3. ELECTROCHEMISTRY

Q.No	Question	Marks
	Multiple Choice Question	
Q.49	If the standard emf of Galvanic cell–I: Cu $_{(s)}/Cu^{2+}_{(aq)}II Ag^{+}_{(aq)}/Ag_{(s)}$ is 0.46V, and the standard emf of Galvanic cell–II: 3 Cu $_{(s)}$ + 6 Ag $^{+}_{(aq)} \rightarrow$ 3Cu $^{2+}_{(aq)}$ + 6 Ag (s) is 0.46q V.	1
	What is the value of q?	
	A. 3	
	B. 2	
	C. 1	
	D. Infinite	
Q.50	The electrochemical cell made up of Zn and Cu half-cell is called Daniell cell. The emf of a Daniell cell is 1.10V.	1
	CuSO ₄ Solution Copper vessel (Cathode) CuSO ₄ Solution Copper vessel CuSO ₄ CuSO ₅ CuSO ₅	
	When an external voltage greater than 1.10 V is applied to this cell, which of the following change will be observed in the cell?	
	A. Zn electrode will act as an anode.	
	B. Current will flow from Cu half cell to Zn half cell.	
	C. Electrochemical cell continue to work fast.	
	D. Cell will act as electrolytic cell.	
Q.51	An electrolytic cell has an anode and cathode made up of graphite. At the anode, Cl_2 gas is released and at the cathode, H_2 gas is released.	1
	Which of the following electrolytes in the cell can produce these gases?	
	A. NH ₄ Cl _(aq)	

	B. Molten NH ₄ Cl	
	C. NaCl (aq)	
	D. Molten NaCl	
Q.52	There are two beakers 'A' and 'B' containing KCl and CH ₃ COOH solutions respectively. On adding water to beakers A and B, which of the following change in Λ_m of the solutions will be correct?	1
	A. It increases sharply in beaker A and slowly in beaker B	
	B. It increases slowly in beaker A and sharply in beaker B	
	C. It decreases in beaker A but no change in beaker B.	
	D. There is no change in beaker A but it decreases slowly in beaker B.	
Q.53	Copper metal is purified by electrolytic refining. If the electrolyte used for refining of copper in an electrolytic cell is aq.salt solution of copper, which out of the following statement about this cell is INCORRECT?	1
	A. The impure Copper rod undergoes oxidation.	
	B. Oxidation takes place at the anode.	
	C. Impure copper rod acts as the negative electrode.	
	D. Pure copper rod acts as a cathode.	
Q.54	Given that the standard reduction potential for $Fe^{3+}/Fe^{2+}= 0.77$ V and $I_2/I^{-}= 0.54$ V.	1
	Which of the following is correct when the cell is made by using Fe^{3+} and I^- salt solutions?	
	A. The standard emf of the cell is –0.23 V	
	B. The standard emf of the cell is +0.23 V	
	C. The standard emf of the cell is 1.31 V	
	D. The standard emf of the cell is -1.31 V	
Q.55	Under which of the following conditions will the chemical reaction in an electrochemical cell will be spontaneous? A. $E_{cell}^0 = +ve$, $\Delta G = +ve$	1
	B. $E_{cell}^0 = -ve, \Delta G = -ve$	
	C. $E_{cell}^0 = +ve, \Delta G = -ve$	
	D. $E_{cell}^0 = -ve, \Delta G = +ve$	

	Why does the pointer of the voltmeter deflect as shown when a few drops of water are added to the component?	
Q.63	In a galvanic cell when the potential difference becomes zero, the cell is said to be in an equilibrium state.	3
	Establish the relation between E ⁰ and equilibrium constant at 298 k in a Daniell cell. The E ⁰ value of the Daniell cell is 1.10V.	
	(R= 8.314 j/k/mol, F = 96500 C)	
Q.64	i) Write down the complete cell reactions taking place at anode and cathode in a zinc/carbon dry cell.	2
	ii) Is the above given cell a primary cell or a secondary cell? Explain.	
Q.65	How much time does it require to reduce 3 moles of iron (III) to 3 moles of iron (II) ion by passing a 2.0 amp current?	2
	(Note: For calculations use 1 Faraday = 96500 Coulombs.)	
Q.66	A rusted piece of iron undergoes electrochemical reactions. Write the chemical reactions taking place at the following spots of that rusting piece of iron:	2
	a) At the spot that behaves as an anode	
	b) At the spot that behaves as a cathode	
	c) The overall balanced chemical reaction	
	d) Further oxidation of ferrous ion into rust	
Q.67	The Gibbs energy change for the reduction of Al ₂ O ₃ at 500°c is given as:	3
	2/3 Al ₂ O ₃ > 4/3 Al ³ + O ₂ ; ΔG = +960KJ	
	Calculate the minimum potential difference required to reduce 2/3 mole of AI_2O_3 at 500°C.	
	(1F = 96500C)	
Q.68	In an experiment, the electrolysis of copper sulfate solution takes place under the following conditions-	3
	- Electrolysis time (t) = 10 min.	
	- Current passed (I) = 1.5 amp.	
	What mass of copper will be deposited at the cathode in this experiment?	
	(Note: atomic mass Cu= 63.5g; For calculation use 1 Faraday = 96500 Coulombs.))	

