in water is  $6.7 \times 10^{-6}$ M. Calculate the solubility of  $Pb(OH)_2$  in a buffer Q.4 solution of pH = 8. [JEE '1999] Q.5 The average concentration of SO<sub>2</sub> in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of SO<sub>2</sub> in water at 298 K is 1.3653 moles litre<sup>-1</sup> and the pK<sub>a</sub> of H<sub>2</sub>SO<sub>3</sub> is 1.92, estimate the pH of rain on that day. [JEE 2000] [Given :  $10^{-1.92} = 1.2 \times 10^{-2}$ ,  $\sqrt{5.5678} = 2.5627$ , log (1.2213) = 0.0868] Q.6 For sparingly soluble salt ApBq, the relationship of its solubility product (L<sub>s</sub>) with its solubility (S) is -[JEE 2001] (A)  $L_s = S^{p+q}$ .  $p^p$ .  $q^q$ (B)  $L_{s} = S^{p+q}$ .  $p^{p}$ .  $q^{p}$ (D)  $L_s = S^{pq} \cdot (p.q)^{p+q}$ (C)  $L_{s} = S^{pq}. p^{p}. q^{q}$ Q.7 500 ml of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25°C. (a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution. If 6 g of NaOH is added to the above solution, determine final pH. Assume there is no change in volume (b) on mixing. K<sub>a</sub> of acetic acid is  $1.75 \times 10^{-5}$  M. [JEE 2002] A solution which is  $10^{-3}$  M each in Mn<sup>2+</sup>, Fe<sup>2+</sup>, Zn<sup>2+</sup> and Hg<sup>2+</sup> is treated with  $10^{-16}$ M sulphide ion. If K<sub>sp</sub>, Q.8 MnS, FeS, ZnS and HgS are  $10^{-15}$ ,  $10^{-23}$ ,  $10^{-20}$  and  $10^{-54}$  respectively, which one will precipitate first? [JEE 2003] (A) FeS (B) MnS (C) HgS (D) ZnS Q.9 Will the pH of water be same at 4°C and 25°C? Explain. [JEE 2003]

node06\B0AH-A1\Kots\JEE(Advanced)\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex..p65

