5.ARITHMETIC PROGRESSIONS

- 1. If a, (a 2) and 3a are in AP, then the Value of a is:
 - (a) -3
 - (b) -2
 - (c) 3
 - (d) 2
- 2. What is the common difference of AP in which $a_{21} a_7 = 84$?
- **3.** Calculate the common difference of AP: $\frac{1}{2b}$, $\frac{1-6b}{2b}$, $\frac{1-12b}{2b}$,
- 4. Which is the first negative term of the AP: 35, 30, 25, 20...?
 - (a) 7th Term
 - (b) 5th Term
 - (c) 9th Term
 - (d) 11th Term
- 5. Find the next term of the arithmetic progression: $\sqrt{12}$, $\sqrt{27}$, $\sqrt{48}$,.....
 - (a) √75
 - (b) $\sqrt{60}$
 - (c) $\sqrt{80}$
 - (d) $\sqrt{90}$
- 6. For what value of 'k' will k + 9, 2k 1 & 2k + 7 are the consecutive terms of an AP?
- 7. How many terms of the AP 27, 24, 21, should be taken so that their sum is zero?
- 8. Find the sum of first 8 multiples of 3.
- **9.** In an AP, if $S_5 + S_7 = 167 \& S_{10} = 235$, then find the AP, where S_n denotes the sum of its first 'n' terms.
- **10.** The first & the last terms of an AP are 7 & 49 respectively. If sum of all its terms is 420, find its common difference.
- 11. Find the number of natural numbers between 101 & 999 which are divisible by both 2 & 5.
- **12.** Find the sum of n terms of the series $\left(4 \frac{1}{n}\right) + \left(4 \frac{2}{n}\right) + \left(4 \frac{3}{n}\right) + \dots \dots$
- **13.** If the sum of the first n terms of an AP is $\frac{1}{2}(3n^2 + 7n)$, then find its nth term. Hence write its 20th term.
- 14. If Sn denotes the sum of first n terms of an AP. Prove that S12 = 3(S8 S4).
- **15.** If the sum of first p terms of an A.P. is the same as the first q terms (where $p \neq q$), then show that the sum of first (p + q) terms is zero.
- **16.** The ratio of the sums of first m & first n terms of an AP is $m^2 : n^2$. Show that the ratio of its mth & nth terms is (2m 1) : (2n 1).
- 17. The sum of three numbers in an AP is 12 & sum of their cubes is 288. Find the numbers.
- **18.** The sum of four consecutive numbers in an AP. Is 32 & the ratio of the product of the first & the last term to the product of two middle terms is 7:15. Find the numbers.

HINTS

- 1. Since a, a-2 and 3a are in AP
 - $\therefore a-2-a=3a-(a-2)$ $\Rightarrow 2(a-2)=a+3a$ $\Rightarrow 2a-4=4a$ $\Rightarrow 2a=-4$ $\Rightarrow a=-2$

2.	 Let the common difference of an A.P. be d. Then,
	a18=a1+17×d
	a14=a1+13×d
	Solving the two equations,
	a18-a14=a1+17d-a1-13d
	⇒a18-a14=4d
	Substituting 4d=32,
	⇒d=8
3.	D=a ₂ -a ₁
	ie,d=1-6b/2b - 1/2b
	1-6b-1/2b
	-6b/2b
	-3 is the answer
4.	Here, a = 18, d = $-\frac{5}{2}$
	$a_n = a + (n - 1) d$
	$=> -47 = 18 + (n - 1) - \frac{5}{2}$
	=>5n/2 = 18 + 47 + 5/2 = 67.5
	Hence, it is 27th term
5.	write √12 as 2√3, √27 as 3√3, √48 as 4√3.
	So this forms a AP with common difference =√3
	next term will be 5v3=75
6.	Let,
	k + 9 = a 2k - 1 = b
	2k - 1 = 0 2k + 7 = c
	To be in AP,
	a + c = 2b
	(k + 9) + (2k + 7) = 2(2k - 1)
	k + 9 + 2k + 7 = 4k - 2
	3k + 16 = 4k - 2
	3k - 4k = -2 - 16
	- k = - 18
	k = 18 For k = 18, the terms k+9 , 2k - 1 , 2k + 7 are in AP
7.	Let first term be a=27
545 1	And common difference be $d=-3$
	According to question, sum is zero,
	\Rightarrow n/2[2a+(n-1)d]=0
	$\Rightarrow [54+(n-1)(-3)]=0$
	⇒n=19
	Hence, 19 terms of AP should be taken to make sum zero.

