1. DEFINITION

If the graph of a function has no break or jump, then it is said to be continuous function. A function which is not continuous is called a discontinuous function.

2. CONTINUITY OF A FUNCTION AT A POINT

A Function f(x) is said to be continuous at some point x=a of its domain if

 $\lim_{x\to a} f(x) = f(a)$

i.e., If $\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = f(a)$

i.e., If f(a-0) = f(a+0) = f(a)

i.e., If {LHL at x=a } = {RHL at x = a} = { value of the function at x = a }.

3. CONTINUITY FROM LEFT AND RIGHT

Function f(x) is said to be

(i) Left Continuous at x=a if $\lim_{x\to a=0} f(x) = f(a)$ i.e. f(a-0) = f(a)

(ii) Right Continuous at x=a if $\lim_{x\to a+0} f(x) = f(a)$ i.e. f(a + 0) = f(a)

Thus a function f(x) is continuous at a point x=a if it is left continuous as well as right continuous at x=a.

4. CONTINUITY IN AN INTERVAL

- (1) A function f(x) is continuous in an open interval (a, b) if it is continuous at every point of the interval.
- (2) A function f(x) is continuous in a closed interval [a, b] if it is
 - (i) continuous in (a, b)
 - (ii) right continuous at x=a
 - (iii) left continuous at x=b

5. CONTINUOUS FUNCTIONS

(ii) f(x) = c

A function is said to be continuous function if it is continuous at every point in its domain. Following are examples of some continuous functions:

(Constant function)

- (i) f(x) = x (Identify function)
- (iii) $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a^n$ (Polynomial function)
- (iv) $f(x) = \sin x, \cos x$ (Trigonometric function)
- (v) $f(x) = a^x$, e^x , e^{-x} (Expoential function)
- (vi) $f(x) = \log x$ (Logarithmic function)

(vii) $f(x) = \sinh x, \cosh x, \tanh x$	(Hyperbolic function)
(viii) f(x) = x , x + x , x - x , x x	(Absolute value functions)

6. DISCONTINUOUS FUNCTIONS

A function is said to be a discontinuous function if it is discontinuous at atleast one point in its domain. Following are examples of some discontinuous functions:

No.	Functions	Points of discontinuity
(i)	[x]	Every Integers
(ii)	x-[x]	Every Integers
(iii)	$\frac{1}{x}$	x = 0
(iv)	tanx, secx	$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$
(v)	cotx, cosecx	$x=0$, $\pm~\pi$, $\pm~2\pi$,
(vi)	$\sin\frac{1}{x}$, $\cos\frac{1}{x}$	x = 0
(vii)	e ^{1/x}	x = 0
(viii)	coth x, cosechx	x = 0

7. PROPERTIES OF CONTINUOUS FUNCTIONS

The sum, difference, product, quotient (if $D_{r \neq 0}$) and composite of two continuous functions are always continuous functions. Thus if f(x) and g(x) are continuous functions then following are also continuous functions:

- (i) f(x) + g(x) (ii) f(x) g(x)
- (iii) f(x).g(x) (iv) $\lambda f(x)$, where λ is a constant f(x)
- (v) $\frac{f(x)}{g(x)}$, if $g(x) \neq 0$ (vi) f[g(x)]

8. IMPORTANT POINT

The discontinuity of a function f(x) at x = a can arise in two ways

- (i) If $\lim_{x\to a^-} f(x)$ exist but $\neq f(a)$ or $\lim_{x\to a^+} f(x)$ exist but $\neq f(a)$, then the function f(x) is said to have a removable discontinuty.
- (ii) The function f(x) is said to have an unremovable discontinuity when $\lim_{x \to a} f(x)$ does not exist.

i.e.
$$\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$$

Differentiability at a point

Let f(x) be a ral valued function defined on an open interval (a, b) and let $c \in (a, b)$. Then f(x) is said to be

differentiable or derivable at x = c, iff $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely.

This limit is called the derivative or differential coefficient of the function f(x) at x = c, and is denoted by f'(c) or

Df(c) or
$$\left\{\frac{d}{dx}f(x)\right\}_{x=c}$$
$$\lim_{x\to c^{-}}\frac{f(x)-f(c)}{-h} = \lim_{h\to 0}\frac{f(c+h)-f(c)}{-h}$$

is called the left hand derivative of f(x) at x = c and is denoted by $f'(c^{-})$ or Lf'(c) while.

$$\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} \operatorname{or} \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$$

is called the right hand derivative of f(x) at x = c and is denoted by $f'(c^+)$ or Rf'(c).

Thus, f(x) is differentiable at $x = c \iff Lf'(c) = Rf'(c)$.

If $Lf'(c) \neq Rf'(c)$ we say that f(x) is not differentiable at x = c.

Differentiability in a set

A function f(x) defined on an open interval (a, b) is said to be differentiable or derivable inopen interval (a, b) if it is differentiable at each point of (a, b)