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1.1 Introduction: 

Physics is a quantitative science, where 
we measure various physical quantities 
during experiments. In our day to day life, we 
need to measure a number of quantities, e.g., 
size of objects, volume of liquids, amount of 
matter, weight of vegetables or fruits, body 
temperature, length of cloth, etc. A measurement 
always involves a comparison with a standard 
measuring unit which is internationally 
accepted. For example, for measuring the mass 
of a given fruit we need standard mass units 
of 1 kg, 500 g, etc. These standards are called 
units. The measured quantity is expressed in 
terms of a number followed by a corresponding 
unit, e.g., the length of a wire is written as 5 m 
where m (metre) is the unit and 5 is the value of 
the length in that unit. Different quantities are 
measured in different units, e.g. length in metre 
(m), time in seconds (s), mass in kilogram (kg), 
etc. The standard measure of any quantity is 
called the unit of that quantity. 

1.2 System of Units:

In our earlier standards we have come 
across various systems of units namely

 (i)  CGS: Centimetre  Gram Second system

 (ii)  MKS: Metre Kilogram Second system

 (iii) FPS: Foot Pound Second system.

 (iv) SI: System International

The first three systems namely CGS, MKS 
and FPS were used extensively till recently.  In 
1971, the 14th International general conference 
on weights and measures recommended the 
use of ‘International system' of units. This 
international system of units is called the 
SI units. As the SI units use decimal system, 
conversion within the system is very simple and 
convenient.

1. What is a unit?
2. Which units have you used in the laboratory for measuring 
  (i) length (ii) mass (iii) time (iv) temperature?
3. Which system of units have you used?  

Units and Measurements

Can you recall?

1.2.1 Fundamental Quantities and Units:  

The physical quantities which do not 
depend on any other physical quantities for 
their measurements are known as fundamental 
quantities. There are seven fundamental 
quantities: length, mass, time, temperature, 
electric current, luminous intensity and amount 
of substance. 

Fundamental units: The units used to measure 
fundamental quantities are called fundamental 
units. The fundamental quantities, their units 
and symbols are shown in the Table 1.1. 

Table 1.1: Fundamental Quantities with 
their SI Units and Symbols

Fundamental quantity SI units Symbol

1) Length
2) Mass
3) Time
4) Temperature
5) Electric current
6) Luminous Intensity
7) Amount of substance

metre
kilogram
second
kelvin
ampere
candela
mole

m
kg
s
K
A
cd
mol

1.2.2 Derived Quantities and Units: 

In physics, we come across a large number 
of quantities like speed, momentum, resistance, 
conductivity, etc. which depend on some or all 
of the seven fundamental quantities and can be 
expressed in terms of these quantities. These are 
called derived quantities and their units, which 
can be expressed in terms of the fundamental 
units, are called derived units.

For example, 

SI unit of velocity

� � � �Unit of displacement

Unit of time

m

s
m s 1

Unit of momentum = (Unit of mass)×(Unit of 
velocity) 

1.
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   = kg m/s = kg m s-1

The above two units are derived units.

Supplementary units : Besides, the seven 
fundamental or basic units, there are two more 
units called supplementary units: (i) Plane 
angle dθ and (ii) Solid angle dΩ
 (i)  Plane angle (dθ) : This is the ratio of the 

length of an arc of a circle to the radius of 
the circle as shown in Fig. 1.1 (a). Thus 
dθ = ds/r is the angle subtended by the arc 
at the centre of the circle. It is measured 
in radian (rad). An angle θ in radian is 
denoted as θc.  

 (ii) Solid angle (dΩ) : This is the 3-dimensional 
analogue of dθ and is defined as the area 
of a portion of surface of a sphere to  
the square of radius of the sphere. Thus 
dΩ = dA/r2 is the solid angle subtended by 
area ds at O as shown in Fig. 1.1 (b). It 
is measured in steradians (sr). A sphere of 
radius r has surface area 4πr2. Thus, the 
solid angle subtended by the entire sphere 
at its centre is Ω = 4πr2/r2 = 4π sr. 

dθ
O

A

B

ds

r

  Fig 1.1 (a): Plane angle dθ.  

dA

r

O

  Fig 1.1 (b): Solid angle dΩ.
Example 1.1: What is the solid angle subtended 
by the moon at any point of the Earth, given 
the diameter of the moon is 3474 km and its 
distance from the Earth 3.84×108 m.

Solution: Solid angle subtended by the moon 
at the Earth 

 

= 
Area of the disc of the moon

(moon - earth distance)

= 
×(1

2

� ..737×10 )

(3.84×10 )

= 6.425 10  

3 2

5 2

-5� sr

The relation between radian and degree is
π radians = πc = 180°

Do you know ?

1.2.3 Conventions for the use of SI Units: 
 (1) Unit of every physical quantity should be 

represented by its symbol.
 (2)  Full name of a unit always starts with  

smaller letter even if the name is after a 
person, e.g., 1 newton, 1 joule, etc. But 
symbol for unit named after a person 
should be in capital letter, e.g., N after 
scientist Newton, J after scientist Joule, 
etc.

 (3) Symbols for units do not take plural form 
for example, force of 20 N and not 20 
newtons or not 20 Ns.

 (4)  Symbols for units do not contain any full 
stops at the end of recommended letter, 
e.g., 25 kg and not 25 kg..

 (5)  The units of physical quantities in 
numerator and denominator should be 
written as one ratio for example the SI 
unit of acceleration is m/s2 or m s-2 but 
not m/s/s.

 (6)  Use of combination of units and symbols 
for units is avoided when physical 
quantity is expressed by combination of 
two. e.g., The unit J/kg K is correct while 
joule/kg K is not correct. 

