ALTERNATING CURRENT #### 1. AC AND DC CURRENT: A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC). If a function suppose current, varies with time as $i = I_m sin (\omega t + \phi)$, it is called sinusoidally varying function. Here I_m is the peak current or maximum current and i is the instantaneous current. The factor $(\omega t + \phi)$ is called phase. ω is called the angular frequency, its unit rad/s. Also $\omega = 2\pi$ f where f is called the frequency, its unit s^{-1} or Hz. Also frequency f = 1/T where T is called the time period. #### 2. AVERAGE VALUE: Average value of a function, from t_1 to t_2 , is defined as $< f > = \frac{\int_{t_1}^{t_2} f dt}{t_2 - t_1}$. We can find the value of $\int_{t_1}^{t_2} f dt$ graphically if the graph is simple. It is the area of f-t graph from t_1 to t_2 . # Solved Example **Example 1.** Find the average value of current shown graphically, from t = 0 to t = 2 sec. **Solution :** From the i – t graph, area from t = 0 to t = 2 sec = $\frac{1}{2}$ × 2 × 10 = 10 Amp. sec. $$\therefore \text{ Average Current} = \frac{10}{2} = 5 \text{ Amp.}$$ **Example 2.** Find the average value of current from t=0 to $t=\frac{2\pi}{\omega}$ if the current varies as $i=I_m sin \omega t$. $\frac{2\pi}{\omega} \qquad \frac{2\pi}{\omega}$ It can be seen graphically that the area of i – t Show graphically that the average of sinusoidally varying current in half cycle may or may not Example 3. be zero. Solution: Figure shows two parts A and B, each half cycle. In part A we can see that the net area is zero \therefore < i > in part A is zero. In part B, area is positive hence in this part $< i > \neq 0$. Find the average value of current i = I_msin ω t from (i) t = $\frac{\pi}{\omega}$ 0 to t = $\frac{\pi}{2\omega}$ (ii) t = to t = $\frac{3\pi}{2\omega}$. Example 4. $\text{(i) <i>} = \frac{\int\limits_{0}^{\frac{\pi}{\omega}} I_{m} \sin \omega t dt}{\frac{\pi}{\omega}} = \frac{\frac{I_{m}}{\omega} \left(1 - \cos \omega \frac{\pi}{\omega}\right)}{\frac{\pi}{\omega}} = \frac{2I_{m}}{\pi} \text{ (ii) < i>} = \frac{\frac{2I_{m}}{2\omega}}{\frac{\pi}{\omega}} = 0.$ Solution: Example 5. Current in an A.C. circuit is given by $i = 2\sqrt{2}\sin(\pi t + \pi/4)$, then the average value of current during time t = 0 to t = 1 sec is: $<i>> = \int_{0}^{1} i \, dt$ = $2\sqrt{2} \int_{1}^{1} \sin(\pi t + \frac{\pi}{4}) = \frac{4}{\pi}$ Solution: Ans. #### \square 3. **ROOT MEAN SQUARE VALUE:** Root Mean Square Value of a function, from t_1 to t_2 , is defined as $f_{rms} = \sqrt{\int\limits_{t_1}^{t_2} f^2 dt}$. # Solved Example - Find the rms value of current from t=0 to $t=\frac{2\pi}{\omega}$ if the current varies as $i=I_m sin \omega t$. Example 6. $i_{\text{rms}} = \sqrt{\frac{\int\limits_{0}^{2\pi} I_{\text{m}}^{2} \sin^{2} \omega t dt}{2\pi}} = \sqrt{\frac{I_{\text{m}}^{2}}{2}} = \frac{I_{\text{m}}}{\sqrt{2}}$ Solution: Find the rms value of current i = I_msin ω t from (i) t = 0 to t = $\frac{\pi}{\omega}$ (ii) t = $\frac{\pi}{2\omega}$ to t = $\frac{3\pi}{2\omega}$. Example 7. Solution: (i) irms = $$\sqrt{\frac{\int_{0}^{\frac{\pi}{\omega}}^{1} I_{m}^{2} \sin^{2} \omega t dt}{\frac{\pi}{\omega}}} = \sqrt{\frac{I_{m}^{2}}{2}} = \frac{I_{m}}{\sqrt{2}}$$ (ii) $\langle i \rangle = \sqrt{\frac{\frac{3\pi}{2\omega}}{\frac{\pi}{2\omega}}} = \sqrt{\frac{I_{m}^{2}}{2}} = \sqrt{\frac{I_{m}^{2}}{2}} = \frac{I_{m}}{\sqrt{2}}$ **Note:** • The r m s values for one cycle and half cycle (either positive half cycle or negative half cycle) is same. • From the above two examples note that for sinusoidal functions rms value (Also called effective value) = $$\frac{\text{peak value}}{\sqrt{2}}$$ or $I_{\text{rms}} = \frac{I_{\text{m}}}{\sqrt{2}}$ **Example 8.