JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEARS 1. If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^{T}$, then 5a + b is equal to: JEE Main-2016 (a) - 1(b) 5 (c) 4 (d) 13 2. If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then adj $(3A^2 + 12A)$ is equal to : [JEE Main-2017] (a) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$ (b) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$ (c) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$ (d) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ 3. If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix} = (A + Bx) (x - A)^2$, then the ordered pair (A, B) is equal to : [JEE Main-2018] (b) (-4, 5)(a) (-4, 3) (c) (4,5) (d) (-4, -5)4. If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then the matrix A^{-50} when $\theta = \frac{\pi}{12}$, is equal to [JEE Main-2019 (January)] (a) $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (b) $\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ (c) $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ (d) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ 5. Let A and B be two invertible matrices of order 3×3 . If det $(ABA^{T}) = 8$ and det $(AB^{-1}) = 8$, then det $(BA^{-1}B^{T})$ is equal

> (a) $\frac{1}{4}$ (b) 1 (c) $\frac{1}{16}$ (d) 16

[JEE Main-2019 (January)]

to:

6. Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$ and $Q = [q_{ij}]$ be two 3 × 3 matrices such that $Q - P^{5} = I_{3}$. Then $\frac{q_{21} + q_{31}}{q_{32}}$ is equal to : [JEE Main - 2019 (January)] (b) 135 (a) 10 (d) 9(c) 15 7. Let $A = \begin{pmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{pmatrix}$. If $AA^T = I_3$, then |p| is :-[JEE Main - 2019 (January)] (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{1}{\sqrt{6}}$ 8. Let $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, $(a \in R)$ such that $A^{32} =$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then a value of α is. [JEE Main -2019 (April)] (a) $\frac{\pi}{16}$ (b) 0(c) $\frac{\pi}{32}$ (d) $\frac{\pi}{64}$ **9.** If $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$, then the inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is [JEE Main -2019 (April)] (a) $\begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -12 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 13 & 1 \end{bmatrix}$ 10. The total number of matrices $A = \begin{pmatrix} 0 & 2y & 1 \\ 2x & y & -1 \\ 2x & -y & 1 \end{pmatrix}, (x, y \in [x, -y, -1])$ $R, x \neq y$) for which $A^T A = 3I_3$ is :-[JEE Main -2019 (April)] (a) 6(b) 2 (c) 3 (d) 4

11. If a is A symmetric matrix and *B* is a skew-symmetrix matrix

such that
$$A + B = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$
, then *AB* is equal to :

$$\begin{bmatrix} JEE \ Main -2019 \ (April) \end{bmatrix}$$
(a) $\begin{bmatrix} -4 & 2 \\ 1 & 4 \end{bmatrix}$
(b) $\begin{bmatrix} -4 & -2 \\ -1 & 4 \end{bmatrix}$
(c) $\begin{bmatrix} 4 & -2 \\ -1 & -4 \end{bmatrix}$
(d) $\begin{bmatrix} 4 & -2 \\ 1 & -4 \end{bmatrix}$

12. Let α be a root of equation $x^2 + x + 1 = 0$ and the matrix A

$$= \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha^4 \end{bmatrix}, \text{ then the matrix } A^{31} \text{ is equal to}$$

(a) A^3 (b) A^2 (c) I_3 (d) A

The number of all 3 × 3 matrices A, with entries from the set {-1, 0, 1} such that the sum of the diagonal elements of AA^T is 3, is _____.

 $[JEE \ Main-2020 \ (January)]$ 14. If $A = \begin{pmatrix} 2 & 2 \\ 9 & 4 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $10A^{-1}$ is equal to: [JEE Main-2020 \ (January)] (a) A - 4I (b) A - 6I(c) 4I - A (d) 6I - A15. If the matrices $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$, B = adjA and C = 3A, then

$\frac{ adj(B) }{ C }$ is equal to	[JEE Main-2020 (January)]
(a) 72	<i>(b)</i> 8
(c) 16	(d) 2
I at 1 minute	