 (7) A prefix symbol is used before the symbol 
of the unit.

  Thus prefix symbol and units symbol 
constitute a new symbol for the unit which 
can be raised to a positive or negative 
power of 10. 
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  1ms = 1 millisecond = 10-3s 
  1µs = 1 microsecond = 10-6s 
  1ns = 1 nanosecond = 10-9s 
  Use of double prefixes is avoided when 

single prefix is available 
  10-6s =1µs and not 1mms.
  10-9s = 1ns and not 1mµs  
(8) Space or hyphen must be introduced 

while indicating multiplication of two 
units e.g., m/s should be written as m s-1 
or m-s-1 and Not as ms-1 (because ms will 
be read as millisecond).

1.3 Measurement of Length: 
One fundamental quantity which we have 

discussed earlier is length. To measure the 
length or distance the SI unit used is metre 
(m). In 1960, a standard for the metre based 
on the wavelength of orange-red light emitted 
by atoms of krypton was adopted. By 1983 a 
more precise measurement was developed. 
It says that a metre is the length of the path 
travelled by light in vacuum during a time 
interval of 1/299792458 second. This was 
possible as by that time the speed of light 
in vacuum could be measured precisely as  
c = 299792458 m/s

Some typical distances/lengths are given in 
Table 1.2.

Table 1.2: Some Useful Distances 

Measurement Length in metre

Distance to Andromeda Galaxy (from Earth)
Distance to nearest star (after Sun)  Proxima Centuari (from Earth)
Distance to Pluto (from Earth)
Average Radius of Earth 
Height of Mount Everest
Thickness of this paper
Length of a typical virus 
Radius of hydrogen  atom
Radius of proton 

2×1022 m 
4×1016 m
6×1012 m
6×106 m
9×103 m
1×10-4 m
1×10-8 m
5×10-11 m
1×10-15 m

1.3.1 Measurements of Large Distance:

Parallax method 

Large distance, such as the distance of 
a planet or a star from the Earth, cannot be 
measured directly with a metre scale, so a 
parallax method is used for it.

Let us do a simple experiment to understand 
what is parallax.

Hold your hand in front of you and look at 
it with your left eye closed and then with your 
right eye closed. You will find that your hand 
appears to move against the background. This 
effect is called parallax. Parallax is defined as 
the apparent change in position of an object due 
to a change in the position of the observer. By 
measuring the parallax angle (θ) and knowing 
the distance between the eyes E

1
E

2
 as shown in 

Fig. 1.2, we can determine the distance of the 
object from us, i.e., OP as E

1
E

2
/θ.

P

E
1 O E

2

θ

Fig.1.2: Parallax method for determining 
distance.

As the distances of planets from the Earth 
are very large, we can not use two eyes method 
as discussed here. In order to make simultaneous 
observations of an astronomical object, we 
select two distant points on the Earth. 

Consider two positions A and B on the 
surface of Earth, separated by a straight line at 

O
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distance b as shown in Fig. 1.3. Two observers 
at these two points observe a distant planet S 
simultaneously. We measure the angle ∠ASB 
between the two directions along which the 
planet is viewed at these two points. This angle, 
represented by symbol θ, is the parallax angle. 

 

As the planet is far away, i.e., the distance 
of the planet from the Earth is very large in 
comparison to b, b/D << 1 and, therefore, θ is 
very small.

We can thus consider AB as the arc of 
length b of the circle and D its radius.

AB = b and AS = BS = D and θ  ≅  AB/ D, 
where θ is in radian 

D = b /  θ 

Fig.1.3: Measurement of distances of planets

1.3.2 Measurement of Distance to Stars: 

Sun is the star which is closest to the 
Earth. The next closest star is at a distance of 
4.29 light years. The parallax measured from 
two most distance points on the Earth for stars 
will be too small to be measured and for this 
purpose we measure the parallax between two 
farthest points (i.e. 2 AU apart, see box below) 
along the orbit of the Earth around the Sun (see 
figure in example 1.2 below).   

1.3.3 Measurement of the Size of a Planet or 
a Star: 

If d is the diameter of a planet, the angle 
subtended by it at any single point on the Earth 
is called angular diameter of the planet. Let α 
be the angle between the two directions when 
two diametrically opposite points of the planet 
are viewed through a telescope as shown in Fig. 
1.4. As the  distance D of the planet is large 
(assuming it has been already measured), we 
can calculate the diameter of the planet as

  

�

�

�

�

d

D
d = D       --- (1.2)

For measuring large distances, astronomers 
use the following units. 

1 astronomical unit, (AU) = 1.496×1011m
1 light year = 9.46×1015m 
1 parsec (pc) = 3.08×1016m ≅ 3.26 light 

years

A light year is the distance travelled 
by light in one year. The astronomical unit 
(AU) is the mean distance between the centre 
of the Earth and the centre of the Sun.

A parsec (pc) is the distance from where 
1AU subtends an angle of 1 second of arc.

 

1AU
Sun

1pc

1″

 

Do you know ?

r

D

d

α

Earth 

Planet

Fig. 1.4: Measurement of size of a planet 

1.3.4 Measurement of Very Small Distances: 

When we intend to measure the size of 
the atoms and molecules, the conventional 
apparatus like Vernier calliper or screw guage 
will not be useful. Therefore, we use electron  
microscope or tunnelling electron microscope 
to measure the size of atoms. 

Example 1.2: A star is 5.5 light years away 
from the Earth. How much parallax in arcsec 
will it subtend when viewed from two opposite 

A

B
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points along the orbit of the Earth?