** Find the effective value of current $i = 2 \sin 100 \pi t + 2 \cos (100 \pi t + 30^{\circ})$. **Solution :** The equation can be written as $i = 2 \sin 100 \pi t + 2 \sin (100 \pi t + 120^{\circ})$ so phase difference $\phi = 120^{\circ}$ $$I_{m})_{res} = \sqrt{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\phi}$$ = $\sqrt{4+4+2\times2\times2\left(-\frac{1}{2}\right)}$ = 2, so effective value or rms value = 2 / $\sqrt{2}$ = $\sqrt{2}$ A #### 4. AC SINUSOIDAL SOURCE : Figure shows a coil rotating in a magnetic field. The flux in the coil changes as $\phi = \text{NBA} \cos (\omega t + \phi)$. Emf induced in the coil, from Faraday's law is $\frac{-d\phi}{dt} = \text{N B A} \omega \sin (\omega t + \phi)$. Thus the emf between the points A and B will vary as $E = E_0 \sin (\omega t + \phi)$. The potential difference between the points A and B will also vary as $V = V_0 \sin (\omega t + \phi)$. The symbolic notation of the above arrangement is A ω . We do not put any + or – sign on the AC source. #### 5. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT: Consider an electrical device which may be a source, a capacitor, a resistor, an inductor or any combination of these. Let the potential difference be $V = V_A - V_B = V_m \sin \omega t$. Let the current through it be $i = I_m \sin(\omega t + \phi)$. Instantaneous power P consumed by the device $= V i = (V_m \sin \omega t) (I_m \sin(\omega t + \phi))$ $\text{Average power consumed in a cycle} = \frac{\int\limits_{0}^{\frac{2\pi}{\omega}} \text{Pdt}}{\frac{2\pi}{\omega}} = V_{\text{m}} \text{ I}_{\text{m}} \cos \phi = \frac{V_{\text{m}}}{\sqrt{2}} \cdot \frac{I_{\text{m}}}{\sqrt{2}} \cdot \cos \phi = V_{\text{rms}} \text{ I}_{\text{rms}} \cos \phi.$ Here $\cos \phi$ is called **power factor**. **Note:** Isin is called "wattless current". # Solved Examples **Example 9.** When a voltage $v_s = 200\sqrt{2} \sin{(\omega t + 15^\circ)}$ is applied to an AC circuit the current in the circuit is found to be $i = 2 \sin{(\omega t + \pi/4)}$ then average power consumed in the circuit is (A) 200 watt (B) $400 \sqrt{2}$ watt (C) 100 √6 watt (D) 200 √2 watt Solution: $$P_{av} = v_{rms} I_{rms} \cos \phi = \frac{200\sqrt{2}}{\sqrt{2}} \cdot \frac{2}{\sqrt{2}} \cos (30^{\circ}) = 100 \sqrt{6} \text{ watt}$$ #### 6. SOME DEFINITIONS: The factor $\cos \phi$ is called Power factor. $I_m \sin \phi$ is called wattless current. Impedance Z is defined as $$Z = \frac{V_m}{I_m} = \frac{V_{ms}}{I_{ms}}$$ ωL is called inductive reactance and is denoted by X_L $\frac{1}{ωC}$ is called capacitive reactance and is denoted by X_C . ### 7. PURELY RESISTIVE CIRCUIT: Writing KVL along the circuit, $$V_s - iR = 0$$ or $$i = \frac{V_s}{R} = \frac{V_m \sin \omega t}{R} = I_m \sin \omega t$$ ⇒ We see that