Q.69	The electrolytic conductivity of $BaCl_2$ solution is 0.580 Sm ⁻¹ . Find out molar concentration of the solution if molar conductivity of this solution is	2
	2.416x10 ⁻² Sm ² /mol.	
Q.70	The molar conductivity of a dilute solution of methanoic acid is 46.1 S cm ² /mol. Calculate its degree of dissociation.	2
	(Given $\lambda^{0}(H^{+}) = 349.6 \text{ S cm}^{2}/\text{mol}$ and $\lambda^{0}(HCOO^{-}) = 54.6 \text{ S cm}^{2}/\text{mol}$)	
Q.71	Two electrolytic cells A and B containing electrolytic solutions of $CuSO_4$ and $AgNO_3$ respectively are connected in a series. A steady current of 1.5 amperes is passed through them. Based on this information, answer the following questions.	3
	a) Find out the time 't 'in minutes required to deposit 1.34 g of the silver in cell 'B'.	
	b) What mass of copper will be deposited at the cathode of cell A under the same experimental condition.	
	(Given - Atomic mass Cu=63.5 g, Ag= 108 g and 1F= 96500 C)	
Q.72	Given is an electrochemical cell;	2
	$Mg/Mg^{2+}_{(aq)} Cu^{2+}_{(aq)}/Cu_{(s)}$	
	Calculate the equilibrium constant of the cell at 25°C when the emf of the cell is zero.	
	(E ⁰ Mg ²⁺ /Mg= -2.37V, Cu ²⁺ /Cu= 0.34V, 2.303RT/F= 0.0591)	
	Use log and antilog table if needed.	
Q.73	For an experiment, Aman prepared a 1-litre FeSO ₄ solution of 1 M concentration and stored the solution in a glass jar. Before starting the experiment, Aman wants to stir the solution. Which of the following spoons should he use for this purpose and why? Aluminium spoon (Al ³⁺ /Al = -1.66V)	2
	Copper spoon (Cu ²⁺ /Cu = 0.34V)	
	(Given: E ⁰ /V Fe ²⁺ /Fe = -0.44V)	
Q.74	The potential of Zn, Cu and Ag half cells are given below; $Zn_{(s)} \xrightarrow{+} Zn^2_{(aq)} + 2e^-$; $E^0 = +0.76V$	2
	$Cu_{(s)}> Cu^{2+}_{(aq)}+2e^{-}; E^{0}=-0.34V$	
	$Ag_{(s)} - Ag_{(aq)}^{+} + 1e^{-}$; $E^{0} = -0.80V.$	
	Using the data above given,	
	i) Write the correct cell representation of a cell with a cell potential equal to 0.46V.	

	ii) Calculate the value of standard free energy change (ΔG^0) for the cell above given. (F = 96500 C/mol)	
Q.75	Predict the feasibility of the following reaction. Justify your answer. Ag(s) + Fe ³⁺ _(aq) > Ag ⁺ _(aq) + Fe _(s) (Given: $Ag^{+}_{(aq)}/Ag_{(s)} = 0.80V$, $Fe^{3+}/Fe_{(s)} = 0.77V$)	2
Q.76	In a Standard Hydrogen Electrode (SHE), the platinum wire is normally dipped in 1 M con. HCl solution. Find out the potential of SHE if the platinum wire is dipped in a solution containing 1 x 10 ⁻¹⁰ M H ⁺ concentration.	2
Q.77	Calculate the charge required in coulombs to reduce 0.5 moles of $Cr_2O_7^{2-}$ ion to Cr^{3+} in acid solution. (1 Faraday = 96500C)	2
Q.78	One Faraday of electric charge is passed through the electrolytic cells placed in a series containing solution of Ag ⁺ , Cu ²⁺ and Al ³⁺ respectively.Find out the simple mass ratio of the metals deposited at the respective electrodes. (Given - Atomic mass Ag=108g, Cu=63.5g. Al=27g)	2
Q.79	Imagine you are in a chemistry lab and the teacher is explaining the electrolysis of CuSO ₄ solution and the products liberated after electrolysis. The teacher made two Setups for the electrolysis process. In Set up-i electrolysis of CuSO ₄ solution is done by using Pt electrodes and in Set up-II electrolysis of CuSO ₄ solution is done by using Cu electrodes. Answer the following questions based on this:	3
	i) In which Set up I or II will the colour of CuSO ₄ solution fades away and why?	
	iii) Name the product obtained at the anode in Set up I.	
	iv) Which out of Set up I or II depict refining of crude copper?	