1AU 1AU

Solution: Two opposite points A and B along 
the orbit of the Earth are 2 AU apart. The 
angle subtended by AB at the position of the 
star is = AB/distance of the star from the Earth 

=
2AU

 y

m

m
rad

= 5.75

11

155 5

2 1 496 10

5 5 9 46 10
5 75 10

1

6

.

.

. .
.

l
�

� �
� �

� �

�

�

00 57 297 60 606� � � �.  arcsec

= 1.186  arcsec  

Small distances are measured in units 
of (i) fermi = 1F = 10-15 m in SI system. Thus, 
1F is one femtometre (fm)   (ii) Angstrom = 
1 A0 =10-10 m

For measuring sizes using a microscope 
we need to select the wavelength of light 
to be used in the microscope such that it 
is smaller than the size of the object to be 
measured. Thus visible light (wavelength 
from 4000 A0 to 7000 A0) can measure 
sizes upto about 4000 A0 . If we want to 
measure even smaller sizes we need to use 
even smaller wavelength and so the use 
of electron microscope is necessary. As 
you will study in the XIIth standard, each 
material particle corresponds to a wave. The 
approximate wavelength of the electrons in 
an electron microscope is about 0.6 A0  so 
that one can measure atomic sizes ≈ 1 A0 
using this microscope. 

Do you know ?

Solution: Angle subtended  

θ = 1° 54' = 114' = 114×2.91×10-4 rad 

     = 3.317×10-2 rad

Diameter of the Earth = θ × distance to the 
moon from the Earth 

  = 3.317×10-2×3.84×108 m

  = 1.274×107m

1.4 Measurement of Mass: 

Since 1889, a kilogram was the mass of a 
shiny piece of platinum-iridium alloy kept in a 
special glass case at the International Bureau 
of weights and measures. This definition of 
mass has been modified on 20th May 2019, the 
reason being that the carefully kept platinum-
iridium piece is seen to pick up micro particles 
of dirt and is also affected by the atmosphere 
causing its mass to change. The new measure 
of kilogram is defined in terms of magnitude 
of electric current. We know that electric 
current can be used to make an electromagnet. 
An electromagnet attracts magnetic materials 
and is thus used in research and in industrial 
applications such as cranes to lift heavy 
pieces of iron/steel. Thus the kilogram mass 
can be described in terms of the amount of 
current which has to be passed through an 
electromagnet so that it can pull down one side 
of an extremely sensitive balance to balance the 
other side which holds one standard kg mass.

While dealing with mass of atoms 
and molecules, kg is an inconvenient unit. 
Therefore, their mass is measured in atomic 
mass unit. It will be easy to compare mass of 
any atom in terms of mass of some standard 
atom which has been decided internationally to 
be C12 atom. The (1/12)th mass of an unexcited 
atom of C12 is called atomic mass unit (amu). 

1 amu = 1.660540210-27 kg with an 
uncertainty of 10 in the last two decimal places. 

1.5 Measurement of Time:

The SI unit of time is the second (s). For 
many years, duration of one mean Solar day 
was considered as reference. A mean Solar day 
is the average time interval from one noon to 
the next noon. Average duration of a day is 
taken as 24 hours. One hour is of 60 minutes 

Example 1.3: The moon is at a distance of 
3.84×108 m from the Earth. If viewed from two 
diametrically opposite points on the Earth, the 
angle subtended at the moon is 1° 54'. What is 
the diameter of the Earth?
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and each minute is of 60 seconds. Thus a mean 
Solar day = 24 hours = 246060 = 86400 s. 
Accordingly a second was defined as 1/86400 
of a mean Solar day.

It was later observed that the length of a 
Solar day varies gradually due to the gradual 
slowing down of the Earth’s  rotation. Hence, 
to get more standard and nonvarying (constant) 
unit for measurement of time, a cesium atomic 
clock is used. It is based on periodic vibrations 
produced in cesium atom. In cesium atomic 
clock, a second is taken as the time needed 
for 9,192,631,770 vibrations of the radiation 
(wave) emitted during a transition between two 
hyperfine states of Cs133 atom. 

quantities. For convenience, the basic quantities 
are represented by symbols as ‘L’ for length, 
‘M’ for mass, ‘T’ for time, ‘K’ For temperature, 
‘I’ for current, ‘C’ for luminous intensity and 
‘mol’ for amount of mass.

The dimensions of a physical quantity 
are the powers to which the concerned 
fundamental units must be raised in order to 
obtain the unit of the given physical quantity.

When we represent any derived quantity 
with appropriate powers of symbols of the 
fundamental quantities, then such an expression 
is called dimensional formula. This dimensional 
formula is expressed by square bracket and no 
comma is written in between any of the symbols. 

Illustration:

(i) Dimensional formula of velocity  

  
Velocity = 

displacment

time

Dimensions of velocity� � �[L]

[T]
[L M T ]1 0 1

ii) Dimensional formula of velocity gradient

velocity gradient =
velocity

distance

Dimensions of velocity gradient

 � �
�

�[LT ]

[ ]
[L M T ]

1
0 0 1

L
iii) Dimensional formula for charge.

charge = current time

Dimensions of charge = [I] [T] = [L0M0T1I1]

Table 1.3: Some Common Physical Quantities their, SI Units and Dimensions

S. 
No

Physical 
quantity

Formula SI unit Dimensional 
formula

1

2

3

4

5

6

7

8

Density

Acceleration

Momentum

Force

Impulse

Work

Kinetic Energy

Pressure

ρ = M/V

a = ν/t

P = mν
F = ma

J = F. t

W = F.s

KE = 1/2 mν2

P = F/A

kilogram per cubic metre (kg/m3)

metre per second square (m/s2) 

kilogram metre per second (kg m/s) 

kilogram metre per second square 
(kg m/s2) or newton (N)

newton second (Ns)

joule (J)

joule (J)

kilogram per metre second square 
(kg/ms2)

[L-3M1T°]

[L1M°T-2]

[L1M1T-1]

[L1M1T-2]

[L1M1T-1]

[L2M1T-2]

[L2M1T-2]

[L-1M1T-2]

Why is only carbon used and not any 
other element for defining atomic mass unit? 
Carbon 12 (C12) is the most abundant isotope 
of carbon and the most stable one. Around 
98% of the available carbon is C12 isotope. 