the phase difference between potential difference across resistance, V_R and i_R is 0. $$I_{m} = \frac{V_{m}}{R} \qquad \Rightarrow \quad I_{rms} = \frac{V_{rms}}{R} \quad ; \quad = V_{rms} \, I_{rms} cos \, \phi = \frac{{V_{rms}}^{2}}{R}$$ #### 8. PURELY CAPACITIVE CIRCUIT: Writing KVL along the circuit, $V_s - \frac{q}{C} = 0$ or $$i = \frac{dq}{dt} = \frac{d(CV)}{dt} = \frac{d(CV_m \sin \omega t)}{dt}$$ = $CV_m\omega\cos\omega t = \frac{V_m}{1/\omega C}\cos\omega t = \frac{V_m}{X_c}\cos\omega t = I_m\cos\omega t.$ $X_C = \frac{1}{\omega C}$ and is called capacitive reactance. Its unit is ohm $\Omega.$ From the graph of current versus time and voltage versus time $\frac{T}{4}$, it is clear that current attains its peak value at a time before the time at which voltage attains its peak value. Corresponding to $\frac{T}{4}$ the phase difference $=\omega\Delta t=\frac{2\pi}{T}\frac{T}{4}=\frac{2\pi}{4}=\frac{\pi}{2}$. ic leads v_C by $\pi/2$ Diagrammatically (phasor diagram) it is represented as Since $\phi = 90^{\circ}$, $\langle P \rangle = V_{rms} I_{rms} \cos \phi = 0$ # Solved Examples **Example 10.** An alternating voltage $E = 200 \sqrt{2} \sin (100 \text{ t}) \text{ V}$ is connected to a $1\mu\text{F}$ capacitor through an ac ammeter (it reads rms value). What will be the reading of the ammeter? **Solution :** Comparing $E = 200 \sqrt{2} \sin (100 t)$ with $E = E_0 \sin \omega t$ we find that, $$E_0 = 200 \sqrt{2} \text{ V}$$ and $\omega = 100 \text{ (rad/s)}$ So, $$X_C = \frac{1}{\omega C} = \frac{1}{100 \times 10^{-6}} = 10^4 \Omega$$ And as ac instruments reads rms value, the reading of ammeter will be, $$I_{\text{rms}} = \frac{E_{\text{rms}}}{X_{\text{C}}} = \frac{E_{\text{0}}}{\sqrt{2}X_{\text{C}}} \left[as \quad E_{\text{rms}} = \frac{E_{\text{0}}}{\sqrt{2}} \right]$$ i.e. $$I_{rms} = \frac{200\sqrt{2}}{\sqrt{2} \times 10^4} = 20 \text{mA Ans.}$$ #### 9. PURELY INDUCTIVE CIRCUIT: Writing KVL along the circuit, $$V_s - L \frac{di}{dt} = 0$$ $\Rightarrow L = \frac{di}{dt} V_m \sin \omega t$ $$\int Ldi = \int V_m \sin \omega t \, dt \Rightarrow i = -\frac{V_m}{\omega I} \cos \omega t + C$$ $$< i > = 0$$ $$C = 0$$ $$\therefore \ i = - \ \frac{V_m}{\omega L} cos\omega t \ \Rightarrow \ I_m = \frac{V_m}{X_L}$$ From the graph of current versus time and voltage versus time $\frac{T}{4}$, it is clear that voltage attains its peak value at a time before the time at which current attains its peak value. Corresponding to $\frac{T}{4}$ the phase Diagrammatically (phasor diagram) it is represented as $\stackrel{V_m}{\longrightarrow} I_m$. i_L lags behind v_L by $\pi/2$. Since $\phi = 90^\circ$, $< P > = V_{rms}I_{rms}cos \phi = 0$ ### Summary: | AC source connected with | ф | | Z | Phasor Diagram | |--------------------------|-----|--|----------------|---| | Pure Resistor | 0 | V _R is in
same
phase with
i _R | R | $\xrightarrow{\bigvee_{m}} I_{m}$ | | Pure Inductor | π/2 | V _L leads i _L | X_L | $\stackrel{\bigvee_{m}}{\blacktriangleright} I_{m}$ | | Pure Capacitor | π/2 | V _C lags i _C | X _c | $\bigvee_{V_{m}} \mathrm{I}_{m}$ | #### 10. RC SERIES CIRCUIT WITH AN AC SOURCE: Let $$i = I_m \sin(\omega t + \phi)$$ \Rightarrow V_R=iR= I_mR sin (
