
Chapter 4

Chemical Bonding and Molecular Structure

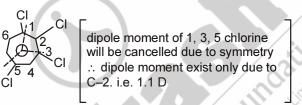
 A certain diatomic molecule, AB has dipole moment 1.6 D and the internuclear distance is 100 pm. The percentage of electronic charge existing on more electronegative atom is

Sol. Answer (1)

5.

% ionic = $\frac{\mu \text{ obsc}}{\mu \text{ cal}}$ = $\frac{1.6 \times 10^{-18} \text{ esu-cm}}{100 \times 10^{-18} \times 4.8 \times 10^{-10} \text{ esu-cm}}$ = 33%

CI


Dipole moment of jiven compound will be

(2) 4.4 D

Sol. Answer (1)

(1) 1.1 D

(3) 3.3 D

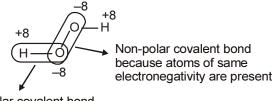
- 6. In the given structure of a compound, the correct various bond moments direction involving atoms are shown as
 - (1) $Br \leftarrow N \leftarrow CH_2 \Rightarrow SiH_2 \leftarrow CH_2 \Rightarrow O \leftarrow CH_3$

(3)
$$Br \Rightarrow N \Leftrightarrow CH_2 \Leftrightarrow SiH_2 \Rightarrow CH_2 \Rightarrow O \Leftrightarrow CH_3$$

(2) Br \equiv N \equiv CH₂ \equiv SiH₂ \equiv CH₂ \Rightarrow O \equiv CH₃ (4) Br \equiv N \Rightarrow CH₂ \Rightarrow SiH₂ \equiv CH₂ \Rightarrow O \Rightarrow CH₃

(4) 2.56 D

Sol. Answer (3)


Electronegativity N > Br > C

7. Which molecule contains both polar and non-polar covalent bond?

(1)
$$NH_4^+$$
 (2) HCl (3) CH_4 (4) H_2O_2

Sol. Answer (4)

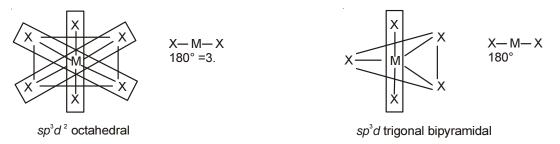
H₂O₂ have open book structure

Polar covalent bond because different electronegativity atoms are present

- Which of the following is a polar molecule? 8.
 - (1) Para dichlorobenzene
 - (2) Carbon tetrachloride
 - (3) Tetrachloroethene

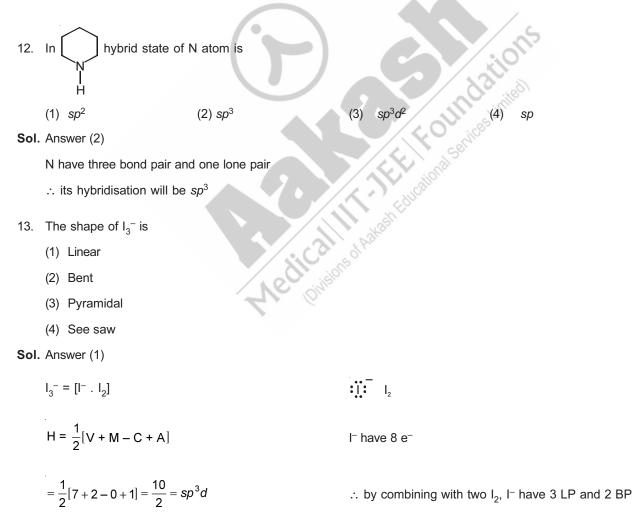
(The Valence Shell Electron Pair Repulsion Theory, Valence Bond Theory, Hybridisation)

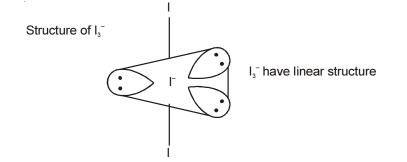
- 9. Which of the following is correct for XeO_2F_2 and PCI_5 ?
 - (1) Both have same hybridisation and shape
 - (2) Both have same hybridisation but different geometry
 - (3) Both have different hybridisation but same shape
 - (4) Both have same hybridisation but different shape


(1) Both have same hybridisation and shape
(2) Both have same hybridisation but different geometry
(3) Both have different hybridisation but same shape
(4) Both have same hybridisation but different shape
Answer (4)
XeO₂**F**₂
Hybridisation =
$$\frac{1}{2}$$
[V + M - C + A]
H = $\frac{1}{2}$ [V + M - C + A]
H = $\frac{1}{2}$ [V + M - C + A]
H = $\frac{1}{2}$ [S + 5 - 0 + 0]
 $\frac{10}{2} = 5$ [Sp³d]
Shape $\int_{K_{e}}^{K_{e}} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{C_{e}} \int_{L_{e}}^{O}$
Shape $\int_{K_{e}}^{C_{e}} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O}$
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O} \int_{L_{e}}^{O}$
H = 5
Shape $\int_{K_{e}}^{O} \int_{L_{e}}^{O} \int_{L_{e}}^{O}$

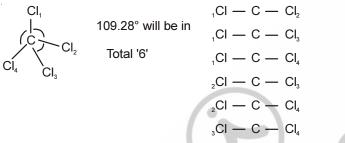
See-saw shape

Trigonal bipyramidal


sp³d


- 10. The maximum number of 180° angle possible between X-M-X bond for compounds with sp^3d^2 and sp^3d hybridisation respectively are
 - (1) 3, 3 (2) 3, 1 (3) 1, 3 (4) 3, 0
- Sol. Answer (2)

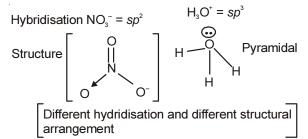
- 11. Incorrect statement regarding hybridization is
 - (1) It is not possible for isolated atoms
 - (2) Number of hybrid orbital formed is same as the number of orbitals combining
 - (3) Only the half filled orbitals and fully filled orbitals can participate not the empty orbital
 - (4) It is not a real physical process
- Sol. Answer (3)


Fully filled, half filled, empty orbitals participate in 'H' in excited state e-excited to empty orbital.

14. Number of angles of 109°28 is present in CCl₄

(1) 2 (2) 4 (3) 6 (4) 8 Sol. Answer (3)

15. Number of carbon atoms present in sp² hybrid state of given molecule?


1

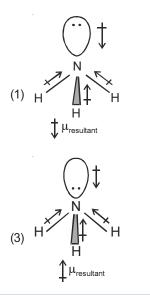
17. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct?