Earlier, oxygen and hydrogen were used 
as the standard atoms. But various isotopes 
of oxygen and hydrogen are present in higher 
proportion and therefore it is more accurate 
to use C12.

Do you know ?

1.6 Dimensions and Dimensional Analysis:

As mentioned earlier, a derived physical 
quantity can be expressed in terms of some 
combination of seven basic or fundamental 
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Table 1.3 gives the dimensions of 
various physical quantities commonly used in 
mechanics. 

1.6.1 Uses of Dimensional Analysis: 

 (i)  To check the correctness of physical 
equations: In any equation relating 
different physical quantities, if the 
dimensions of all the terms on both the 
sides are the same then that equation is 
said to be dimensionally correct. This is 
called the principle of homogeneity of 
dimensions. Consider the first equation of 
motion.

  v = u + at

  Dimension of  L.H.S = [v] = [LT-1]

    [u] =[LT-1]

    [at] = [LT-2] [T] = [LT-1]

  Dimension of R.H.S= [LT-1]+ [LT-1]

  [L.H.S] = [R.H.S] 

  As the dimensions of L.H.S and R.H.S 
are the same, the given equation is 
dimensionally correct.

 (ii) To establish the relationship between 
related physical quantities: The period 
T of oscillation of a simple pendulum 
depends on length l and acceleration due 
to gravity g. Let us derive the relation 
between T, l, g : 

  Suppose T ∝ la 

  and T ∝ gb 

        ... T ∝ lagb 

         T = k lagb,
  where k is constant of proportionality and 

it is a dimensionless quantity and a and b 
are rational numbers. Equating dimensions 
on both sides, 

  [M0L0T1] = k [L1]a [LT-2]b 

                = k [La+b T-2b]

    [L0T1]  = k [La+bT-2b] 

Comparing the dimensions of the 
corresponding quantities on both the sides we 
get

a + b = 0

∴ a = -b

and

-2b=1

∴b = -1/2

∴a = -b = -(-1/2)

∴ a = 1/2

∴ T = k l1/2 g -1/2 

∴T = k l / g

The value of k is determined experimentally 
and is found to be 2π

�T = 2 l / g�

 (iii) To find the conversion factor between 
the units of the same physical quantity 
in two different systems of units: Let us 
use dimensional analysis to determine the 
conversion factor between joule (SI unit 
of work) and erg (CGS unit of work).

  Let 1 J = x erg

  Dimensional formula for work is [M1L2T-2] 
Substituting in the above equation, we can 
write

  

[M L T ] =  [M L T ]

= 
[M L T ] 

[M L T ]

1
1

1
2

1
-2

2
1

2
2

2
-2

1
1

1
2

1
-2

2
1

2
2

2
-2

x

x 

oor   , x �
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�

�
M

M

L

L

T

T

1

2

1

2

1

2

1 2 2

  where suffix 1 indicates SI units and 2 
indicates CGS units.

  In SI units, L, M,
 
T are expressed in m, 

kg and s and in CGS system L, M,
 
T are 

represented in cm, g and s respectively.

  

� �
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�

�
�

�

�
�

  
kg

g

m

cm

s

s

or  
g

g

2 -2

x

x

1

3

1

10 100( )
ccm

cm

   

  1 joule = 10 erg7

�
�
�

�
�
�

� � �

�

�
2

2

3 4 7

1

10 10 10

( )

( ) ( )x

  
Example 1.4: A calorie is a unit of heat and it 
equals 4.2 J, where 1 J = kg m2 s-2. A distant 
civilisation employs a system of units in which 
the units of mass, length and time are α kg, β m 
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and γ s. Also J' is their unit of energy. What will 
be the magnitude of calorie in their units?
Solution:  Let us write the new units as A, B 
and C for mass, length and time respectively. 
We are given

1 A =  α kg
1 B = β m
1 C = γ s
1 cal = 4.2 J = 4.2 kg m2 s-2 

= 4.2
A B C

=
4.2 

  AB  C

=
4.2 

2 -2

2

2
2 -2

2

� � �

�
��

�
�

�
�
�

�
�
�
�

�
�

�

�
�
�

�
�

�

�
�

�� 2
 J�

Thus in the new units, 1 calorie is =
4 2 2

2

. �
��

 J�  

1.6.2 Limitations of Dimensional Analysis: 

 1)  The value of dimensionless constant can 
be obtained with the help of experiments 
only.

 2)  Dimensional analysis can not be used to 
derive relations involving trigonometric, 
exponential, and logarithmic functions as 
these quantities are dimensionless.

 3)  This method is not useful if constant of 
proportionality is not a dimensionless 
quantity. 

  Illustration : Gravitational force between 
two point masses is directly proportional 
to product of the two masses and inversely 
proportional to square of the distance 
between the two

   

� �

�

F
m m

r
   

Let G
m m

r

1 2
2

1 2
2

F

  The constant of proportionality 'G' is NOT 
dimensionless. Thus earlier method will 
not work.