ω t+ ϕ) $$V_C = (I_m X_C) \sin(\omega t + \phi - \frac{\pi}{2}) \implies V_S = V_R + V_C$$ $V_m \sin (\omega t + \phi) = I_m R \sin (\omega t + \phi) + I_m X_c \sin (\omega t + \phi - \frac{\pi}{2})$ $$V_m = \sqrt{(I_m R)^2 + (I_m X_c)^2 + 2(I_m R)(I_m X_c)\cos{\frac{\pi}{2}}}$$ $$I_{m} = \frac{V_{m}}{\sqrt{R^2 + Y_{0}^2}}$$ $$I_{m} = \frac{V_{m}}{\sqrt{R^{2} + X_{c}^{2}}} \qquad \Rightarrow \quad Z = \sqrt{R^{2} + X_{c}^{2}}$$ Using phasor diagram also we can find the above result. $$\tan \phi = \frac{I_m X_C}{I_R} = \frac{X_C}{R}$$. # Solved Examples In an RC series circuit, the rms voltage of source is 200V and its Example 11. frequency is 50 Hz. If R =100 Ω and C= $\frac{100}{}\,\mu\text{F},$ find - (ii) Power factor angle - (iii) Power factor - (iv) Current - (v) Maximum current - (vi) voltage across R - (vii) voltage across C - (viii) max voltage across R - (ix) max voltage across C - (x) < P > $(xi) < P_R >$ $(xii) < P_C >$ Solution: $$X_{\rm C} = \frac{10^6}{\frac{100}{\pi}(2\pi50)} = 100 \ \Omega$$ (i) $$Z = \sqrt{R^2 + Xc^2} = \sqrt{100^2 + (100)^2} = 100 \sqrt{2} \Omega$$ (ii) $$\tan \phi = \frac{X_C}{R} = 1$$ $\therefore \phi = 45^\circ$ ∴ $$\phi = 45^{\circ}$$ (iii) Power factor = $$\cos \phi = \frac{1}{\sqrt{2}}$$ (iv) Current $$I_{rms} = \frac{V_{rms}}{Z} = \frac{200}{100\sqrt{2}} = \sqrt{2} A$$ (v) Maximum current = $$I_{rms} \sqrt{2} = 2A$$ (vi) voltage across R = $$V_{R,rms}$$ = I_{rms} R = $\sqrt{2}$ x 100 Volt (vii) voltage across C = $$V_{C,rms}$$ = $I_{rms}X_C$ = $\sqrt{2}$ × 100 Volt (viii) max voltage across R = $$\sqrt{2}$$ V_{R,rms} = 200 Volt (ix) max voltage across $$C = \sqrt{2} V_{C,rms} = 200 \text{ Volt}$$ (x) $$= V_{rms}I_{rms}cos\phi = 200 \times \sqrt{2} \times \frac{1}{\sqrt{2}} = 200 \text{ Watt}$$ (xi) $$<$$ P_R $> = I_{rms}^2 R = 200 W$ $$(xii) < P_C > = 0$$ **Example 12.** In the above question if $V_s(t) = 220 \sqrt{2} \sin(2\pi 50 t)$, find (a) i (t), (b) v_R and (c) $v_C(t)$ **Solution :** (a) $i(t) = I_m \sin(\omega t + \phi) = 2\sin(2\pi 50 t + 45^\circ)$ (b) $V_R = i_R \cdot R = i(t) R = 2 \times 100 \sin (100 \pi t + 45^\circ)$ (c) V_C (t) = $i_C X_C$ (with a phase lag of 90°) = $2 \times 100 \sin (100 \pi t + 45 - 90)$ **Example 13.** An ac source of angular frequency ω is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega/3$ (but maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω . **Solution:** According to given problem, $$I = \frac{V}{Z} = \frac{V}{[R^2 + (1/C\omega)^2]^{1/2}} \qquad(1)$$ and, $$\frac{I}{2} = \frac{V}{[R^2 + (3/C\omega)^2]^{1/2}}$$(2 Substituting the value of I from Equation (1) in (2), $$4\left(R^2 + \frac{1}{C^2\omega^2}\right) = R^2 + \frac{9}{C^2\omega^2}$$. i.e., $\frac{1}{C^2\omega^2} = \frac{3}{5}R^2$ So that, $$\frac{X}{R} = \frac{(1/C_{\odot})}{R} = \frac{\left(\frac{3}{5}R^2\right)^{1/2}}{R} = \sqrt{\frac{3}{5}}$$ Ans Solution: ### 11. LR SERIES CIRCUIT WITH AN AC SOURCE: From the phasor diagram $V = \sqrt{\left(IR\right)^2 + \left(IX_L\right)^2} = I\sqrt{\left(R\right)^2 + \left(X_L\right)^2} = IZ \implies \tan \phi = \frac{IX_L}{IR} = \frac{X_L}{R}$ -Solved Examples— **Example 14.