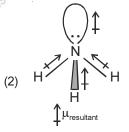
 $\alpha u = \alpha u$

- (1) Dissimilar hybridization for the central atom with different structures
- (2) Isostructural with same hybridization for the central atom
- (3) Isostructural with different hybridization for the central atom
- (4) Similar hybridization for the central atom with different structures

Sol. Answer (1)

- 18. Which of the following is not a correct statement?
 - (1) Multiple bonds are always shorter than corresponding single bonds
 - (2) The electron-deficient molecules can act as Lewis acids
 - (3) The canonical structures have no real existence
 - (4) Every AB₅ molecules does in fact have square pyramid structure


Sol. Answer (4)


AB₅ molecule geometry also depends upon the no. of lone pair

- : always AB₅ will not have square pyramid structure.
- AB₅ = trigonal bipyramid, or square pyramid
- 19. Arrange the following species in increasing order of bond angle
 - NF₃, NCl₃, NBr₃, NI₃
 - (1) $NF_3 < NCl_3 < NBr_3 < NI_3$
 - (2) $NF_3 < NBr_3 < NI_3 < NCI_3$
 - (3) $NI_3 < NBr_3 < NCI_3 < NF_3$
 - (4) $NBr_3 < NI_3 < NF_3 < NCI_3$

Sol. Answer (1)

20. Which of the following is correct representation of dipole moment of NH₃ molecule?

(4) NH₃ being symmetrical will not show dipole moment

10 E

Sol. Answer (2)

$$+\delta H = H + \delta H + \delta$$

H is less electromagnetic than N \therefore Net dipole moment will be toward 'N' atom

(Molecular Orbital Theory, Hydrogen Bonding)

21. The ground state electronic configuration of valence shell electrons in nitrogen molecule (N₂) is written as kk,

$$\sigma^2 s^2$$
, $\sigma^* 2 s^2$, $\begin{bmatrix} \pi^2 p_y^2 \\ \pi^2 p_z^2 \end{bmatrix}$, $\sigma^2 p_x^2$. Hence the bond order in nitrogen molecule is

Sol. Answer (2)

Bond order =
$$\frac{\text{No. of bonding} - \text{No. of antibonding}}{2} = \frac{8-2}{2} = 3$$

Bond order of $N_2 = 3$

- 22. Which of the following statements are correct?
 - I. Bond order of NO is 2.5
 - II. Bond order of NO⁺ is 3.0
 - III. Bond order of O₂ is 1.5
 - IV. Bond order of CO is 3.0
 - (1) I, II, III II, III, IV (2)

Sol. Answer (3)

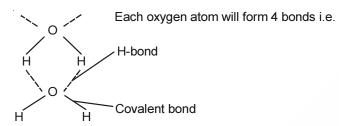
Bond order of
$$N_2 = 3$$

Which of the following statements are correct?
I. Bond order of NO is 2.5
II. Bond order of NO⁺ is 3.0
III. Bond order of O₂ is 1.5
IV. Bond order of CO is 3.0
(1) I, II, III (2) II, III, IV (3) I, II, IV (4) II, IV
Answer (3)
NO = 15 = $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^1$
NO⁺ = 14 = $\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\sigma 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^2$, $\pi^* 2p_x^0$
B.O = $\frac{10-5}{2} = 2.5$
B.O = $\frac{10-4}{2} = 3$
B.O = $\frac{10-4}{2} = 3$
B.O = $\frac{10-6}{2} = 2$

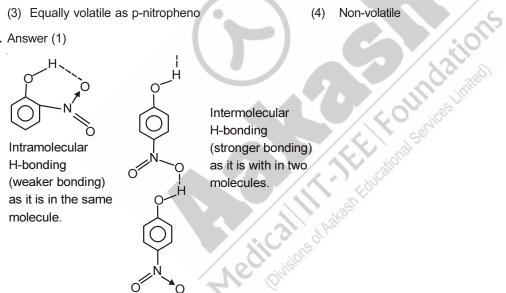
CO = 14 =
$$\sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\pi^* 2_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$, $\sigma^* 2ps^2$
3.0
B.O = $\frac{10-4}{2} = 3$

- ∴ (NO 2.5 NO⁺ 3 CO 3
- 23. The number of antibonding electron pairs in O_2^-

(1) 2	(2)	3
(3) 1	(4)	4


70 Chemical Bonding and Molecular Structure

Sol. Answer (2)


 $O_2^- = 17 = \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2 = \pi 2p_y^2, \pi 2p_x^2$ Number of antibonding electron pairs are 3.

24. How many bonds are formed by each oxygen atom in ice?

Sol. Answer (1)

- 25. o-nitrophenol is
 - (1) More volatile than p-nitrophenol
 - (3) Equally volatile as p-nitropheno
- Sol. Answer (1)

- : o-nitrophenol will easily evaporated compared to p-nitrophenol
- 26. Which of the following pair consists of only paramagnetic species?
 - (2) N₂, O₂ (1) H₂, O₂⁺ (4) H_2^+ , O_2^- (3) CO, N₂

Sol. Answer (4)

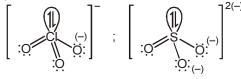
 $O_2^- = \sigma 1s^2 ... \pi 2p_x^2 = \pi 2p_y^2, \pi^* 2p_x^2 = \pi^* 2p_y^1$ $H_2^+ = \sigma 1 s^1$ 1 unpaired electron in $\pi^* 2p_v^{1}$ 1 unpaired electron in σ 1s