## JEE-Chemistry

|   |   |   | M |
|---|---|---|---|
| A | ► | ► |   |

| Q.10 | 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given Ka(HA) = $5 \times 10^{-6}$ and $\alpha \ll 1$ . [JEE 2004]              |                                                                      |                                                      |                                                                   |                                       |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Q.11 | HX is a weak acid (K<br>of hydrolysis of NaX                                                                                                           | $a = 10^{-5}$ ). It forms a satisfies                                | alt NaX (0.1 M) on react                             | ing with caustic so                                               | oda. The degree                       |  |  |  |  |
|      | (A) 0.01%                                                                                                                                              | (B) 0.0001%                                                          | (C) 0.1%                                             | (D) 0.5%                                                          | [JEE 2004]                            |  |  |  |  |
| Q.12 | $CH_3NH_2(0.1 \text{ mole, K})$<br>resulting hydrogen ion                                                                                              | $t_b = 5 \times 10^{-4}$ ) is added concentration is                 | to 0.08 moles of HCl and                             | the solution is dil                                               | uted to one litre,                    |  |  |  |  |
|      | (A) $1.6 \times 10^{-11}$                                                                                                                              | (B) $8 \times 10^{-11}$                                              | (C) $5 \times 10^{-5}$                               | (D) $2 \times 10^{-2}$                                            | [JEE 2005]                            |  |  |  |  |
| Q.13 | If $Ag^+ + NH_3 \rightleftharpoons [A]$                                                                                                                | $g(NH_3)]^+$ ; $K_1 = 1.6$                                           | $\times$ 10 <sup>3</sup> and                         |                                                                   | [JEE 2006]                            |  |  |  |  |
|      | $[Ag(NH_3)]^+ + NH_3 =$                                                                                                                                | $\Rightarrow [Ag(NH_3)_2]^+; K_2 =$                                  | $= 6.8 \times 10^3$ .                                |                                                                   |                                       |  |  |  |  |
|      | The formation consta                                                                                                                                   | nt of $[Ag(NH_3)_2]^+$ is :                                          |                                                      |                                                                   |                                       |  |  |  |  |
|      | (A) $6.08 \times 10^{-6}$                                                                                                                              | (B) $6.8 \times 10^{-6}$                                             | (C) $1.6 \times 10^3$                                | (D) 1.088 × 1                                                     | 107                                   |  |  |  |  |
| Q.14 | The species present in                                                                                                                                 | solution when $CO_2$ is                                              | s dissolved in water :                               |                                                                   |                                       |  |  |  |  |
|      | (A) $CO_2$ , $H_2CO_3$ , $HCO_3^-$ , $CO_3^{2-}$                                                                                                       |                                                                      | (B) $H_2CO_3$ , $CO_3^{2-}$                          | [JEE 2006]                                                        |                                       |  |  |  |  |
|      | (C) $\text{CO}_3^{2-}$ , $\text{HCO}_3^{-}$                                                                                                            |                                                                      | (D) $\text{CO}_2$ , $\text{H}_2\text{CO}_3$          |                                                                   |                                       |  |  |  |  |
| Q.15 | 2.5 mL of $\frac{2}{5}$ M weak monoacidic base (K <sub>b</sub> = 1 × 10 <sup>-12</sup> at 25°C) is titrated with $\frac{2}{15}$ M HCl in water at      |                                                                      |                                                      |                                                                   |                                       |  |  |  |  |
|      | 25°C. The concentration of $H^+$ at equivalence point is [JEE                                                                                          |                                                                      |                                                      |                                                                   |                                       |  |  |  |  |
|      | $(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C})$                                                                                             |                                                                      |                                                      |                                                                   |                                       |  |  |  |  |
|      | (A) $3.7 \times 10^{-13}$ M                                                                                                                            |                                                                      | (B) $3.2 \times 10^{-7}$ M                           |                                                                   |                                       |  |  |  |  |
|      | (C) $3.2 \times 10^{-2}$ M                                                                                                                             |                                                                      | (D) $2.7 \times 10^{-2} \text{ M}$                   |                                                                   |                                       |  |  |  |  |
| Q.16 | Solubility product co<br>$4.0 \times 10^{-8}$ , $3.2 \times 10^{-14}$<br>'T' are in the order :                                                        | onstants (K <sub>SP</sub> ) of sal and $2.7 \times 10^{-15}$ , respe | ts of types MX, $MX_2$<br>ectively. Solubilities (mo | and M <sub>3</sub> X at temp<br>l dm <sup>-3</sup> ) of the salts | perature 'T' are<br>s at temperature  |  |  |  |  |
|      | (A) MX > MX <sub>2</sub> > $M_3$                                                                                                                       | X                                                                    | (B) $M_3 X > M X_2 > 1$                              | MX                                                                | [JEE 2008]                            |  |  |  |  |
|      | (C) $MX_2 > M_3X > M_3X$                                                                                                                               | IX                                                                   | (D) MX > $M_3X > M_3$                                | ΔX <sub>2</sub>                                                   |                                       |  |  |  |  |
| Q.17 | The dissociation constant of a substituted benzoic acid at 25°C is $1.0 \times 10^{-4}$ . The pH of a 0.01 M solution of its sodium salt is [JEE 2009] |                                                                      |                                                      |                                                                   | pH of a 0.01 M<br>[ <b>JEE 2009</b> ] |  |  |  |  |
| Q.18 | Aqueous solutions o                                                                                                                                    | f HNO <sub>3</sub> , KOH, CH <sub>3</sub>                            | COOH and CH <sub>3</sub> COON                        | a of identical cor                                                | ncentrations are                      |  |  |  |  |
|      | provided. The pair(s)                                                                                                                                  | of solutions which for                                               | orm a buffer upon mixin                              | g is(are) –                                                       |                                       |  |  |  |  |
|      | (A) HNO <sub>3</sub> and CH <sub>3</sub> G                                                                                                             | СООН                                                                 |                                                      |                                                                   |                                       |  |  |  |  |
|      | (B) KOH and CH <sub>3</sub> C                                                                                                                          | COONa                                                                |                                                      |                                                                   |                                       |  |  |  |  |
|      | (C) HNO and CH (                                                                                                                                       | (C) HNO and CH COONa                                                 |                                                      |                                                                   |                                       |  |  |  |  |

(C) HNO<sub>3</sub> and CH<sub>3</sub>COONa
(D) CH<sub>3</sub>COOH and CH<sub>3</sub>COONa

node06\B0AH:A1\Kota\LEE{Advanced}\Nurture\Chem\Sheet\bnic equilibrium\Eng\02\_Ex.;p65