 4)  If the correct equation contains some more 
terms of the same dimension, it is not 
possible to know about their presence using 
dimensional equation. For example, with 

standard symbols, the equation S at= 21

2
 

is dimensionally correct. However, the 

complete equation is S = ut + at
1

2
2      

1.7 Accuracy, Precision and Uncertainty in 
Measurement:

Physics is a science based on observations 
and experiments. Observations of various 
physical quantities are made during an 
experiment. For example, during the 
atmospheric study we measure atmospheric 
pressure, wind velocity, humidity, etc. All the 
measurements may be accurate, meaning that 
the measured values are the same as the true 
values. Accuracy is how close a measurement 
is to the actual value of that quantity. These 
measurements may be precise, meaning that 
multiple measurements give nearly identical 
values (i.e., reproducible results). In actual 
measurements, an observation may be both 
accurate and precise or neither accurate nor 
precise. The goal of the observer should be to 
get accurate as well as precise measurements.

Possible uncertainties in an observation 
may arise due to following reasons:

1) Quality of instrument used.

2) Skill of the person doing the experiment.

3) The method used for measurement.

4) External or internal factors affecting the 
result of the experiment.

If ten students are asked to measure the 
length of a piece of cloth up to a mm, using a 
metre scale, do you think their answers will 
be identical? Give reasons.  

Can you tell?

1.8 Errors in Measurements:

Faulty measurements of physical quantity 
can lead to errors. The errors are broadly divided 
into the following two categories :

a) Systematic errors : Systematic errors are 
errors that are not determined by chance but 
are introduced by an inaccuracy (involving 
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either the observation or measurement process) 
inherent to the system. Sources of systematic 
error may be due to imperfect calibration of the 
instrument, and sometimes imperfect method of 
observation.

Each of these errors tends to be in one 
direction, either positive or negative. The 
sources of systematic errors are as follows:

 (i)  Instrumental error: This type of error 
arises due to defective calibration of an 
instrument, for example an incorrect 
zeroing of an instrument will lead to such 
kind of error ('zero' of a thermometer not 
graduated at proper place, the pointer 
of weighting balance in the laboratory 
already indicating some value instead of 
showing zero when no load is kept on it, 
an ammeter showing a current of 0.5 amp 
even when not connected in circuit, etc).

 (ii) Error due to imperfection in 
experimental technique: This is an error 
due to defective setting of an instrument. 
For example the measured volume of a 
liquid in a graduated tube will be inaccurate 
if the tube is not held vertical. 

 (iii) Personal error: Such errors are 
introduced due to fault of the observer. 
Bias of the observer, carelessness in 
taking observations etc. could result in 
such errors. For example, while measuring 
the length of an object with a ruler, it is 
necessary to look at the ruler from directly 
above. If the observer looks at it from an 
angle, the measured length will be wrong 
due to parallax.

  Systematic errors can be minimized by 
using correct instrument, following proper 
experimental procedure and removing 
personal error.

b) Random errors: These are the errors which 
are introduced even after following all the 
procedures to minimize systematic errors. These 
type of errors may be positive or negative. These 
errors can not be eliminated completely but we 
can minimize them by repeated observations 
and then taking their mean (average). Random 
errors occur due to variation in conditions in 

which experiment is performed. For example, 
the temperature may change during the course 
of an experiment, pressure of any gas used in 
the experiment may change, or the voltage of 
the power supply may change randomly, etc.

1.8.1 Estimation of error: 

Suppose the readings recorded repeatedly 
for a physical quantity during a measurement 
are 

a
1
, a

2
, a

3
, ................a

n
 .

Arithmetic mean a
mean  

is given by

a = 
a + a + a + ................+ a

n

a = 
n

a

mean
1 2 3 n

mean i
i=1

n1 ∑ --- (1.3)

This is the most probable value of the 
quantity. The magnitude of the difference 
between mean value and each individual value 
is called absolute error in the observations.

Thus for ‘a
1
’, the absolute error ∆a

1
 is 

given by

�

�

a

a

1 1

2

2 2

 = |

for 

  

and so for a  it wn

a a |,

a ,

| a a |

mean

mean

�

� �

iill be

 �an n� �| a a |mean

The arithmetic mean of all the absolute 
errors is called mean absolute error in the 
measurement of the physical quantity.

    

�
� � �

�

a
a a a

a

mean

i

=
n

           
n

n

i=1

n

1 2

1

� � �

� �

........

  
--- (1.4)

The measured value of the physical 
quantity a can then be represented by 

a = a
mean

 ± ∆a
mean

 which tells us that 
the actual value of ‘a’ could be between  
a

mean
 - ∆a

mean
  and a

mean
 + ∆a

mean
. The ratio of 

mean absolute error to its arithmetic mean 
value is called relative error.

   
--- (1.5)
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When relative error is represented as 
percentage it is called percentage error.

Percentage error = ean

mean

�am

a
�100

 
--- (1.6)

resistance.    

a) Errors in sum and in difference: 

Suppose two physical quantities A 
and B have measured values A ± ∆A and  
B ± ∆B, respectively, where ∆A and ∆B are 
their mean absolute errors. We wish to find the 
absolute error ∆Z in their sum. 

Z=A+B

Z ± ∆Z = (A ± ∆A)+(B ± ∆B)

            = (A+B) ± ∆A ± ∆B

± ∆Z = ± ∆A ± ∆B, 

For difference, i.e., if Z = A-B,

Z ± ∆Z = (A ± ∆A)-(B ± ∆B)

            = (A-B) ± ∆A± ∆B

± ∆Z = ± ∆A± ∆B, 

There are four possible values for ∆Z, 
namely (+ ∆A - ∆B), (+∆A+∆B), (-∆A-∆B), 
(-∆A+∆B). Hence maximum value of absolute 
error is ∆Z = ∆A+∆B in both the cases. 