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. 011-47623456

$= \pi^{*} 2 p_{v}^{1}$

(4) Non-volatile

SECTION - B

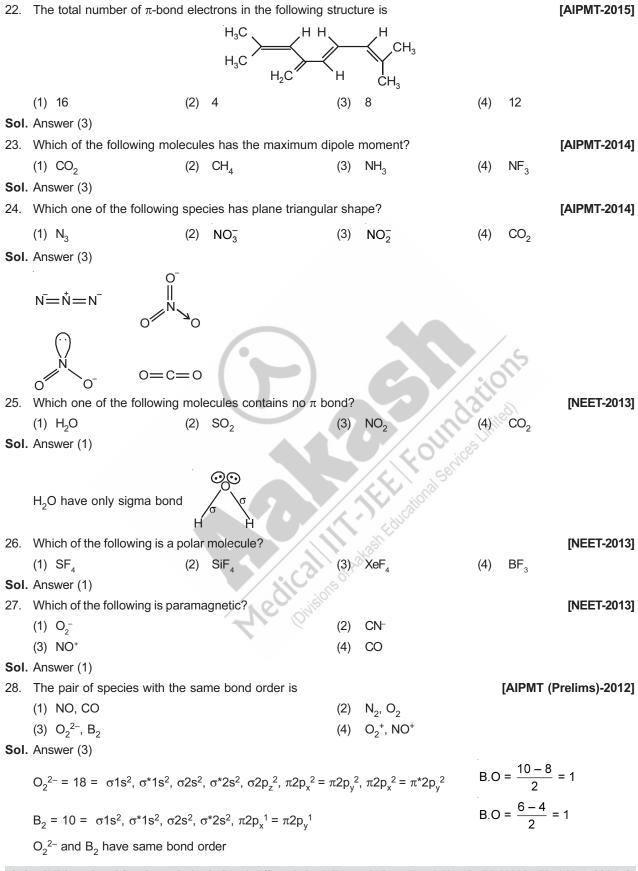

Previous Years Questions

1.	In the structure of CIF_3 , the	e number of lone pair of el	ectror	ns on central atom 'C	Cl' is		[NEET-2018]
	(1) One	(2) Two	(3)	Three	(4)	Four	
Sol.	Answer (2)						
	The structure of CIF_3 is						
	(F)						
	The number of lone pair of	of electrons on central CI is	s 2.				
		element (X) to form an ion implest formula for this cor			d state	e electronic	configuration [NEET-2018]
	(1) Mg ₂ X ₃	(2) MgX ₂	(3)	Mg ₃ X ₂	(4)	Mg ₂ X	
Sol.	Answer (3)					5	
	Element (X) electronic con 1s ² 2s ² 2p ³	ntiguration			25		
	So, valency of X will be 3				3	16	
	Valency of Mg is 2.		0		in'i	S.	
		med by Mg and X will be M	lg ₃ X ₂ .	101	55		
3.	Consider the following spe	cies :		Service			
	CN⁺, CN⁻, NO and Cl	N		ional .			
		ve the highest bond order?		· · · · · · · · · · · · · · · · · · ·			[NEET-2018]
	(1) NO Answer (2)	(2) CN-	(3)	CN	(4)	CN⁺	
301.		$^{2},(\sigma^{*}2s)^{2},(\sigma^{2}p_{z})^{2},(\pi^{2}p_{x})^{2}=$	· (π2p	$^{2}(\pi^{*}2p)^{1} = (\pi^{*}2p)^{0}$)		
	BO = $\frac{10-5}{2}$ = 2.5	, , , , , , , , , , , , , , , , , , ,	nº otr	y, ,(·· =rx, (·· =ry)			
	∠ CN ⁻ : (σ1s)², (σ*1s)², (σ2s	s) ² , $(\sigma^* 2s)^2$, $(\pi 2p_{\star})^2$					
	$= (\pi 2 p_y)^2, (\sigma 2 p_z)^2$						
	BO = $\frac{10-4}{2} = 3$						
	CN : $(\sigma 1s)^2$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$ = $(\pi 2p_y)^2$, $(\sigma 2p_z)^1$)²,(σ*2s)², (π2p _x)²					
	BO = $\frac{9-4}{2} = 2.5$						
	CN ⁺ : $(\sigma 1s)^2$, $(\sigma^* 1s)^2$, $(\sigma 2s)^2$ = $(\pi 2p_y)^2$	s) ² ,(σ^*2s) ² , ($\pi 2p_x$) ²					
	$BO = \frac{8-4}{2} = 2$						
	Lance ention(2) should be	a the right energy or					

Hence, option(2) should be the right answer.

12	Chemical bonding and M	loiecui			30	Julion	s of Assigni	
4.	Which of the following pai	rs of o	compounds is isoelecti	ronic	and isostructural?			[NEET-2017]
	(1) BeCl ₂ , XeF ₂	(2)	Tel ₂ , XeF ₂	(3)	IBr ₂ [−] , XeF ₂	(4)	IF ₃ , XeF ₂	
Sol.	Answer (3)							
	IBr ₂ , XeF ₂							
Б	Total number of valence e The species, having bond		-	ne spe	ecies and both the s	species	s are linear	
5.	(1) PH₃	•	CIF ₃	(3)	NCl ₃	(4)	BCl ₃	[NEET-2017]
Sol.	Answer (4)	(2)		(0)	1013	()	0013	
	CI B CI CI CI							
6.	Which one of the following	g pairs	s of species have the s	same	bond order?			[NEET-2017]
	(1) CO, NO	(2)	O ₂ , NO ⁺	(3)	CN⁻, CO	(4)	N ₂ , O ₂ ⁻	
Sol.	Answer (3)							
_	CN ⁽⁻⁾ and CO have bond of							
7.	Which one of the following	g com	pounds shows the pres	sence	of intramolecular h	ydroge		0.00461
				(2)	HCN		[NEE1-	Phase-2-2016]
	(1) H₂O₂(3) Cellulose			(2) (4)	Concentrated acet	ic acio	5	
Sol.	Answer (3)			(1)				
	Fact.					20		
8.	The hybridizations of atom	ic orb	itals of nitrogen in NO_2^+	, NO ₃	and NH ₄ ⁺ respectiv	ely are	e [NEET-P	hase-2-2016]
	(1) sp, sp ³ and sp ²	(2)	sp^2 , sp^3 and sp	(3)	sp, sp ² and sp ³	(4)	<i>sp</i> ² , <i>sp</i> an	d sp ³
Sol.	Answer (3)				- Service			
	$[: \bigcirc = \bigwedge_{sp}^{+1} = \circlearrowright :]^{(+)}; \begin{bmatrix} -1 \\ \vdots \circlearrowright \\ \vdots \circlearrowright \end{bmatrix}$:0: II .N +1 .sp ²	$\begin{bmatrix} -1\\ -j \end{bmatrix}^{(-)}; \begin{bmatrix} H\\ H\\ N\\ H\\ H\\ sp^3 \end{bmatrix}$		sp, sp ² and sp ³			
9.	Which of the following pai	irs of i	ons is isoelectronic ar	nd iso	structural?		[NEET-P	hase-2-2016]
	(1) CO ₃ ²⁻ , NO ₃ ⁻	(2)	CIO ₃ ⁻ , CO ₃ ²⁻	(3)	SO_3^{2-}, NO_3^{-}	(4)	CIO ₃ , SO	2– 3
Sol.	Answer (1, 4)		Ne Oint					
	Option (1) :							
	$\begin{bmatrix} :O:\\ II\\ :O \\ -1 \\ -1 \end{bmatrix}^{2(-)}; \begin{bmatrix} :O \\ :O \\ :O \\ -1 \end{bmatrix}^{2(-)};$	·1	-1					
	Both have 32 electrons w	ith trig	onal planar structure.					
	Option (4) :							
	[]_ [<u>(1</u>)	$1^{2(-)}$					

Solutions of Assignment (Level-II)



72 Chemical Bonding and Molecular Structure

Both have 42 electrons with pyramidal structure.