16. Let $a, b, c \in R$ be all non-zero and satisfy $a^3 + b^3 + c^3 = 2$. If the matrix

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

satisfies $A^{T}A = I$, then a value of abc can be :

[JEE Main-2020 (September)](a) 3
(b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$

17. Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements :

(P) If $A \neq I_2$, then |A| = -1

(Q) [f|A| = 1, then tr(A) = 2,

where I_2 denotes 2×2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then : [JEE Main-2020 (September)]

- (a) (P) is true and (Q) is false
- (b) Both (P) and (Q) are false
- (c) Both (P) and (Q) are true
- (d) (P) is false and (Q) is true
- 18. Let A be a 3×3 matrix such that

$$\operatorname{adj} A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$$
 and $B = \operatorname{adj}(\operatorname{adj} A)$

If $|A| = \lambda$ and $|(B^{-1})^T| = \mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to [*JEE Main-2020 (September)*]

(a) (3,81) (b) $\left(9,\frac{1}{9}\right)$

(c)
$$\left(3,\frac{1}{81}\right)$$
 (d) $\left(9,\frac{1}{81}\right)$

19. Let $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$, $x \in R$ and $A^4 = [a_{ij}]$. if $a_{11} = 109$, then a_{22} is equal to

20. Suppose the vectors x_1, x_2 and x_3 are the solutions of the system of linear equations, Ax = b when the vector b on the right side is equal to b_1, b_2 and b_3 respectively. If

$$x_{1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, x_{2} = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, x_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, b_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, b_{2} = \begin{bmatrix} 0\\2\\0 \end{bmatrix} \text{ and } b_{3}$$
$$= \begin{bmatrix} 0\\2\\2 \end{bmatrix}, \text{ then the determinant of } A \text{ is equal to :}$$

[JEE Main-2020 (September)]

21. If
$$A = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix}$$
, $\begin{pmatrix} \theta = \frac{\pi}{24} \end{pmatrix}$ and $A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

where $i = \sqrt{-1}$, then which one of the following is not true? [*JEE Main-2020 (September)*]

(a) $a^2 - b^2 = \sqrt{-1}$ (b) $a^2 - c^2 = 1$ (c) $a^2 - d^2 = 0$ (d) $0 \le a^2 + b^2 \le 1$

- 22. Let $\theta = \frac{\pi}{5}$ and $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. If $B = A + A^4$, then det (B): [JEE Main-2020 (September)] (a) lies in (2, 3). (b) is zero. (c) is one. (d) lies in (1, 2)
- 23. If $A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$ and $\det \left(A^2 \frac{1}{2}I \right) = 0$, then a possible value of α is : [JEE Main-2021 (March)]
 - (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$
- 24. The system of equations $k\alpha + y + z = 1$, x + ky + z = k and $x + y + zk = k^2$ has no solution if k is equal to :

[JEE Main-2021 (March)]

- (a) 0 (b) -1(c) -2 (d) 1
- 25. Consider the following system of equations:

$$x + 2y - 3z = a$$
$$2x + 6y - 11z = b$$

$$x - 2y + 7z = c$$

where *a*, *b* and *c* are real constants. Then the system of equations: [*JEE Main-2021 (February*)]

- (c) has no solution for all a, b and c
- (b) has a unique solution when 5a = 2b + c
- (c) has infinite number of solutions when 5a = 2b + c
- (d) has a unique solution for all a, b and c
- 26. Consider the three planes

$$P_1: 3x + 15y + 21z = 9$$

$$P_2: x - 3y - z = 5$$
, and

$$P_3: 2x + 10y + 14z = 5$$

Then, which one of the following is true?

[JEE Main-2021 (February)]

- (a) P_1 and P_2 are parallel.
- (b) P_1, P_2 and P_3 all are parallel.
- (c) P_1 and P_3 are parallel.
- (d) P_2 and P_3 are parallel.