Q.19 In 1 L saturated solution of AgCl  $[K_{sp}(AgCl) = 1.6 \times 10^{-10}]$ , 0.1 mol of CuCl  $[K_{sp}(CuCl) = 1.0 \times 10^{-6}]$  is added. The resultant concentration of Ag<sup>+</sup> in the solution is  $1.6 \times 10^{-x}$ . The value of 'x' is. [JEE -2011]

Q.20 The  $K_{sp}$  of  $Ag_2CrO_4$  is  $1.1 \times 10^{-12}$  at 298 K. The solubility (in mol/L) of  $Ag_2CrO_4$  in a 0.1 M AgNO<sub>3</sub> solution is [JEE 2013]

(A) 
$$1.1 \times 10^{-11}$$
 (B)  $1.1 \times 10^{-10}$   
(C)  $1.1 \times 10^{-12}$  (D)  $1.1 \times 10^{-9}$ 

Q.21 The solubility of a salt of weak acid(AB) at pH 3 is  $Y \times 10^{-3}$  mol L<sup>-1</sup>. The value of Y is\_\_\_\_. (Given that the value of solubility product of AB (K<sub>sp</sub>) =  $2 \times 10^{-10}$  and the value of ionization constant of HB(K<sub>a</sub>) =  $1 \times 10^{-8}$ ) [JEE 2018]