10. The correct geometry and hybridization for XeF_4 a	are		[NEET-Phase-2-2016]
(1) Octahedral, sp^3d^2			
(2) Trigonal bipyramidal, <i>sp</i> ³ <i>d</i>			
(3) Planar triangle, sp^3d^3			
(4) Square planar, sp^3d^2			
Sol. Answer (1)			
XeF ₄ , has octahedral geometry where hybridisation	n of Xe is <i>s</i> p	$p^3 d^2$.	
11. Among the following, which one is a wrong stater	ment?		[NEET-Phase-2-2016]
(1) PH ₅ and BiCl ₅ do not exist	(2) pr	π - $d\pi$ bonds are present in	SO ₂
(3) SeF ₄ and CH ₄ have same shape	(4) I ₃	⁺ has bent geometry	
Sol. Answer (3)			
Shape of SeF_4 would be see saw whereas that of	CH ₄ would	be tetrahedral.	
12. Predict the correct order among the following.			[NEET-2016]
(1) lone pair - bond pair > bond pair - bond pair >	lone pair -	lone pair	
(2) Ione pair - Ione pair > Ione pair - bond pair > b	oond pair - b	bond pair	C.
(3) lone pair - lone pair > bond pair - bond pair >	lone pair - b	bond pair	
(4) bond pair - bond pair > lone pair - bond pair >	lone pair -	lone pair	
Sol. Answer (2)		do ited	
Fact		oond pair lone pair	
13. Consider the molecules CH_4 , NH_3 and H_2O . Which	h of the give		[NEET-2016]
(1) The H – C – H bond angle in CH_4 is larger that	an the H – N	N – H bond angle in NH_3	
(2) The H – C – H bond angle in CH ₄ , the H – N – are all greater than 90°	H bond ang	gle in NH_3 , and the H – O \cdot	– H bond angle in H ₂ O
(3) The H – O – H bond angle in H_2O is larger the	an the H - 0	$C - H$ bond angle in CH_4	
(4) The H – O – H bond angle in H_2O is smaller t	than the H -	– N – H bond angle in NH	3
Sol. Answer (3)	isions		
Sol. Answer (3) Molecules Bond angle	1		
$CH_4 \longrightarrow 109.5^{\circ}$			
$NH_3 \longrightarrow 107.5^{\circ}$			
$H_2O \longrightarrow 104.45^{\circ}$			
14. Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^-	0 ₂ ^{2−} is		[Re-AIPMT-2015]
(1) $O_2 > O_2^+ > O_2^{-2-} > O_2^{-2-}$	(2) O	$O_2^- > O_2^{2-} > O_2^+ > O_2^+$	
(3) $O_2^+ > O_2^- > O_2^{} > O_2^{2}$	(4) O	$O_2^{2-} > O_2^{-} > O_2^{+} > O_2^{+}$	
Sol. Answer (3)			
Stability ∞ bond-order.			
$O_2^+ > O_2^- > O_2^- > O_2^{2-}$ Bond order : 2.5 2.0 1.5 1.0			

74	Chemical Bonding and Molecular Structure		Sc	lution	s of Assignment (Level-II)
15.	In which of the following pairs, both the species are r	not isc	structural?		[Re-AIPMT-2015]
	(1) NH ₃ , PH ₃	(2)	XeF ₄ , XeO ₄		
	(3) SiCl ₄ , PCl ₄ ⁺	(4)	Diamond, silicon c	arbide	
Sol.	Answer (2)				
	F Square planar F Square planar F Square planar F Square planar F Square planar				
16.	Maximum bond angle at nitrogen is present in which	of the	following?		[AIPMT-2015]
	(1) NO_3^- (2) NO_2	(3)	NO_2^-	(4)	NO ₂ ⁺
Sol.	Answer (4)				
	NO_2^{\oplus} have linear geometry				
17.	The enolic form of ethyl acetoacetate as below has				[AIPMT-2015]
Sol.	H ₃ C H_3 C H_3 C H_3 C H_3 C H_2 OH OC_2H_5 H_3 C H_2 OC H_3 C H_3 C H_2 OC H_2 (1) 9 sigma bonds and 1 pi-bond (2) 18 sigma bonds and 2 pi-bonds (3) 16 sigma bonds and 1 pi-bond (4) 9 sigma bonds and 2 pi-bonds Answer (2)		LE FOLING	atin as the second	501 801
18.	Which of the following species contains equal number	r of σ-	and π -bonds?		[AIPMT-2015]
	(1) CH ₂ (CN) ₂	(2)	HCO3 ⁻		
	(1) $Or_2(O(V)_2)$ (3) XeO_4 Answer (3) The correct bond order in the following species is (1) $O_2^- < O_2^+ < O_2^{2+}$ (2) e^{-2t}	(4)	(CN) ₂		
Sol.	Answer (3)	nº SO.			
19.	The correct bond order in the following species is				[AIPMT-2015]
	(1) $O_2^- < O_2^+ < O_2^{2+}$	(2)	$O_2^{2+} < O_2^+ < O_2^-$		
	(3) $O_2^{2+} < O_2^- < O_2^+$	(4)	$O_2^+ < O_2^- < O_2^{2+}$		
Sol.	Answer (1)				
20.	Which of the following pairs of ions are isoelectronic				[AIPMT-2015]
	(1) CIO_3^- , SO_3^{2-} (2) CO_3^{2-} , SO_3^{2-}	(3)	CIO ₃ ⁻ , CO ₃ ²⁻	(4)	SO ₃ ^{2–} , NO ₃ [–]
	Answer (1)				
21.					[AIPMT-2015]
	(1) $O_2^- < O_2 > O_2^+$		$O_2^- > O_2^- > O_2^+$		
Sol.	(3) $O_2^- < O_2 < O_2^+$ Answer (3)	(4)	$O_2^- > O_2 < O_2^+$		