8. First 8 multiples of 3-3,6,9,.....upto 8 terms The above series is in A.P. where, First term (a)=3 Common difference (d)=3 No. of terms (n)=8 Sum of terms (Sn)=? As we know that, in an A.P., Sn=n/2[2a+(n-1)d] $:.58=8/2[2\times3+(8-1)\times3]$ ⇒S8=4×(6+21) ⇒S8=4×27=108 9. Let the first term is a and the common difference is d By using Sn=n/2[2a+(n-1)d] we have, S5=5/2[2a+(5-1)d] =5/2[2a+4d]S7=7/2[2a+(7-1)d]=7/2[2a+6d] Given: S7+S5=167 ∴5/2[2a+4d]+7/2[2a+6d]=167 ⇒10a+20d+14a+42d=334 ⇒24a+62d=334 ...(1) S10=10/2[2a+(10-1)d]=5(2a+9d) Given: S10=235 So 5(2a+9d)=235 ⇒2a+9d=47 ...(2) Multiply equation (2) by 12, we get 24a+108d=564....(3) Subtracting equation (3) from (1), we get -46d=-230 ∴d=5 Substing the value of d=5 in equation (1) we get 2a+9(5)=47 or 2a=2 ∴a=1 Then A.P is 1,6,11,16,21,… 10. a=7 l=49 Sn=420 Sn=n/2[a+l]So 420×2=n[7+49] n=15 l=a+(n-1)d⇒ 49=7+14 d \Rightarrow 7=1+2 d \Rightarrow 2d=6 \Rightarrow d=3

11. The list of numbers between 101 and 999 that are divisible by 2 and 5 are: 110,120,130,...990

.. _. _. _. _. _.

	The numbers are in A.P, with first term, a=110, common difference, d=10 Last term, an=990 We know that, an=a+(n-1)d 990=110+(n-1)10 \Rightarrow 990-110=10n-10 \Rightarrow 880+10=10n \Rightarrow 890=10n \Rightarrow n=89 Therefore, the number of terms between 101 and 999 that are divisible by 2 and 5 are 89.
12.	(4 + 4 + 4 + 4 + 4 + upto n terms) + (-1/n - 2/n - 3/nupto n terms) = 4 (1+1+1+1 upto n terms) - 1/n (1 + 2 + 3 +4upto n terms)
13.	Sn=1/2($3n^2+7n$) S1=1/2($3+7$)=5 S2=1/2(3^44+7^2)=26/2=13 We know S1=a1=5 S2=a1+a2=13 S2-s1=a1+a2-a1 13-5=a2 a2=8 We know d=a2-a1 d=8-5=3 nth term of AP =an=5+(n-1)3 an= 2+3n Therefore 20th term = a20= 2+3(20)=62 Hence 20th term of AP is 62
14.	let a is the first term of Ap and d is the common difference Sn=n/2 {2a+(n-1) d now S12=12/2 {2a+(12-1) d}=12a+66d S8=8/2 {2a+7d}=8a+28d S4=4/2 {2a+3d}=4a+6d LHS=S12=12a+66d RHS=3 (S8-S4)=3 (8a+28d-4a-6d)=12a+66d LHS =RHS
15.	$Sp=Sq \Rightarrow p/2(2a+(p-1)d)=q/2(2a+(q-1)d) \Rightarrow p(2a+(p-1)d)=q(2a+(q-1)d) \Rightarrow 2ap+p^2d-pd=2aq+q^2d-qd \Rightarrow 2a(p-q)+(p+q)(p-q)d-d(p-q)=0 \Rightarrow (p-q)[2a+(p+q)d-d]=0 \Rightarrow 2a+(p+q)d-d=0 \Rightarrow 2a+((p+q)-1)d=0$

 \Rightarrow Sp+q=0

- 16. (HINT)Let Sm and Sn be the sum of the first m and first n terms of the AP respectively. Let, a be the first term and d be a common difference Sn/Sm=n²/m²
- 17. Hera 3a=12 a=4Also $(a-d)^3+a^3+(a+d)^3=288$, or $^{3a^3}+6ad^2=288$ $24d^2=288-3\times64=96$ $d^2=4$ $d=\pm 2$ Hence the numbers are 2,4,6 or 6,4,2
- 18. Let the four consecutive numbers in AP be (a-3d),(a-d),(a+d) and (a+3d)

```
So, according to the question.
a-3d+a-d+a+d+a+3d=32
4a=32
a=32/4
a=8.....(1)
Now, (a-3d)(a+3d)/(a-d)(a+d)=7/15
15(a^2-9d^2)=7(a^2-d^2)
15a<sup>2</sup>-135d<sup>2</sup>=7a<sup>2</sup>-7d<sup>2</sup>
15a<sup>2</sup>-7a<sup>2</sup>=135d<sup>2</sup>-7d<sup>2</sup>
8a<sup>2</sup>=128d<sup>2</sup>
Putting the value of a=8 in above we get.
8(8)^2 = 128d^2
128d<sup>2</sup>=512
d<sup>2</sup>=512/128
d^2=4
d=2
So, the four consecutive numbers are
8-(3×2)
8-6=2
8-2=6
8+2=10
8+(3×2)
8+6=14
Four consecutive numbers are 2,6,10and14.
```