ALLEN \_

**ANSWER KEY** 

|       | EXERCISE # S-I |                                                                                                         |                   |                                                                         |  |
|-------|----------------|---------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|--|
| Q.1   | Ans.           | 6.022 ×10 <sup>7</sup>                                                                                  | Q.2               | Ans. (i) 6.53 ; (ii) (a) Basic , (b) Acidic                             |  |
| Q.3   | Ans.           | 6.8                                                                                                     |                   |                                                                         |  |
| Q.4   | Ans.           | (a) 1, (b) 2.87, (c) 11.13 (d) 6.97, (e) 7, (                                                           | f) 6 , (          | (g) 6.97, (h) 11.30 (i) 9 , (j) 3                                       |  |
| Q.5   | Ans.           | (a) $K_a = 10^{-8}$ , (b) $K_b = 10^{-6}$                                                               | Q.6               | Ans. 10                                                                 |  |
| Q.7   | Ans.           | 173.2 : 1                                                                                               | Q.8               | Ans. 0.009                                                              |  |
| Q.9   | Ans.           | $2.32 	imes 10^{-8} \mathrm{M}$                                                                         | Q.10              | 0 Ans. 1.1 × 10 <sup>-3</sup> M                                         |  |
| Q.11  | Ans.           | $1.11 	imes 10^{-4}$                                                                                    | Q.12              | 2 Ans. 4.7                                                              |  |
| Q.13  | Ans.           | 3.3                                                                                                     | Q.14              | 4 Ans. (a) 0.522 , (b) 2.522                                            |  |
| Q.15. | Ans.           | (1)                                                                                                     |                   |                                                                         |  |
| Q.16  | Ans.           | $[H^+] = 1.65 \times 10^{-2} M$ , $[CHCl_2COO^-] = 6$                                                   | 6.5 × 1           | 10 <sup>-3</sup> M                                                      |  |
| Q.17  | Ans.           | $[H^+] = 10^{-3}M, [CH_3COO^-] = 3.6 \times 10^{-4}$                                                    | <sup>4</sup> M, [ | $[C_7H_5O_2^{-}] = 6.4 \times 10^{-4}M$                                 |  |
| Q.18  | Ans.           | $0.027 \text{ M}, 0.073 \text{ M}, 0.027 \text{ M}, 10^{-5} \text{ M}$                                  |                   |                                                                         |  |
| Q.19  | Ans.           | $[\mathrm{H^{+}}] = [\mathrm{H_{2}PO_{4}^{-}}] = 2.7 \times 10^{-3} \mathrm{M}, [\mathrm{HPO_{4}^{-}}]$ | <sup>2–</sup> ] = | $10^{-8}$ M, [PO <sub>4</sub> <sup>3-</sup> ] = $3.7 \times 10^{-19}$ M |  |
| Q.20  | Ans.           | 11.3                                                                                                    | Q.21              | 1 Ans. 10 <sup>-5</sup> M                                               |  |
| Q.22  | Ans.           | pH = 4.5                                                                                                | Q.23              | 3 Ans. $K_b = 6.25 \times 10^{-10}$                                     |  |
| Q.24  | Ans.           | <b>0.56%, pH = 7</b>                                                                                    | Q.25              | 5 Ans. 1.667%                                                           |  |
| Q.26  | Ans.           | 0.25 %                                                                                                  | Q.27              | 7 Ans. 10 <sup>-6</sup> ; 10 <sup>-8</sup>                              |  |
| Q.28  | Ans.           | 8.3                                                                                                     | Q.29              | 9 Ans. 4.19                                                             |  |
| Q.30  | Ans.           | (a) 6, (b) 1 × 10 <sup>-5</sup>                                                                         |                   | Q.31 Ans. 9.0                                                           |  |
| Q.32  | Ans.           | 9.56                                                                                                    | Q.33              | 3 Ans. 5.04                                                             |  |
| Q.34  | Ans.           | 0.05 mol                                                                                                | Q.35              | 5 Ans. [OH <sup>-</sup> ] = 9.0 ×10 <sup>-6</sup> M                     |  |
| Q.36  | Ans.           | (10.1)                                                                                                  | Q.37              | 7 Ans. 4.74                                                             |  |
| Q.38  | Ans.           | 9.56                                                                                                    | Q.39              | 9 Ans. 8.7782                                                           |  |
| Q.40  | Ans.           | (3.33)                                                                                                  | Q.41              | 1 Ans. 10 <sup>-5</sup> M                                               |  |
| Q.42  | Ans.           | 8.7, $[H_3O^+] = 2 \times 10^{-9}M$                                                                     | Q.43              | 3 Ans. 5 , 10 <sup>-5</sup> M                                           |  |
| Q.44  | Ans.           | (i) 2.85, (ii) 4.0969, (iii) 4.5229, (iv) 4.69                                                          | 9, (v)            | ) <b>5.301, (vi) 8.699</b>                                              |  |
| Q.45  | Ans.           | [HI <sub>n</sub> ] = 80 %                                                                               | Q.46              | 6 Ans. 85.71%                                                           |  |
| Q.47  | Ans.           | (b), (c)                                                                                                | Q.48              | 8 Ans. ΔpH = 0.954                                                      |  |
| Q.49  | Ans.           | QX <sub>2</sub> is more soluble                                                                         | Q.50              | 0 Ans. 4 × 10 <sup>-8</sup>                                             |  |
| Q.51  | Ans.           | $5 	imes 10^{-11}$                                                                                      | Q.52              | 2 Ans. $3.2 \times 10^{-11}$                                            |  |
| Q.53  | Ans.           | $2.56 \times 10^{-16}$                                                                                  | Q.54              | 4 Ans. 1.0×10 <sup>-5</sup> mol/lit                                     |  |
| Q.55  | Ans.           | $5 	imes 10^{-10} \mathrm{M}$                                                                           |                   |                                                                         |  |
| Q.56  | Ans.           | Ans.5 $\times$ 10 <sup>-7</sup>                                                                         |                   |                                                                         |  |
| Q.57  | Ans.           | $4 \times 10^{-7}$ mol/L AgBr, $1.6 \times 10^{-6}$ mol/L A                                             | AgSCI             | <sup>C</sup> N                                                          |  |
| Q.58  | Ans.           | $[F^{-}] = 3 \times 10^{-3}M$                                                                           | Q.59              | 9 Ans. 8 × 10 <sup>-3</sup> M                                           |  |
| Q.60  | Ans.           | (i) $2 \times 10^{-9}$ , (ii) $8 \times 10^{-3}$                                                        | Q.61              | 1 Ans. $S = 2 \times 10^{-4} M$ , pH = 8.0                              |  |
| Q.62  | Ans.           | $4 \times 10^{-2} M$                                                                                    |                   |                                                                         |  |
| 66    |                |                                                                                                         |                   | <b></b>                                                                 |  |