76 Chemical Bonding and Molecular	Structure	Solutio	ons of Assignment (Level-II)
29. Bond order of 1.5 is shown by			[AIPMT (Prelims)-2012]
(1) O_2^{2-} (2) O_2	D ₂ (3)	O ₂ ⁺ (4)	0 ₂
Sol. Answer (4)			
30. Which one of the following pairs is	s isostructural (i.e. havin	g the same shape and h	
			[AIPMT (Prelims)-2012]
(1) $[NF_3 \text{ and } BF_3]$ (2) $[B_3]$	$BF_4^- \text{ and } NH_4^+] \qquad (3)$	$[BCl_3 \text{ and } BrCl_3]$ (4)	$[NH_3 \text{ and } NO_3^-]$
Sol. Answer (2)		NII I +	
BF ₄ -		NH ₄ ⁺	
$H = \frac{1}{2}[3+4-0+1]$	H =	$=\frac{1}{2}[5+4-1+0]$	
$=\frac{8}{2}=4=sp^{3}$		$\frac{8}{2} = 4 = sp^3$	
2		Z	
Tetrahedral shape	Tet	rahedral shape	
F		н	
		•	
B F		N H	1 .
			-US
	L	Н	O.
[Both are having tetrahedral shape 31. During change of O_2 to O_2^{2-} ion, the state of O_2 is O_2^{2-} ion, the state of O_2^{2-} is O_2^{2-} ion, the state of O_2^{2-} is O_2^{2-} ion, the state of O_2^{2-} is O_2^{2-} is O_2^{2-} ion, the state of O_2^{2-} is O_2^{2-} is O_2^{2-} ion, the state of O_2^{2-} is O_2^{2-} is O_2^{2-} is O_2^{2-} is O_2^{2-} ion, the state of O_2^{2-} is			thitale?
$\mathbf{S}_{1} = \mathbf{S}_{1} = \mathbf{S}_{2} = \mathbf{S}_{2} = \mathbf{S}_{2} = \mathbf{S}_{2} = \mathbf{S}_{1} = \mathbf{S}_{2} $	The electron adds on white	en one of the following of	[AIPMT (Mains)-2012]
(1) π^* orbitals (2) π	orbitals (3)	σ^* orbitals (4)	
Sol. Answer (1)			
Sol. Answer (1)	¹ 2p ¹	THE cational Se	
Sol. Answer (1)	t [*] 2p _y ¹) e [−] added in π [∗] orbital	The ducational Se	
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2 \dots * 2p_x^1 = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2 \dots * 2p_x^2 = \pi^*$		Agente La catoral St	
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^1 = \pi^*$ \downarrow $O_2^{2^2} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^2 = \pi^*$ 32. Four diatomic species are listed be	elow. Identify the correct o	order in which the bond of	rder is increasing in them
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^{-1} = \pi^*$ $O_2^{-2} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^{-2} = \pi^*$ 32 Four diatomic species are listed be	elow. Identify the correct o	order in which the bond of	rder is increasing in them
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^{-1} = \pi^*$ $O_2^{-2} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^{-2} = \pi^*$ 32 Four diatomic species are listed be	elow. Identify the correct o	order in which the bond of	rder is increasing in them
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2 \dots * 2p_x^1 = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2 \dots * 2p_x^2 = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$	elow. Identify the correct o	order in which the bond of	rder is increasing in them
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^1 = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^2 = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4)	elow. Identify the correct of (2) (4)	order in which the bond of	rder is increasing in them [AIPMT (Mains)-2012] 2
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^1 = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots *2p_x^2 = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min	elow. Identify the correct of (2) (4) nimum bond length?	order in which the bond of $O_2^- < NO < C_2^{2-} < He^-$ $He_2^+ < O_2^- < NO < C_2^2$	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^1 = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^2 = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O	elow. Identify the correct of (2) (4) nimum bond length?	order in which the bond of $O_2^- < NO < C_2^{2-} < He^-$ $He_2^+ < O_2^- < NO < C_2^2$	rder is increasing in them [AIPMT (Mains)-2012] 2
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-1} = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-2} = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O Sol. Answer (2)	elow. Identify the correct (2) (4) nimum bond length? D_2^+ (3)	order in which the bond of $O_2^- < NO < C_2^{2-} < He$ $He_2^+ < O_2^- < NO < C_2^2$ O_2^- (4)	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-1} = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-2} = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O Sol. Answer (2)	elow. Identify the correct (2) (4) nimum bond length? D_2^+ (3)	order in which the bond of $O_2^- < NO < C_2^{2-} < He$ $He_2^+ < O_2^- < NO < C_2^2$ O_2^- (4)	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-1} = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-2} = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O Sol. Answer (2)	elow. Identify the correct (2) (4) nimum bond length? D_2^+ (3)	order in which the bond of $O_2^- < NO < C_2^{2-} < He$ $He_2^+ < O_2^- < NO < C_2^2$ O_2^- (4)	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-1} = \pi^*$ \downarrow $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^{-2} = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O Sol. Answer (2)	elow. Identify the correct (2) (4) nimum bond length? D_2^+ (3)	order in which the bond of $O_2^- < NO < C_2^{2-} < He$ $He_2^+ < O_2^- < NO < C_2^2$ O_2^- (4)	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]
Sol. Answer (1) $O_2 = 16 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^1 = \pi^*$ \downarrow^{\bullet} $O_2^{2^-} = 18 = \sigma 1s^2, \sigma^* 1s^2, \dots * 2p_x^2 = \pi^*$ 32. Four diatomic species are listed be (1) NO < $O_2^- < C_2^{2^-} < He_2^+$ (3) $C_2^{2^-} < He_2^+ < O_2^- < NO$ Sol. Answer (4) 33. Which of the following has the min (1) O_2 (2) O	elow. Identify the correct of (2) (4) nimum bond length? D_2^+ (3) Bond order $O_2 = 2$ $O_2^+ = 2.5$ $O_2^- = 1.5$ $O_2^- = 1$	order in which the bond of $O_2^- < NO < C_2^{2-} < He$ $He_2^+ < O_2^- < NO < C_2^2$ O_2^- (4)	rder is increasing in them [AIPMT (Mains)-2012] 2 - [AIPMT (Prelims)-2011]

Solutions of Assignment (Level-II) Chemical Bonding and Molecular Structure 77 34. The correct order of increasing bond length of C – H, C – O, C – C and C = C is [AIPMT (Prelims)-2011] (1) C - H < C - O < C - C < C = C(2) C - H < C = C < C - O < C - C(4) C - O < C - H < C - C < C = C(3) C - C < C = C < C - O < C - HSol. Answer (2) 35. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals NO₂⁻, NO₃⁻, NH₂⁻, NH₄⁺, SCN⁻ [AIPMT (Prelims)-2011] (1) NO_2^- and NH_2^- (2) NO_2^- and NO_3^- (3) NH_4^+ and NO_3^- (4) SCN⁻ and NH_2^- Sol. Answer (2) 36. Which of the following structures is the most preferred and hence of lowest energy for SO₃? [AIPMT (Mains)-2011] 0=5×0 Sol. Answer (2) Molecule having covalent bond. Without resonance have maximum stability; minimum energy 37. The pairs of species of oxygen and their magnetic behaviours are noted below. Which of the following presents the correct description? [AIPMT (Mains)-2011] (2) O_2 , O_2^{2-} – Both paramagnetic (1) O_2^+, O_2^- – Both paramagnetic (4) O_2^+ , O_2^{2-} – Both paramagnetic (3) O_2^{-} , O_2^{2-} – Both diamagnetic Sol. Answer (1) 38. Which one of the following species does not exist under normal conditions? [AIPMT (Prelims)-2010] (2) Be₂ (3) B₂ (1) Be_{2}^{+} (4) Li **Sol.** Answer (2) 39. In which of the following pairs of molecules/ions, the central atoms have sp² hybridization? [AIPMT (Prelims)-2010] (2) BF_3 and NO_2^- (1) NO_2^- and NH_3 (4) BF_3 and NH_2^- (3) NH₂ and H₂O Sol. Answer (2) 40. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three? [AIPMT (Prelims)-2010]

(1) SF_4 (2) I_3^{Θ} (3) $SbCI_3^{-}$ (4) PCI_5

Sol. Answer (3)