Answer Key & Marking Scheme

Q.No	Answers	Marks
Q.49	C. 1	1
Q.50	D. Cell will act as electrolytic cell.	1
Q.51	C. NaCl (aq)	1
Q.52	B. It increases slowly in beaker A and sharply in beaker B	1
Q.53	C. Impure copper rod acts as the negative electrode.	1
Q.54	B. The standard emf of the cell is +0.23 V	1
Q.55	C. $E_{cell}^0 = +ve, \Delta G = -ve$	1
Q.56	D. 1.25 F	1
Q.57	B. i and ii only	1
Q.58	(i) Electrode potential of the electrode on the left-hand side is given by: => $E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$ => $0.16 = 0.34 - E^{o}_{anode}$ => $E^{o}_{anode} = +0.18 V$ (ii) It allows mobile ions to move through it between the solutions and maintain the charge balance.	2
Q.59	 (i) From the above graph, 1 corresponds to HCl 2 corresponds to NaCl 3 corresponds to NH4OH (ii) Explanation: When the above compounds dissociate, H+ has the highest mobility in comparison with Na, because the Molar mass of H+ is less than Na+ ion. HCl and NaCl are strong electrolytes compared to NH4OH which is a weak base. [1 mark] 	3

	- Strong electrolytes are already completely dissociated and there is a small increase	
	(change) in dissociation on dilution. For weak electrolytes, the degree of dissociation	
	increases to a greater extent/abruptly and follows the non-linear curve.	
	- so at a given concentration, molar conductivities of HCl>NaCl>NH4OH [1 mark]	
Q.60	$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$; $E^{0} = 1.60V$ (i)	4
	$O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$; $E^0 = 1.228V$ (ii)	
	Since the reduction potential of the Ce half cell is more than that of water, Ce will undergo reduction. [1 mark]	
	Explanation using reaction and emf of cell:	
	Multiplying eq(i) by 4:	
	$4Ce^{4+} + 4e^{-} \rightarrow 4Ce^{3+}$; $E^0 = 1.60V$	
	Reversing eq(ii):	
	$2H_2O \rightarrow O_2 + 4e^- + 4H^+$; $E^0 = -1.228V$	
	Adding the two eqs give:	
	$2H_2O + 4Ce^{4+} \rightarrow O_2 + 4H^+ + 4Ce^{3+}$;	
	E ⁰ = 0.372V; [1 mark]	
	Since E^0 is positive, the reaction is spontaneous. Ce^{4+} will undergo reduction. [1 mark]	
Q.61	A combination of electrodes A and D will give the largest cell potential.	3
	Justification:	
	- Since, E _{cell} = E _{red} - E _{ox}	
	- For the largest cell potential, we need an electrode with very high (+ve) reduction potential at the cathode and another electrode with very low (-ve) reduction potential at the anode. [1 mark]	
	$-\Sigma$ Electrode $\Lambda/\Lambda^2 = 0.96V$ shows highest reduction notantial: Electrode $D^{2+}/D = -$	
	1.12V shows least reduction potential	
	 1.12V shows least reduction potential => emf of the cell = 0.96 - (-1.12) V = 2.08 V [1 mark] 	
Q.62	 -> Electrode A/A = 0.90V shows highest reduction potential, Electrode D /D = 1 1.12V shows least reduction potential => emf of the cell = 0.96 - (-1.12) V = 2.08 V [1 mark] - When a few drops of water are added, it acts as an electrolyte solution to form an electrochemical cell. [0.5 marks] 	2
Q.62	 -> Electione A/A = 0.96V shows highest reduction potential, Electione D /D = 1 1.12V shows least reduction potential => emf of the cell = 0.96 - (-1.12) V = 2.08 V [1 mark] - When a few drops of water are added, it acts as an electrolyte solution to form an electrochemical cell. [0.5 marks] - CuSO₄ ionizes to form Cu²⁺ and SO₄²⁻ions. [0.5 marks] 	2