27. The value of
$$\begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix}$$
 is :

[JEE Main-2021 (February)]

(a)
$$-2$$

(c) (a+2)(a+3)(a+4) (d) (a+1)(a+2)(a+3)

(b) 0

JEE-ADVANCED PREVIOUS YEARS

1. Let $P = [a_{ij}]$ be a 3 × 3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is [IIT JEE-2012]

(a)
$$2^{10}$$
(b) 2^{11} (c) 2^{12} (d) 2^{13}

2. If P is a 3×3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3×3 identity matrix, then there

exists a column matrix
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 such that

(a)
$$PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (b) $PX = X$
(c) $PX = 2X$ (d) $PX = -X$

3. If the adjoint of a 3×3 matrix P is $\begin{vmatrix} 2 & 1 & 7 \\ 1 & 1 & 3 \end{vmatrix}$, then the

possible value(s) of the determinant of P is (are)

[IIT JEE-2012]

 $\begin{array}{cccc} (a) -2 & (b) -1 \\ (c) 1 & (d) 2 \end{array}$

- For 3×3 matrices M and N, which of the following statement(s) is (are) NOT correct ? [JEE Advanced-2013]
 - (a) N^r MN is symmetric or skew symmetric, according as M is symmetric or skew symmetric
 - (b) M N N M is skew symmetric for all symmetric matrices M and N
 - (c) MN is symetric for all symmetric matrices M and N
 - (d) (adj M) (adj N) = adj(MN) for all invertible matrices M and N
- 5. Let *M* be a 2 × 2 symmetric matrix with integer entries. Then *M* is invertible if [*JEE Advanced-2014*]
 - (a) the first column of M is the transpose of the second row of M
 - (b) the second row of M is the transpose of first column of M

- (c) *M* is a diagonal matrix with nonzero entries in the main diagonal
- (d) the product of entries in the main diagonal of M is not the square of an integer
- 6. Let X and Y be two arbitrary, 3 × 3, non-zero, skewsymmetric matrices and Z be an arbitrary 3 × 3, nonzero, symmetric matrix. Then which of the following matrices is (are) skew symmetric ?

 $[JEE \ Advanced-2015]$ (a) $Y^3Z^4 - Z^4Y^3$ (b) $X^{44} + Y^{44}$ (c) $X^4Z^3 - Z^3X^4$ (d) $X^{23} + Y^{23}$ 7. Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in \mathbb{R}$. Suppose

 $Q = [q_{ij}]$ is a matrix such that PQ = kI, where $k \in \mathbb{R}$, $k \neq 0$ and I is the identity matrix of order 3. If

 $q_{23} = -\frac{k}{8}$ and $\det(Q) = \frac{k^2}{2}$, then [JEE Advanced-2016] (a) $\alpha = 0, k = 8$ (b) $4\alpha - k + 8 = 0$ (c) $\det(P \operatorname{adj}(Q)) = 2^9$ (d) $\det(Q \operatorname{adj}(P)) = 2^{13}$

8. Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and *I* be the identity matrix of order

3. If
$$Q = \left[q_{ij}\right]$$
 is a matrix such that $P^{50} - Q = I$, then

 $\frac{q_{31} + q_{32}}{q_{21}} \text{ equals} \qquad [JEE \ Advanced-2016]$ (a) 52 (b) 103

- (c) 201 (d) 205
- Which of the following is (are) NOT the square of a 3 × 3 matrix with real entries? [JEE Advanced-2017]

$$(a) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad (b) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \\(c) \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad (d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

10. For a real number α , if the system

$$\begin{bmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

of linear equations, has infinitely many solutions, the $1 + \alpha + \alpha^2 =$ [JEE Advanced-2017] 11. How many 3 × 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries of M^T M is 5? [JEE Advanced-2017]
(a) 198 (b) 162

 $\begin{array}{c} (a) & 150 \\ (c) & 126 \\ (d) & 135 \\ \end{array}$

12. Let S be the of all column metrices $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that

 $b_1, b_2, b_3 \in \mathbb{R}$ and the system of equations (in real variables)

$$-x + 2y + 5z = b_1$$
$$2x - 4y + 3z = b_2$$
$$x - 2y + 2z = b_3$$

has at least one solution. Then which of the folowing system (s) (in real variables) has (have) at least one solution

of each
$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in S$$
? [JEE Advanced-2018]