78	Chemical Bonding and Molecular Structure			Solution	s of Assignment (Level-II
41.	In which of the following molecules the central atom	does no	t have sp³ hybridiz	ation?	[AIPMT (Mains)-2010
	(1) CH ₄ (2) SF ₄	(3)	BF_4^-	(4)	NH_4^+
Sol.	Answer (2)				
12.	Some of the properties of the two species, NO_3^- and	d H₃O⁺ a	e described below	. Which	one of them is correct?
					[AIPMT (Mains)-2010
	(1) Dissimilar in hybridization for the central atom	with diffe	rent structures		
	(2) Isostructural with same hybridization for the cer	ntral aton	ı		
	(3) Isostructural with different hybridization for the o	central at	om		
	(4) Similar in hybridization for the central atom with	differen	structures		
Sol.	Answer (1)				
3.	What is the dominant intermolecular force or bond the	hat must	be overcome in co	nverting	g liquid CH ₃ OH to a gas?
					[AIPMT (Prelims)-2009
	(1) Dipole-dipole interaction	(2)	Covalent bonds		
	(3) London dispersion force	(4)	Hydrogen bonding	9	
Sol.	Answer (4)			> /	· c
4.	According to MO theory which of the following lists r	anks the	nitrogen species ir	terms	of increasing bond order
				(j)	[AIPMT (Prelims)-2009
	(1) $N_2^{2-} < N_2^- < N_2$	(2)	$N_2 < N_2^{2-} < N_2^{-}$	So.	(o)
	(3) $N_2^- < N_2^{2-} < N_2$	(4)	$N_2 < N_2^{2-} < N_2^{-}$ $N_2^{-} < N_2 < N_2^{2-}$	Slim	
Sol.	Answer (1)			100	
15.	In which of the following molecules/ions $BF_{3}, NO_{2}^{-},$	NH_2^- and	H_2O , the central a	itom is s	sp ² hybridized ?
			Callo.		[AIPMT (Prelims)-2009
	(1) NH_2^- and H_2O	(2)	NO_2^- and H_2O		
	(3) BF_3 and NO_2^-	(4)	NO_2^- and NH_2^-		
Sol.	Answer (3)	ans of			
	In the case of alkali metals, the covalent character of	decrease	s in the order		[AIPMT (Prelims)-2009
	(1) MF > MCl > MBr > MI	(2)	MF > MCl > MI >	MBr	,
	(3) MI > MBr > MCl > MF	(4)	MCI > MI > MBr	> MF	
Sol.	Answer (3)				
	For same cation larger anion more will be covalent	charact	er		
	∴ MI > MBr > MCI > MF				
7.	Four diatomic species are listed below the different s increasing bond order?	sequence	es. Which of these	present	s the correct order of the [AIPMT (Prelims)-2008
	(1) $He_2^+ < O_2^- < NO < C_2^{2-}$	(2)	$O_2^- < NO < C_2^{2-} <$	He_2^+	
	(3) $NO < C_2^{2-} < O_2^- < He_2^+$	(4)	C ₂ ²⁻ <he<sub>2⁺ < NO <</he<sub>	< 02	
	Answer (1)			-	

Solu	tions of Assignment (Level-II)		Chemical Bonding and	Molecular Structure 79
	The angular shape of molecule (O_3) consists of			[AIPMT (Prelims)-2008]
40.	(1) 2 sigma and 1 pi bond	(2)	1 sigma and 2 pi bonds	
	(3) 2 sigma and 2 pi bonds	(4)	1 sigma and 1 pi bond	-
Sol.	Answer (1)		0	
	.0 -	-		
	0° 0° 0° 0° 0° 0° have angular shape have two σ bond and 1π bond			
49.	The correct order of increasing bond angles in the follo	wing	triatomic species is	[AIPMT (Prelims)-2008]
	(1) $NO_2^+ < NO_2^- < NO_2$	(2)	$NO_2^- < NO_2^+ < NO_2^-$	
	(3) $NO_2^- < NO_2 < NO_2^+$	(4)	$NO_{2}^{+} < NO_{2}^{-} < NO_{2}^{-}$	
Sol.	Answer (3)			
50.	The correct order of (C–O) bond length among CO, CC	0 ₃ ⁻² , C	CO ₂ is	[AIPMT (Prelims)-2007]
	(1) $CO < CO_2 < CO_3^{-2}$	(2)	$CO_{2} < CO_{3}^{-2} < CO$	
	(3) $CO < CO_3^{-2} < CO_2$	(4)	$CO_{3}^{-2} < CO_{2} < CO$	
Sol.	Answer (1)	()		1
51.	In which of the following pairs, the two species are iso-	struct	tural?	[AIPMT (Prelims)-2007]
	(1) BrO_3^- and XeO_3 (2) SF_4 and XeF_4	(3)	SO_3^{2-} and NO_3^{-} (4)	BF_3 and NF_3
Sol.	Answer (1)			
	Which of the following is not a correct statement?	6		[AIPMT (Prelims)-2006]
	(1) The electron-deficient molecules can act as Lewis	acids		
	(2) The canonical structures have no real existence		- Service	
	(3) Every AB_5 molecule does in fact have square pyrar	V / .		
8.01	(4) Multiple bonds are always shorter than correspond	ing si	ngle bonds	
	Answer (3) The number of unpaired electrons in a paramagnetic di	iatom	ic molecule of an elemen	t with atomic number 16 is
00.		R		[AIPMT (Prelims)-2006]
	(1) 2 (2) 3 Answer (1)	(3)	4 (4)	
Sol.	Answer (1)			
54.	Which of the following species has a linear shape ?			[AIPMT (Prelims)-2006]
	(1) NO ₂	(2)	SO ₂	
	(3) NO ₂ ⁺	(4)	O ₃	
Sol.	Answer (3)			
55.	The electronegativity difference between N and F is gr of $\rm NH_3$ (1.5 D) is larger than that of $\rm NF_3$ (0.2 D). This			d H yet the dipole moment [AIPMT (Prelims)-2006]
	(1) In NH_3 as well as in NF_3 the atomic dipole and bon	d dip	ole are in the same direc	tion
	(2) In NH ₃ the atomic dipole and bond dipole are in the directions	he sa	me direction whereas in	NF_{3} these are in opposite
	(3) In NH_3 as well as NF_3 the atomic dipole and bond of	lipole	are in opposite directions	5
	(4) In NH ₃ the atomic dipole and bond dipole are in the directions	орро	site directions whereas in	$\rm NF_{_3}$ these are in the same
A		Taura	an O Dues Deed New Delh	