	- The presence of free electrons in the cell gives rise to emf and hence the pointer deflects. [0.5 marks]			
Q.63	Nernst equation (Daniell cell) :			
	$E_{1}^{cell} = -2.303 \text{ RT/nF} \log [Zn(aq.)^{2+}]/[Cu_{(aq.)}^{2-}]; \text{ where } R=8.314 \text{ j/k/mol} F=96500 \text{ Cmol}^{-1}$			
	Т= 298 К			
	- On substituting value			
	$E_{cell} = E_{cell}^{0} - 0.059/n \log [Zn^{2+}]/[Cu^{2+}]$ [1 M]			
	- At equilibrium $E_{cell}=0$,and $[Zn^{2+}/Cu^{2+}]=\log k_c$			
	Then, $E_{cell}^{0}=(0.059/n) \times \log k_{c}$ [1]			
	- For Daniell cell			
	=> E _{cell} ⁰ = 1.10V, n=2			
	So, 1.10 = (0.059/2) x logK _c			
	$=> \log k_c = 2.20/0.059$ [1]			
	or			
	=>log k _c =37.28			
Q.64	i)In a Zinc/Carbon dry cell complete cell reaction is:			
	$Zn_{(s)} + 2MnO_{2(s)} + 2NH_4^{+}(aq)>Zn^{2+}(aq) + Mn_2O_{3(s)} + 2NH_{3(aq)} + H_2O_{(l)}$			
	or			
	$Zn_{(s)} + MnO_{2(s)} + NH_4^+> Zn^{2+(aq)} + MnO(OH)_{(s)} + NH^3 (aq)$			
	(give 1 mark for any)			
	ii) The Zinc/Carbon dry cell is a primary cell.			
	- A primary cell is one in which redox reaction cannot be reversed. The Zinc/Carbon cell becomes dead after a long time of use i.e.it stops working. This shows it is a primary cell.			
	(give 0 marks if explanation not given)			
Q.65	As Q = I x t(i)	2		
	where Q= charge (coulomb)			
	I = current(amp)			
	t = time(sec)			
	Required equation:			

	$3Fe^{3+} + 3e^{} > 3Fe^{2+}$	
	charge required is = 3 F	
	Substituting the value in eq.(i)	
	=> 3 x 96500 C = 2 amp. x t	
	t = 144750 s	
	Or t = 2412.5 minutes	
	Or t = 40.21 hrs	
Q.66	Chemical reactions are as follows:	2
	a) At anode: $Fe_{(s)}> Fe^{2+}_{(aq)} +2e^{-}$	
	b) At cathode: $O_2(g) + 4H^+(aq) + 4e^ > 2H_2O(I)$	
	c) Over all reaction:	
	$2Fe_{(s)} + O_{2(g)} + 4H^{+}_{(aq)} - > 2Fe^{2+} (aq) + 2H_{2}O_{(I)}$	
	d) Further oxidation :	
	$2Fe^{2+}_{(aq)} + 2H_2O_{(I)} + 1/2O_{2(g)} - Fe_2O_{3(s)} + 4H^+_{(aq)}$	
Q.67	Given is : ΔG = +960 x 10 ³ J ; F = 96500 C	3
	Required formula:	
	ΔG = - n E F	
	Calculating n for $2/3$ moles of Al_2O_3	
	$AI_2O_3 > 2AI^{3+} + 3/2 O_2$	
	(2 Al ³⁺ + 6e > 2Al)	
	2/3 Al ₂ O ₃ > 4/3 Al +O ₂	
	\therefore 1 mole Al ₂ O ₃ is reduced by 6 mol e ⁻	
	\therefore 2/3mole Al ₂ O ₃ is reduced by e ⁻ = 6x2/3= 4e ⁻	
	Substituting the value in formula	
	960 x 10 ³ J = - 4 x E x 96500 C	
	E= (- 960x10 ³ J/ 4 x 96500 C)	
	E = - 2.487 V	
	Hence minimum potential difference required= 2.487V OR \approx 2.5 V	
Q.68	Charge=current x time	3
	Q = I x t	