## Q.63 Ans. (a) no precipitation will occur, (b) a precipitate will form Q.64 Ans. No. Q.65 Ans.0.284 gm

## EXERCISE # S-II

| Q.1 Ans. 0.209 M, 0.191 M,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.13 \times 10^{-3}$ M, 0 Q.2               | Ans. $pH = 11.48$ , $[enH_2^{2+}] = 7.1 \times 10^{-8} M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.3 Ans. 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q.4                                          | Ans. $[S^{2-}] = 2.5 \times 10^{-15} M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.5 Ans. $(2 \times 10^{-4} M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q.6                                          | Ans. pH = 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.7 Ans. $[OH^-] = 3.73 \times 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $^{-2}M, [H_{3}PO_{4}] = 6 \times 10^{-18}M$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q.8 Ans. 8.35, 9.60, 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q.9                                          | Ans.(9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q.10 Ans. $K_{\rm b} \simeq 1.73 \times 10^{-5}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.27 Q.11                                    | Ans. $K_a \simeq 1.73 \times 10^{-5}, 8.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.12 Ans. $(10^{-5}M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q.13.                                        | Ans. (10 <sup>-3</sup> M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q.14 Ans. $pH = 7.9$ , $pH = 7.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .3 Q.15                                      | Ans. $2.8 \times 10^{-3}$ mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q.16 Ans. $1.6 \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q.17                                         | Ans. $K_d = 1/K_f = 4.8 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXERCISE #                                   | <i>O-I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.1 Ans.(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q.2 Ans.(B)                                  | Q.3 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.4 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Q.5 Ans.(B)</b>                           | Q.6 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.7 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Q.8</b> Ans.(D)                           | <b>Q.9 Ans.(C)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q.10 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.11. Ans (C)                                | Q.12 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.13 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.14 Ans.(B)                                 | Q.15 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.16 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.17 Ans.(B)                                 | Q.18. Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q.19 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.20 Ans.(B)                                 | Q.21 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.22 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.23 Ans.(D)                                 | Q.24 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.25 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.26 Ans.(C)                                 | Q.27 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.28 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.29 Ans.(A)                                 | Q.30 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.31 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.32 Ans.(C)                                 | Q.33 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.34 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.35 Ans.(B)                                 | Q.36 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.37 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.38 Ans.(A)                                 | Q.39 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.40 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.41 Ans.(C) $(\mathbf{D})$                  | $\mathbf{Q.42}  \mathbf{Ans.(B)} \\ \mathbf{Q.45}  \mathbf{A}  \mathbf{(A)} \\ \mathbf{Q.45}  \mathbf{(A)}  \mathbf{(A)} \\ \mathbf{Q.45}  \mathbf{(A)}  \mathbf{(A)} \\ \mathbf{Q.45}  \mathbf{(A)}  \mathbf{(A)}  \mathbf{(A)}  \mathbf{(A)} \\ \mathbf{Q.45}  \mathbf{(A)}  \mathbf{(A)} $ |
| Q.43 Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.44 Ans.(D) $Q.47$ Ans.(D)                  | $\begin{array}{c} Q.45  \text{Ans.}(A) \\ Q.48  \text{Arg}(B) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.40 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.47 Ans.(D)<br>Q.50 Ans.(A)                 | $\begin{array}{c} Q.48  \text{Ans.}(B) \\ Q.51  \text{Ans.}(C) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{Q}$ . $\mathbf{Q}$ | Q.50  Ans.(A)                                | $\begin{array}{c} Q.51  \text{Ans.}(C) \\ Q.54  \text{Ans.}(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{Q}$ .52 Ans.(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q.55  Ans.(A)                                | $\begin{array}{c} Q.54.  \text{Ans.}(A) \\ Q.57  \text{Ans}(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\int_{2}^{2} 0.58 \text{ Ans}(\Lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{Q.50}  \mathbf{Ans.