Sol.	Answer (2)						
		δ↓ F	$ \begin{array}{c} \bigoplus{N} & \downarrow \\ \downarrow \\ \downarrow \\ F^{-\delta} & F \end{array} $				
56.	Which of the following mol	ecules	s has trigonal planar ge	ometi	ry?		[AIPMT (Prelims)-2005]
	(1) IF ₃	(2)	PCl ₃	(3)	NH ₃	(4)	BF ₃
Sol.	Answer (4)						
57.	Which of the following wou	ıld hav	e a permanent dipole n	nome	nt?		[AIPMT (Prelims)-2005]
	(1) BF ₃	(2)	SiF ₄	(3)	SF ₄	(4)	XeF ₄
Sol.	Answer (3)						
58.	The correct order in which	n the C	O – O bond length incr	eases	s in the following is		[AIPMT (Prelims)-2005]
	(1) $H_2O_2 < O_2 < O_3$			(2)	$O_3 < H_2O_2 < O_2$		
	(3) $O_2 < O_3 < H_2O_2$			(4)	$O_2 < H_2O_2 < O_3$		
Sol.	Answer (3)						
59.	The correct sequence of ir	ncreas	ing covalent character i	s rep			[AIPMT (Prelims)-2005]
	(1) $LiCl < NaCl < BeCl_2$			(2)	2	/	5
	(3) NaCl < LiCl < $BeCl_2$			(4)	BeCl ₂ < LiCl < NaCl	3) ·
Sol.	Answer (3)						100
60.	Which one of the following					in	[AIPMT (Prelims)-2005]
	(1) CO ₂	(2)	SO ₂	(3)	CIO ₂	(4)	SiO ₂
Sol.	Answer (3)				58		
61.	Which of the following spo	ecies d	contains three bond pa	irs ar	nd two lone pairs aro	und	the central atom?
	(1) NH ₂	(2)	CIF ₃	(3)	H ₂ O	(4)	BF ₃
Sol.	Answer (2)				Last -		
	CIF ₃			2 P			
	CI-#-F [3 bo	nd nai	rs and 2 lone pairs]	3			
	F F F						
62.	Bond order of 2.5 is show	n by					
	(1) O ₂ ²⁻	(2)	0 ₂	(3)	O ₂ +	(4)	0 ₂ -
Sol.	Answer (3)						
	$O_2^{+} = 15 = \sigma 1s^2, \sigma^* 1s^2, \sigma^* 1s^2$	σ2s², α	$\sigma^* 2s^2, \ \sigma 2p_z^2, \ \pi 2p_x^2 = \pi$	2p _y ² ,	$\pi^* 2p_x^{1} = \pi^* 2p_y^{0}$		
			$B.O = \frac{10 - 10}{2}$	<u>5</u> = 2	2.5		
63.	The outer orbitals of C in orbitals. The total number				-	l to g	give three equivalent sp ²
	(1) 1 sigma (σ) and 2 pi ((π) bor	nds	(2)	3 sigma (σ) and 2 p	i (π)	bonds
	(3) 4 sigma (σ) and 1 pi ((π) bor	nds	(4)	5 sigma (σ) and 1 p	i (π)	bonds

Sol. Answer (4)

Ethene =
$$\begin{array}{c} H & \sigma \\ H & \sigma \\ H & \sigma \\ sp^2 \end{array} \xrightarrow{\sigma} H \\ sp^2 \end{array} \begin{array}{c} \sigma \\ \sigma \\ H \\ sp^2 \end{array} \begin{array}{c} \sigma \\ \sigma \\ H \\ sp^2 \end{array} \begin{array}{c} \sigma \\ \sigma \\ H \\ sp^2 \end{array} \begin{array}{c} \sigma \\ \sigma \\ H \\ sp^2 \end{array} \begin{array}{c} Total no. of \sigma bond = 5 \\ \pi bond = 1 \end{array}$$

64. Which of the following is paramagnetic?

- (1) C_2^{2-} (2) Na₂O₂ (3) NO₂ (4) CO
- Sol. Answer (3)

C22-, O22-, CO have even number of electron will be diamagnetic, NO2 have unpaired electron will be paramagnetic.

Geometry = octahedral

(3) NF₃, H₂O

H₂O

- 65. The geometry of electron pairs around I in IF₅ is
 - (1) Octahedral (2) Trigonal bipyramidal (3) Square pyramidal (4) Pentagonal planar

Sol. Answer (1)

IF₅ H =
$$\frac{1}{2}[7+5-0+0] = \frac{12}{2} = 6 sp^3 d^2$$

66. In which of the following pair both the species have sp³ hybridization? H₂O (4) NF₃, BF₃ H = $\frac{1}{2}[6+2-0+0] = \frac{8}{2} = sp^3$

(2) SiF₄, BeH₂ (1) H_2S , BF_3

Sol. Answer (3)

NH₃ H =
$$\frac{1}{2}[5+3-0+0] = \frac{8}{2} = sp^3$$

~ . .

[NH₃ and H₂O have same hybridisation but have different shape.]

67. In the hydrocarbon

$$CH_3 - C_5 \equiv C_4 - CH - C_2 \equiv CH$$

The state of hybridization of carbons 1, 3 and 5 are in the following sequence

(1)
$$sp^3$$
, sp^2 , sp (2) sp^2 , sp , sp^3 (3) sp , sp^3 , sp (4) sp , sp^2 , sp^3

Sol. Answer (3)

$$\begin{array}{c} & & CH_{3} \\ 6 \\ H_{3}C & - \begin{array}{c} 5 \\ - \begin{array}{c} 5 \\ c \end{array} = \begin{array}{c} 4 \\ - \begin{array}{c} 1 \\ CH \\ - \begin{array}{c} 2 \\ CH \end{array} - \begin{array}{c} 2 \\ CH \\ - \begin{array}{c} 2 \\ CH \end{array} \end{array} \right) + \begin{array}{c} 1 \\ Hybridisation = sp^{(3-no. of \pi bonds)} \end{array}$$

68. Which of the following molecule does not possess a permanent dipole moment?

(1)
$$CS_2$$
 (2) SO_3^{2-} (3) H_2S (4) SO_2

Sol. Answer (1)