	Q = 1.5 amp x 10 x 60s	
	Q = 900 C	
	Calculating charge and amount of copper	
	For 1 mole Cu ²⁺ ion	
	Cu ²⁺ + 2e> Cu	
	2F 63.5 [0.5 marks]	
	- Charge required to deposit 1 mol copper = (2 x 96500 C) [0.5 marks]	
	∵ 2 x 96500 C charge deposit mass of Cu = 63.5gr.	
	∴ 900 C charge will deposit mass of Cu = (63.5 g x 900 C)/(2 x 96500) C [0.5 marks]	
	Amount of Cu at cathode = 0.296 g [0.5 marks]	
Q.69	Step-I Calculation of Concentration	2
	$\Lambda_{\rm m} = {\rm k/C}$	
	Where;	
	k= electrolytic conductivity	
	C=molar concentration	
	$\Lambda_{m=}$ molar conductivity	
	Substituting values;	
	$C = 0.580/2.416 \times 10^{-2}$	
	$C = 0.24 \times 10^2 mol/m^3$	
	Step II molar concentration	
	$C= 0.24 \times 10^2 mol/m^3$	
	(1m ³ =1000L)	
	$C = 0.24 \times 10^2 mol/1000 L$	
	C= 0.0240 mol/L	
Q.70	Calculating the degree of dissociation:	2
	$\alpha = \Lambda_m / \Lambda_m^0$	
	$\Lambda_{m=46.1}$	
	$\Lambda_{\rm m}^{0} = ?$	
	- Calculating Λ_m^0 using Kohlrausch law	
	^ _m ⁰ = λ (H) ⁺ + λ (HCOO) ⁻	

	Am [°] = 349.6 + 54.6			
	$\Lambda_{\rm m}^{0}$ = 404.2 S cm ² /mol			
	$\alpha = \Lambda_m / \Lambda_m^0$			
	$\alpha = 46.1/404.2 = 0.114$			
	Degree of dissociation = 0.114			
Q.71	a) Step-I. Calculating charge available	3		
	$Ag^{+}(aq) + 1e^{>}Ag_{(s)}$			
	(1mol e ⁻ = 1F charge)			
	(Atomic mass of 1 mole of Ag = 108g)			
	m : 108 gr. of Ag is deposited by 1F electric charge			
	 ∴ 1.34 gr. of Ag is deposited by electric charge = 96500/108 x 1.34 =1260 C (0.5marks) 			
	Step-II. Calculating time 't' for deposition of Ag			
	We know - Q = I X t (0.5)			
	Thus t= Q/I = 1260C/1.5amp			
	t = 840 seconds. (0.5)			
	In minutes;			
	840/60 = 14 minutes. (0.5)			
	b) Calculating mass of Cu deposited in cell A.			
	Cu ²⁺ (aq.) + 2e> Cu(s)			
	(2 mole e ⁻ = 2 F charge)			
	(mass of 1 mole of Cu = 63.5gram)			
	We know-			
	∵ 96500 X 2 C charge deposits mass of Cu=63.5 gram			
	\therefore 1260 C charge will deposit mass of Cu= 63.5gram/96500x2 C X 1260 C =0.414			
	gram (1)			
Q.72	The cell reaction is-	2		
	$Mg(s) + Cu^{2+}_{(aq)} > Mg^{2+}_{(aq)} + Cu(s)$			
	here			
	n = 2 (0.5)			