When two quantities are added or 
subtracted, the absolute error in the final result 
is the sum of the absolute errors in the individual 
quantities.

b) Errors in product and in division: 

Suppose Z=AB and measured values of A 
and B are (A ± ∆A) and (B ± ∆B) Then 

Z ± ∆Z= (A ± ∆A) (B ± ∆B)

= AB ± A∆B ± B∆A ± ∆A∆B

Dividing L.H.S by Z and R.H.S. by AB we 
get

1 1��
�
�

�
�
� � � � � �

�
�

�
�
�
�
�
�

�
�
�

�

�
�

�

�
�

� � � � �z

z

B

B

A

A

A

A

B

B

Since ∆A/A and ∆B/B are very small we 
shall neglect their product. Hence maximum 
relative error in Z is

 

� � �Z

Z

A

A

B

B
� �

  
--- (1.7)

This formula also applies to the division of 
two quantities. 

Thus, when two quantities are multiplied 
or divided, the maximum relative error in the 
result is the sum of relative errors in each 
quantity.

Example 1.5: The radius of a sphere measured 
repeatedly yields values 5.63 m, 5.54 m, 5.44 
m, 5.40 m and 5.35 m. Determine the most 
probable value of radius and the mean absolute, 
relative and percentage errors.

Solution: Most probable value of radius is its 
arithmetic mean       

 

�
� � � �

�

5 63 5 54 5 44 5 40 5 35

5
5 472

. . . . .

.

m

 m

Mean absolute error 

 

�

� � �

� � � �

� �

1

5

5 63 5 472 5 54 5 472

5 44 5 472 5 40 5 472

5 35 5 47

. . . .

. . . .

. .

 

 22

0 452

5
0 0904

�

�
�

�
�

�

�
�

�
�

� �

m

 m 
.

.

Relative error = =
0 0904

5 472
0 017

.

.
.

          % error = 1.7%

1.8.2 Combination of errors:

When we do an experiment and measure 
various physical quantities associated with 
the experiment, we must know how the errors 
from individual measurement combine to give 
errors in the final result. For example, in the 
measurement of the resistance of a conductor 
using Ohms law, there will be an error in the 
measurement of potential difference and that of 
current. It is important to study how these errors 
combine to give the error in the measurement of 

Perform an experiment using a Vernier 
callipers of least count 0.01cm to measure 
the external diameter of a hollow cylinder. 
Take 3 readings at different position on the 
cylinder and find (i) the mean diameter (ii) the 
absolute mean error and (iii) the percentage 
error in the measurement of diameter. 

Activity :



11

c) Errors due to the power (index) of 
measured quantity:

Suppose

 

Z = A = A.A.A

Z

Z

A

A

A

A

A

A

3

� � � �
� � �

 

from the multiplication rule above.

Hence the relative error in Z =A3 is three 
times the relative error in A. So if Z = An

 

� �Z

Z
n

A

A
�

    
--- (1.8)

In general, if  Z =
A B

C
Z

Z
p

A

A
q

B

B
r

C

C

p q

r

� � � �
� � �  --- (1.9)

The quantity in the formula which has 
large power is responsible for maximum error.

Example 1.6: In an experiment to determine 
the volume of an object, mass and density are 
recorded as m = (5 ± 0.15) kg and ρ = (5 ± 0.2) 
kg m-3 respectively. Calculate percentage error 
in the measurement of volume.

Solution : We know,

  

Density = 
Mass

Volume

 = 
Mass

Density

M
� �Volume

Percentage err

�

oor in volume =
m

m

                          

� �
� �

�
�
�

�
�
�

�
�

100

                   =
0.15

5

                  

� ��
�
�

�
�
�

0 2

5
100

.

                           = 

              

0 03 0 04 100. .� �� �
                               = 0 07 100 7. %� �� �

Example 1.7: The acceleration due to gravity  is 
determined by using a simple pendulum of length  
l = (100 ± 0.1) cm. If its time period is T = (2 ± 
0.01) s, find the maximum percentage error in 
the measurement of g. 
Solution: The time period of oscillation of a 
simple pendulum is given by 

 
T = 2

l

g
π

Squaring both sides

T =4 l / g

g =4
l

T
T T

2 2

2
2

�

��

Now = 0.1, = 100 cm,  = 0.01s, = 2 s

P

� �l l

eercentage error =
100

                           

�

� �

g

g

l

�

� �
l 2 TT

T
�
�
�

�
�
��

� �
��

�
�

100

0 2 0 01
                           

l

l00 2

. . ��
�
��

� � � �

100

0 001 0 01 100 1 1                           

Pe

( . . ) .

rrcentage error in measurement of  is 1.1% g

1.9 Significant Figures:

In the previous sections, we have studied 
various types of errors, their origins and the 
ways to minimize them. Our accuracy is limited 
to the least count of the instrument used during 
the measurement. Least count is the smallest 
measurement that can be made using the given 
instrument. For example with the usual metre 
scale, one can measure 0.1 cm as the least value. 
Hence its least count is 0.1cm.

Suppose we measure the length of a metal 
rod using a metre scale of least count 0.1cm. 
The measurement is done three times and the 
readings are 15.4, 15.4, and 15.5 cm. The most 
probable length which is the arithmetic mean as 
per our earlier discussion is 15.43. Out of this 
we are certain about the digits 1 and 5 but are 
not certain about the last 2 digits because of the 
least count limitation.

The number of digits in a measurement 
about which we are certain, plus one additional 
digit, the first one about which we are not certain 
is known as significant figures or significant 
digits.

Thus in above example, we have 3 
significant  digits 1, 5 and 4.