}(\mathbf{D})$   | $\mathbf{Q}_{\mathbf{A}} \mathbf{G} \mathbf{G} \mathbf{A} \mathbf{ns} \mathbf{G} \mathbf{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.61  Ans(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathbf{Q.57}  \mathbf{Ans.}(\mathbf{D})$   | $\begin{array}{c} \textbf{Q.00}  \textbf{Ans.}(\textbf{C}) \\ \textbf{Q.63}  \textbf{Ans} (\textbf{D}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.64  Ans.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.65 Ans.(D)                                 | $\mathbf{O}.66  \mathbf{Ans}.(\mathbf{D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.67 Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathbf{O.68}$ Ans.(C)                      | $\mathbf{O.69}  \mathbf{Ans.}(\mathbf{A})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.70. Sol.(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.71. Ans.(B)                                | 0.72. Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>0.73</b> Ans.(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74 Ans.(B)                                 | 0.75 Ans.(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| JEE-              | Chemistry                        |                |                   |      |                  |
|-------------------|----------------------------------|----------------|-------------------|------|------------------|
|                   |                                  | EX             | ERCISE # O-II     |      |                  |
| Q.1               | Ans.(A)                          | Q.2            | Ans.(C)           | Q.3  | Ans.(D)          |
| Q.4               | Ans.(B)                          | Q.5            | Ans (C)           | Q.6  | Ans.(A)          |
| <b>Q.7</b>        | Ans.(A)                          | Q.8            | Ans.(B)           | Q.9  | Ans.(D)          |
| Q.10              | Ans.(A)                          | Q.11           | Ans. (A,B,C)      | Q.12 | Ans.(A,B,C,D)    |
| Q.13              | Ans.(B,C)                        | Q.14           | Ans. (A, B, D)    | Q.15 | Ans. (D)         |
| Q.16              | Ans.(A)                          | Q.17           | Ans. (A)          | Q.18 | Ans (B)          |
| Q.19              | Ans (B)                          | Q.20           | Ans (B)           |      |                  |
| Q.21              | Ans. A - (R), B - (P), C - (Q),  | <b>D</b> - (S) |                   |      |                  |
| Q.22              | Ans (A) - Q; (B) - P, S; (C) - F | R; (D) -       | T                 |      |                  |
| Q.23              | Ans.(D)                          | Q.24           | Ans.(B)           | Q.25 | Ans.(C)          |
| EXERCISE # J-MAIN |                                  |                |                   |      |                  |
| Q.1               | Ans.(3)                          | Q.2            | Ans.(3)           | Q.3  | Ans.(4)          |
| Q.4               | <b>Ans.(1)</b>                   | Q.5            | Ans.(3)           | Q.6  | <b>Ans.</b> (2)  |
| Q.7               | Ans.(3)                          | Q.8            | Ans.(4)           | Q.9  | <b>Ans.(3)</b>   |
| Q.10              | <b>Ans.(4)</b>                   | Q.11           | Ans.(3)           | Q.12 | <b>Ans.</b> (3)  |
| Q.13              | <b>Ans.(1)</b>                   | Q.14           | <b>Ans.(4)</b>    | Q.15 | <b>Ans.</b> (4)  |
| Q.16              | Ans.(4)                          | Q.17           | <b>Ans.(1)</b>    | Q.18 | <b>Ans.</b> (4)  |
| Q.19              | <b>Ans.(1)</b>                   | Q.20           | <b>Ans.(1)</b>    | Q.21 | <b>Ans.</b> (4)  |
| Q.22              | Ans.(3)                          | Q.23           | Ans. (2)          | Q.24 | <b>Ans.</b> (3)  |
| Q.25              | Ans.(3)                          | Q.26           | <b>Ans.(1)</b>    | Q.27 | Ans.(2)          |
| Q.28              | <b>Ans.(1)</b>                   | Q.29           | <b>Ans.(2)</b>    | Q.30 | <b>Ans.</b> (1)  |
| Q.31              | Ans.(2)                          |                |                   |      |                  |
| _                 | EX                               | KERC           | ISE # J-ADVANCE   |      |                  |
|                   |                                  |                |                   |      |                  |
| Q.1               | Ans. pH = 11.3010                | Q.2            | Ans.(B)           | Q.3  | Ans. $(A, B, C)$ |
| Q.4               | Ans.s = $1.203 \times 10^{-3}$ M | Q.5            | Ans. pH = 0.91325 | Q.6  | Ans.(A)          |
| Q.7               | Ans.(a) 0.0175%, (b) 4.757       | Q.8            | Ans.(C)           |      |                  |
| Q.9               | Ans.No, it will be $> 7$ at 0°C. | Q.10           | Ans.pH = 9        | Q.11 | Ans.(A)          |
| Q.12              | Ans.(B)                          | Q.13           | Ans.(D)           | Q.14 | Ans.(A)          |
| Q.15              | Ans.(D)                          | Q.16           | Ans.(D)           | Q.17 | <b>Ans.(8)</b>   |
| Q.18              | Ans.(C), (D)                     | Q.19           | <b>Ans.</b> (7)   | Q.20 | Ans.(B)          |
| Q.21              | Ans. (4.47)                      |                |                   |      |                  |

Ε