	We know -		
	$E^{0}_{cell} = E^{0}_{red.}(R) - E^{0}_{red.}(L)$		
	^{E0} _{cell} = 0.34V -(-2.37V)		
	E ⁰ _{cell} = 2.71V	(0.5)	
	Calculating equilibrium constant(K _c)		
	E ⁰ = 0.0591/n x log K _c		
	(E ^o = 2.303RT/ nF at 298 K)		
	2.71 = 0.0591/2 xlog K _c		
	log K _c = 2.71 x 2/0.0591		
	log K _c = 91.7089	(0.5)	
	K _c = antilog 91.7089		
	(Take antilog n. $x = 0 . x \times 10^{n}$)		
	$K_c = 5.116 \times 10^{91}$	(0.5)	
Q.73	-Aman should use the Copper spoon.	(0.5)	2
	-The reduction potential of Aluminium is spoon (metal) cannot be used as it undergo	lower than Fe metal hence Aluminium bes oxidation i.e.it would lose e ⁻ .	
	Al _(s) > Al ³⁺ (aq)+ 3e ⁻	(0.5)	
	Thus, the solution will slowly turn into Alur purpose.	ninium sulphate and it will not serve the	
	-Copper, on the other hand, has a reductio state) or we can say it is less reactive than	n potential higher than Fe (both in ionic ^F e.	
	Cu ²⁺ +2e ⁻ > Cu _(s)	(0.5)	
	-Moreover, Cu here is in the solid state. Hence Cu spoon can be used to stir the solution as it will not bring any change in the FeSO ₄ solution. (0.5)		
Q.74	i) $Cu_{(s)}/Cu^{2+}_{(aq)} II Ag^{+}_{(aq)}/Ag^{-}_{(s)}$	(1)	2
	ii) ΔG ⁰ = - n E ⁰ F		
	n=2, E ⁰ = 0.46V F= 96500C		
	ΔG ⁰ = -2 x 0.46V x 96500C/mol		
	ΔG ⁰ = - 88780 C.V/mol or -88780 J/mol		
	(1C.V=1 Joule)		
	or		

	$\Delta G^0 = -88.78 \text{ kJ/mol}$ (1)	
Q.75	A chemical reaction is feasible if E^0_{cell} is positive i.e. if potential of the cell is positive.	2
	We know-	
	$E^{0} = E^{0}_{red.(C)} - E^{0}_{red.(A)}$ (0.5)	
	In the given equation ;	
	$Ag_{(s)} \rightarrow Ag^{+}_{(aq.)} + e^{-}$ (oxidation)	
	$Fe^{3+}(aq)+ 3e^{-}> Fe_{(s)}$ (Reduction) (0.5)	
	$E^{0}_{(cell)}$ = 0.77V - 0.80V (values given)	
	$E^{0}_{(cell)} = -0.03V$ (0.5)	
	Since E ⁰ _(cell) is negative, reaction is not feasible. (0.5)	
Q.76	For SHE:	2
	H ⁺ + e >1/2H ₂	
	Applying Nernst eq.	
	$E = E^{0} - (0.0591V/n) (\log 1/[H^{+}]) $ (1)	
	$E = 0 - (0.0591V/1) (\log 1/1x10^{-10})$	
	E = 0.0591V x 10 log 10	
	E = 0.591V (log10=1) (1)	
Q.77	- Charge required for the Reduction of 1 mole of Cr ₂ O ₇ ²⁻ ion	2
	is $Cr_2O_7^{2-}$ + 6e ⁻ + H ⁺ > 2Cr ³⁺	
	6 Faraday (0.5)	
	- Therefore, charge required for 0.5 mole ion	
	is Cr ₂ O ₇ ²⁻ +3e ⁻ +H ⁺ > Cr ³⁺	
	3 Faraday (0.5)	
	i.e. 96500C x 3 = 289500C	
	(1 F= 96500C) (1)	
Q.78	We know 1 Faraday electric charge deposits 1g equivalent of any substance on the electrodes kept in a series	2
	(According to Faraday's second law)	
	Equivalent mass of Ag = 108/1 = 108g	
	Equivalent mass of Cu = 63.5g/2 = 31.75g	

	Equivalent mass of A I= 27/3 = 9.0g (1)	
	Hence simple mass ratio deposited at respective electrodes are	
	Ag : Cu : Al	
	108g : 31.75g : 9.0g	
	12 : 4 : 1	
	(Cu = 3.527 ≈ 4) (1)	
Q.79	i) In experimental Set up I, the blue colour of CuSO4 solution will fade away.	3
	It is because CuSO ₄ solution will turn into H ₂ SO ₄ solution.	
	Oxidation of water leaves behind H^+ and reduction of Cu^{2+} ion leaves SO_4^{2-} ion in the solution.	
	2H ⁺ + SO ₄ ² > H ₂ SO ₄	
	ii) Cu _(s) > Cu ²⁺ _(aq) + 2e ⁻	
	iii)Oxygen (O ₂)	
	(2OH > O ₂ + 2H ⁺ +4e ⁻)	
	iv) Set up II depict the refining of Cu metal.	
	In this setup, an impure copper rod is made anode, where oxidation takes place,	
	At anode-	
	$Cu_{(s)} > Cu^{2+}_{(aq)} + 2e^{-}$	
	and a pure thin wire of copper is made cathode.	
	At cathode-	
	Cu ²⁺ (aq)+ 2e > Cu(s)	