The larger the number of significant figures 
obtained in a measurement, the greater is the 
accuracy of the measurement. If one uses the 
instrument of smaller least count, the number of 
significant digits increases.
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Rules for determining significant figures

 1)  All the nonzero digits are significant, 
for example if the volume of an object is 
178.43 cm3, there are five significant digits 
which are 1,7,8,4 and 3. 

 2) All the zeros between two nonzero digits 
are significant, eg., m = 165.02 g has 5 
significant digits.

 3)  If the number is less than 1, the zero/zeroes 
on the right of the decimal point and to 
the left of the first nonzero digit are not 
significant e.g. in 0.001405, the underlined 
zeros are not significant. Thus the above 
number has four significant digits.

 4) The zeros on the right hand side of the last 
nonzero number are significant (but for 
this, the number must be written with a 
decimal point), e.g. 1.500 or 0.01500  have 
both 4 significant figures each.

On the contrary, if a measurement yields 
length L given as

L = 125 m = 12500 cm = 125000 mm, it 
has only three significant digits.

To avoid the ambiguities in determining the 
number of significant figures, it is necessary to 
report every measurement in scientific notation 
(i.e., in powers of 10) i.e., by using the concept 
of order of magnitude.

The magnitude of any physical quantity can 
be expressed as A×10n where ‘A’ is a number 
such that 0.5 ≤ A<5 and ‘n’ is an integer called 
the order of magnitude.

(i) radius of  Earth  = 6400 km  

    = 0.64×107m 

The order of magnitude is 7 and the number 
of significant figures are 2.

(ii) Magnitude of the charge on electron e 
= 1.6×10-19 C

Here the order of magnitude is -19 and the 
number of significant digits are 2. 

 1.  videolectures.net/mit801f99_lewin_lec01/
 2.  hyperphysics.phy-astr.gsu.edu/hbase/

hframe.html

Internet my friend

 Definitions of SI Units
Till May 20, 2019 the kilogram did not have 
a definition; it was mass of the prototype 
cylinder kept under controlled conditions 
of temperature and pressure at the SI 
museum at Paris. A rigorous and meticulous 
experimentation has shown that the mass of 
the standard prototype for the kilogram has 
changed in the course of time. This shows 
the acute necessity for standardisation of 
units. The new definitions aim to improve 
the SI without changing the size of any 
units, thus ensuring continuity with existing 
measurements. In November 2018, the 
26th General Conference on Weights and 
Measures (CGPM) unanimously approved 
these changes, which the International 
Committee for Weights and Measures 
(CIPM) had proposed earlier that year. These 
definitions came in force from 20 May 2019.
 (i) As per new SI units, each of the seven 

fundamental units (metre, kilogram, etc.) 
uses one of the following 7 constants 
which are proposed to be having exact 
values as given below:

  The Planck constant, 
  h = 6.62607015 × 10−34 joule-second 
  (J s or kg m2 s-1).
  The elementary charge, 
  e = 1.602176634 × 10−19 coulomb (C or 

A s).
  The Boltzmann constant, 
  k = 1.380649 × 10−23 joule per kelvin  

(J K−1 or kg m2 s-2 K-1).
  The Avogadro constant (number), 
  N

A
 = 6.02214076 × 1023 reciprocal mole 

(mol−1).
  The speed of light in vacuum, 
  c = 299792458 metre per second (m s−1).
  The ground state hyperfine structure 

transition frequency of Caesium-133 
atom, 

	 	 Δν
Cs

 = 9192631770 hertz (Hz or s-1).
  The luminous efficacy of monochromatic
  radiation of frequency 540 × 1012 Hz,  K

cd
 

  = 683 lumen per watt (lm⋅W−1) = 683 cd 
sr s3 kg-1 m-2, where sr is steradian; the SI 
unit of solid angle.
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 (ii) Definitions of the units second and mole 
are based only upon their respective 
constants, for example (a) the second 
uses ground state hyperfine structure 
transition frequency of Caesium-133 
atom to be exactly 9192631770 hertz. 
Thus, the second is defined as 
9192631770 periods of that transition, 
(b) the mole uses Avogadro’s number 
to be N

A
 = 6.02214076 × 1023. Thus, one 

mole is that amount of substance which 
contains exactly 6.02214076 × 1023 
molecules.

 (iii) Definitions of all the other fundamental 
units use one constant each and at least 
one other fundamental unit, for example, 
the metre makes use of speed of light in 
vacuum as a constant and second as 
fundamental unit. Thus, metre is defined 
as the distance traveled by the light in 
vacuum in exactly 1/299792458 second.

 (iv) The figures show the dependency of 
various units upon their respective 
constants and other units (wherever 

used). The arrows arriving at that unit 
refer to the constant and the fundamental 
unit (or units, wherever used) for defining 
that unit. The arrows going away from a 
unit indicate other units which use this 
unit for their definition. 

For example, as described above, in fig (a)  
i) the arrows directed to metre are from second 
and c. The arrows going away from the metre 
indicate that the metre is used in defining 
the kilogram the candela and the kelvin,  
(ii) the newly defined unit kilogram uses 
Planck constant, the metre and the second, 
while the kilogram itself is used in defining 
the kelvin and the candela. This definition 
relates the kilogram to the equivalent mass of 
the energy of a photon given its frequency, 
via the Planck constant.

Figure (a) refers to new definitions while 
the figure (b) refers to the corresponding 
definitions before 20 May 2019. Interested 
students may compare them to know which 
definitions are modified and how.