_8 _8 S=C=S $\mu = 0$ for CS₂ linear geometry sp hybridisation

82 Chemical Bonding and Molecular Structure

69. In which of the following of (1) $CH_2 = CHCH = CH_2$ (3) $CH_3CH_2CH_2CH_3$ Sol. Answer (4)	compound there is more that	(2)	whind of hybridization H–C ≡ C–H CH ₃ –CH = CH–CH		sp ² , sp ³) for carbon?
$H_{3}C - CH = CH - GCH_{3}$ $sp^{3} sp^{2} sp^{2} sp^{3}$	contain both $sp \propto sp^3$				
70. Which of the following bor	nds has the highest energy?				
(1) C–C	(2) C≡C	(3)	C=C	(4)	C-H
Sol. Answer (2)					
$C \equiv C$ have two π bond as	nd one σ bond, therefore will	l be r	nore stronger.		
71. The structure and hybridiz	zation of Si(CH ₃) ₄ is				
(1) Octahedral, <i>sp</i> ³ <i>d</i>	(2) Tetrahedral, <i>sp</i> ³	(3)	Bent, <i>sp</i>	(4)	Trigonal, <i>sp</i> ²
Sol. Answer (2)					
$\begin{bmatrix} Si(CH_3)_4 \end{bmatrix} \qquad H = \frac{1}{2} \begin{bmatrix} I \\ I \end{bmatrix}$ $H_3C \qquad H_3C \qquad H$	$[4+4-0+0] = \frac{8}{2} = 4 \text{ sp}^3$ rahedral and sp^3			att	5ms
72. The number of bonding e	lectron pairs in N ₂ on the ba	isis o	f molecular orbital th	eory i	S
(1) 3	(2) 2	(3)	5	(4)	4
Sol. Answer (3)			K alion		
$N_2 = 14 = \sigma 1 s^2, \sigma^* 1 s^2, \sigma$	$2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, σ^*	*2p_2	- HOULD		
В	B B B	В	*ash		
[No. of bonding pair = 5]		SOP			
73. Which compound is elect		12			
(1) NCl ₃	(2) BCl ₃	(3)	CCl ₄	(4)	PCI ₅
Sol. Answer (2)					
BCI ₃ is electron deficient	molecule	ar sp	2		
74. Which compound form poly	ymer due to H-bond?				
(1) H ₂ S	(2) NF ₃	(3)	HF	(4)	HCI
Sol. Answer (3)					
$ \begin{array}{c} +\delta \\ +\delta \\ H \\ F \\ H \\ H \\ H \end{array} \begin{array}{c} +\delta \\ H \\ F \\ H \\ H \end{array} \begin{array}{c} +\delta \\ H \\ H \\ H \\ H \end{array} $	^{δ –δ} [Polymeric due to \+δ/ H	H-bc	nd]		

XeO₄

75. Cation and anion combines in a crystal to form following type of compound

(2)

(4)

Metallic

BCl₃

(3)

Dipole-dipole

- (1) Ionic
- (3) Covalent
- Sol. Answer (1)

Cation and anion form ionic bond in crystal.

- 76. Which compound has tetrahedral structure?
 - (2) XeOF₂ (1) XeF₄ (3) XeO_2F_2
- Sol. Answer (4)

XeO₄ H = $\frac{1}{2}[8+0-0+0]$ $\frac{8}{2}$ = 4 sp³ tetrahedral structure

77. In which of the following bond angle is maximum?

Sol. Answer (4)

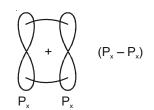
$$[PCI_6]^- \quad H = \frac{1}{2}[5+6-0+1] = \frac{12}{2} = 6 \ sp^3d^2 = 180^\circ$$

As the bond angle is asked which is maximum in PCl₆⁻ i.e. 180° between linear pair. Educational Services

78. In X – H ... Y, X and Y both are electronegative elements. Then

- (1) Electron density on X will increase and on H will decrease
- (2) In both electron density will increase
- (3) In both electron density will decrease
- (4) On X electron density will decrease and on H increases
- Sol. Answer (1)

 $\overset{-\delta}{X}$ – H ------Y Electron density on X will increase and on H will decrease.

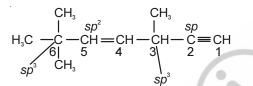

79. Main axis of a diatomic molecule is z, molecular orbital p_x and p_x overlap to form which of the following orbitals?

- (1) π molecular orbital
- (3) δ molecular orbital


(2) σ molecular orbital (4) No bond will form

Sol. Answer (1)

 $P_x - P_x$ π molecular orbital


80. The state of hybridization of C_2 , C_3 , C_5 and C_6 of the hydrocarbon,

is in the following sequence

- (1) sp, sp^2 , sp^3 and sp^2
- (2) sp, sp³, sp² and sp³
- (3) sp^3 , sp^2 , sp^2 and sp
- (4) sp, sp², sp² and sp³

Sol. Answer (2)

- 81. For two ionics solids CaO and KI, identify the wrong statement among the following.
 - (1) CaO has high melting point
 - (2) Lattice energy of CaO is much larger than that of KI
 - (3) KI has high melting point
 - (4) KI is soluble in benzene
- **Sol.** Answer (4)
- 82. Which of the following organic compounds has same hybridization as its combustion product –(CO2)?
 - (1) Ethane
 - (3) Ethene
- Sol. Answer (2)

$$H-C\equiv C-H$$
 $O=C=O$
sp sp sp sp

SECTION - C

(4)

(2) Ethyne

Ethanol

Assertion - Reason Type Questions

- 1. A : N_2 , CO and CN⁻ are having same bond order.
 - R : Isoelectronic species always have same bond order.

Sol. Answer (3)

- 2. A : Bond angle of BF₃ and NF₃ are different.
 - R : Both the molecules are having different shape.

Sol. Answer (2)

- 3. A : CO_2 is resonance stabilized molecule.
 - R : Bond length of C–O in CO₂ is intermediate of single and double bond length.

Sol. Answer (3)

- A : BeCl₂ in vapour phase is electron deficient molecule. 4.
 - R : Any molecule in which central atom is having incomplete octet is known as electron deficient molecule.

Sol. Answer (1)

- 5. A : H–F forms stronger hydrogen bond than H_2O .
 - R : F is more electronegative than oxygen.

Sol. Answer (1)

A : Each molecule of H_2O forms four H-bond in the form of ice. 6.

```
R : Ice is solid state of H_2O.
```

Sol. Answer (2)

A : Both methane and tetrachloromethane are nonpolar. 7.

R : C-Cl bond is polar bond.

Sol. Answer (2)

- A : N_2 is more stable than N_2^+ . 8.
 - R : Bond order of N_2 is 3 while N_2^+ is 2.5.
- Sol. Answer (1)
- A : Lattice energy of CaO is higher than LiCI. 9.
- Foundations R: Lattice energy of ionic compound is directly proportional to the product of charges of ion.

Sol. Answer (1)

- 10. A : All P–Cl bond lengths are equal in PCl_3 but different in PCl_5
 - R : Hybrid state of central atom is different in both molecules.

Sol. Answer (2)

11. A : Equal number of sigma and π bonds are present in ethyne.

R : π bond is stronger than σ bond.

Sol. Answer (4)

12. A : Bond order of H_2^+ is 0.5.

R : Electrons are removed from the antibonding molecular orbital from H₂.

Sol. Answer (3)

- 13. A : LiCl is more covalent than BeCl₂.
 - R : Li⁺ ion is smaller than Be²⁺.
- **Sol.** Answer (4)

- 14. A : O₂ is paramagnetic.
 - R : N₂ is paramagnetic.
- Sol. Answer (3)
- 15. A : PCI₅ exist but NCI₅ does not.
 - R : Nitrogen is highly inert.
- Sol. Answer (2)