(a)
$$x + 2y + 3z = b_1, 4y + 5z = b_2$$
 and $x + 2y + 6z = b_3$
(b) $x + y + 3z = b_1, 5x + 2y + 6z = b_2$ and $-2x - y - 3z = b_3$
(c) $-x + 2y - 5z = b_1, 2x - 4y + 10z = b_2$ and $x - 2y + 5z = b_3$
(d) $x + 2y + 5z = b_1, 2x + 3z = b_2$ and $x + 4y - 5z = b_3$

13. Let
$$M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$$

where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real number, and I is the 2 × 2 identity matrix. If

 α^* is the minimum of the set $\{\alpha(\theta) : \theta \in [0, 2\pi)\}$ and β^* is the minimum of the set $\{\beta(\theta) : \theta \in [0, 2\pi)\}$, then the value of $\alpha^* + \beta^*$ is [JEE Advanced-2019]

(a)
$$-\frac{37}{16}$$
 (b) $-\frac{29}{16}$
(c) $-\frac{31}{16}$ (d) $-\frac{17}{17}$

(c)
$$-\frac{54}{16}$$
 (d) $-\frac{17}{16}$

14. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and adj $M = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$ where

a and b are real numbers. Which of the following options is are correct? (a) a + b = 3JEE Advanced - 2019

(b) det (adj
$$M^2$$
) = 81

(c)
$$(adj M)^{-1} + adj M^{-1} = -M$$

(d) if
$$M\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $\alpha - \beta + \gamma = 3$

15. Let
$$P_1 = 1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$
$$P_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, P_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$
$$P_6 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } X = \sum_{k=1}^{6} P_k \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_k^T$$

where P_{k}^{T} denotes the transpose of the matrix P_{k} . Then which of the following options is/are correct ? (a) X - 30I is an invertible matrix

(b) The sum of diagonal entries of X is 18

(c) If
$$X\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \alpha \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, then $\alpha = 30$

(d) X is a symmetric matrix

16. Let $\mathbf{x} \in \mathbf{R}$ and lat $\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}, Q = \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 6 \end{bmatrix}$ and R =POQ-1. Then which of the following options is/are correct?

[JEE Advanced - 2019]

(a) For x = 1, there exists a unit vector $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ for

which
$$R\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(b) There exists a real number x such that PQ = OP

(c) det
$$R = det \begin{bmatrix} 2 & x & x \\ 0 & 4 & 0 \\ x & x & 5 \end{bmatrix} + 8$$
, for all $x \in R$

(d) For
$$x = 0$$
, if $R\begin{bmatrix} 1\\ a\\ b \end{bmatrix} = 6\begin{bmatrix} 1\\ a\\ b \end{bmatrix}$, then $a + b = 5$

17. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $M^{-1} = adj$ (adj M), then which of the following statement is/are ALWAYS TRUE? [JEE(Advanced) - 20201

(a) $M = I$	(b) det $M = I$			
(c) $M^2 = I$	$(d) (\operatorname{adj} M)^2 = I$			

18. The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2×2 matrix such that the trace of A is 3 and the trace of A^3 is -18, then the value of the determinant of A is [JEE(Advanced) - 2020]

JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEARS

.

1. (b) 11. (c) 21. (a)	2. (c) 12. (a) 22. (d)	3. (b) 13. [672] 23. (a)	4. (c) 14. (b) 24. (c)	5. (c) 15. (b) 25. (c)	6. (a) 16. (b) 26. (c)	7. (c) 17. (d) 27. (a)	8. (d) 18. (c)	9. (<i>a</i>) 19. [10]	10. (<i>d</i>) 20. (<i>c</i>)
JEE-ADVAN PREVIOUS									
1. (d) 11. (a)	2. (d) 12. (a,c,d)	3. (<i>a</i> , <i>d</i>) 13. (<i>b</i>)	4. (c,d) 14. (a,c,d)	5. (c,d) 15. (b,c,d)	6. (c,d) 16. (c,d)	7. (b,c) 17. (b,c,d)	8. (b) 18. (5)	9. (<i>a</i> , <i>c</i>)	10. (<i>a</i>)