Fig (a) New SI Fig (b) Old SI 
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Exercises Exercises

1.  Choose the correct option.
 i)  [L1M1T-2] is the dimensional formula for 
  (A) Velocity (B) Acceleration 

(C) Force  (D) Work
 ii)  The error in the measurement of the 

sides of a rectangle is 1%. The error in 
the measurement of its area is

  (A) 1%  (B) 1/2% 
  (C) 2%  (D) None of the above.
 iii)  Light year is a unit of 
  (A) Time  (B) Mass
  (C) Distance (D) Luminosity
 iv)  Dimensions of kinetic energy are the 

same as that of 
  (A) Force  (B) Acceleration 

(C) Work  (D) Pressure
 v) Which of the following is not a 

fundamental unit?
  (A) cm   (B) kg   
  (C) centigrade  (D) volt 
2.  Answer the following questions. 
 i)  Star A is farther than star B. Which star 

will have a large parallax angle?
 ii)  What are the dimensions of the quantity 

l l g/ , l being the length and g the 
acceleration due to gravity?

 iii) Define absolute error, mean absolute 
error, relative error and percentage error.

 iv) Describe what is meant by significant 
figures and order of magnitude.

 v) If the measured values of two quantities 
are A ± ∆A and B ± ∆B, ∆A and ∆B 
being the mean absolute errors. What is 
the maximum possible error in A ± B? 
Show that if Z

A

B
=

  

  

� � �Z

Z

A

A

B

B
� �

 vi) Derive the formula for kinetic energy of 
a particle having mass m and velocity v 
using dimensional analysis 

3.  Solve numarical examples.  
 i) The masses of two bodies are measured 

to be 15.7 ± 0.2 kg and 27.3 ± 0.3 kg. 
What is the total mass of the two and the 
error in it? 

         [Ans : 43 kg, ± 0.5 kg]
 ii)   The distance travelled by an object in 

time (100 ± 1) s is (5.2 ± 0.1) m. What is 
the speed and it's relative error? 

    [Ans : 0.052 ms-1, ± 0.0292 ms-1]
 iii)  An electron with charge e enters a 

uniform. magnetic field B
��

 with a 
velocity v



. The velocity is perpendicular 
to the magnetic field. The force on the 
charge e is given by  

  | F Bev


|=  Obtain the dimensions of B
��

.
               [Ans: [L0M1T -2I-1]]
 iv)  A large ball 2 m in radius is made up of 

a rope of square cross section with edge 
length 4 mm. Neglecting the air gaps in 
the ball, what is the total length of the 
rope to the nearest order of magnitude? 
     [Ans : ≈106 m = 103km]

 v)  Nuclear radius R has a dependence on 
the mass number (A) as R =1.3×10-

16A1/3 m. For a nucleus of mass number 
A=125, obtain the order of magnitude of 
R expressed in metre.

                 [Ans : -15]
 vi)  In a workshop a worker measures the 

length of a steel plate with a Vernier 
callipers having a least count 0.01 cm. 
Four such measurements of the length 
yielded the following values: 3.11 cm, 
3.13 cm, 3.14 cm, 3.14 cm. Find the 
mean length, the mean absolute error 
and the percentage error in the measured 
value of the length.   

    [Ans:  3.13 cm,  0.01 cm,  0.32%]
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 vii) Find the percentage error in kinetic 
energy of a body having mass 60.0 ± 
0.3 g moving with a velocity 25.0 ± 0.1 
cm/s.  

               [Ans: 1.3%]
 viii) In  Ohm's experiments , the values of 

the unknown resistances were found 
to be 6.12 Ω , 6.09 Ω, 6.22 Ω, 6.15 
Ω. Calculate the mean absolute error, 
relative error and percentage error in 
these measurements. 

              [Ans: 0.04 Ω ,0.0065  Ω , 0.65%] 
 ix) An object is falling freely under the 

gravitational force. Its velocity after 
travelling a distance h is v. If v depends 
upon gravitational acceleration g and 
distance, prove with dimensional 
analysis that v = k gh  where k is a 
constant.

 x) v v� �
�

�at
b

t c
� 0  is a dimensionally valid  

  equation. Obtain the dimensional 
formula for a, b and c where v is velocity, 
t is time and v

0
 is initial velocity.

    [Ans: a- [L1M°T-2], b- [L1M°T°], 
              c- [L°M°T1] ]
 xi) The length, breadth and thickness of 

a rectangular sheet of metal are 4.234 
m, 1.005 m, and 2.01 cm respectively. 
Give the area and volume of the sheet to 
correct significant figures.

       [Ans: 4.255 m2, 8.552 m3]

 xii) If the length of a cylinder is l = 
(4.00±0.001) cm, radius r = (0.0250 
±0.001) cm and mass m = (6.25±0.01) 
gm. Calculate the percentage error in the 
determination of density.

          [Ans: 8.185% ]
 xiii)  When the planet Jupiter is at a distance of 

824.7 million kilometers from the Earth, 
its angular diameter is measured to be 
35.72" of arc. Calculate the diameter of 
the Jupiter.

           [Ans: 1.428×105 km ]
 xiv) If the formula for a physical quantity is

   X
a b

c d
=

4 3

1 3 1 2/ /
 and if the percentage error 

   in the measurements of a, b, c and d 
are 2%, 3%, 3%  and 4%  respectively. 
Calculate percentage error in X.

               [Ans: 20% ]
 xv) Write down the number of significant 

figures in the following: 0.003 m2, 
0.1250 gm cm-2, 6.4 x 106 m, 1.6 x 10-19 
C,  9.1 x 10-31 kg.

               [Ans: 1, 4, 2, 2, 2 ]
 xvi) The diameter of a sphere is 2.14 cm. 

Calculate the volume of the sphere to the 
correct number of significant figures.

        [Ans: 5.13 cm3 ]

***