** A $\frac{9}{100\pi}$ H inductor and a 12 ohm resistance are connected in series to a 225 V, 50 Hz ac source. Calculate the current in the circuit and the phase angle between the current and the source voltage. Here $$X_L = \omega L = 2\pi f L = 2\pi \times 50 \times \frac{9}{100\pi} = 9 \Omega$$ So, $$Z = \sqrt{R^2 + X_L^2} = \sqrt{12^2 + 9^2} = 15 \Omega$$ So (a) $$I = \frac{V}{Z} = \frac{225}{15} = 15 \text{ A}$$ Ans. Ans. and (b) $$\phi = \tan^{-1}\left(\frac{X_L}{R}\right) = \tan^{-1}\left(\frac{9}{12}\right) = \tan^{-1} 3/4 = 37^{\circ}$$ i.e., the current will lag the applied voltage by 37° in phase. **Example 15.** When an inductor coil is connected to an ideal battery of emf 10 V, a constant current 2.5 A flows. When the same inductor coil is connected to an AC source of 10 V and 50 Hz then the current is 2A. Find out inductance of the coil. **Solution:** When the coil is connected to dc source, the final current is decided by the resistance of the coil . $$\therefore \quad r = \frac{10}{2.5} = 4 \ \Omega$$ When the coil is connected to ac source, the final current is decided by the impedance of the coil. $$\therefore \quad Z = \frac{10}{2} = 5 \,\Omega$$ But $$Z = \sqrt{(r)^2 + (X_L)^2}$$ $X_L^2 = 5^2 - 4^2 = 9$ $$X_L = 3 \Omega$$ $$\therefore$$ $\omega L = 2 \pi fL = 3$ $$\therefore$$ $2\pi 50 L = 3$ \therefore $L = 3/100\pi$ Henry **Example 16.** A bulb is rated at 100 V, 100 W, it can be treated as a resistor .Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb to operate the bulb at its rated power with the help of an ac source of 200 V and 50 Hz. **Solution :** From the rating of the bulb , the resistance of the bulb is $R = \frac{V_{rms}^{2}}{P} = 100 \Omega$ For the bulb to be operated at its rated value the rms current through it should be $1\mathrm{A}$ Also, $$I_{rms} = \frac{V_{rms}}{Z}$$ $$\therefore 1 = \frac{200}{\sqrt{100^2 + (2\pi 50L)^2}} \quad ; L = \frac{\sqrt{3}}{\pi} H$$ **Example 17.** A choke coil is needed to operate an arc lamp at 160 V (rms) and 50 Hz. The arc lamp has an effective resistance of 5 Ω when running of 10 A (rms). Calculate the inductance of the choke coil. If the same arc lamp is to be operated on 160 V (dc), what additional resistance is required? Compare the power losses in both cases. **Solution :** As for lamp $V_R = IR = 10 \times 5 = 50$ V, so when it is connected to 160 V ac source through a choke in series, $$V^2 = V_R^2 + V_L^2$$, $$V_L = \sqrt{160^2 - 50^2} = 152 \text{ V}$$ and as, $$V_L = IX_L = I\omega L = 2\pi f LI$$ So, L = $$\frac{V_L}{2\pi fI}$$ = $\frac{152}{2 \times \pi \times 50 \times 10}$ = 4.84 × 10⁻² H **Ans.** Now the lamp is to be operated at 160 V dc; instead of choke if additional resistance r is put in series with it, $$V = I(R + r)$$, i.e., $160 = 10(5 + r)$ i.e., $r = 11 \Omega$ In case of ac, as choke has no resistance, power loss in the choke will be zero while the bulb will consume, $$P = I^2 R = 10^2 \times 5 = 500 W$$ However, in case of dc as resistance r is to be used instead of choke, the power loss in the resistance r will be. $$PL = 10^2 \times 11 = 1100 \text{ W}$$ while the bulb will still consume 500 W, i.e., when the lamp is run on resistance r instead of choke more than double the power consumed by the lamp is wasted by the resistance r. ### 12. LC SERIES CIRCUIT WITH AN AC SOURCE: From the phasor diagram $V=I|(X_L-X_C)|=IZ$ $$\phi = 90^{\circ}$$ #### 13. RLC SERIES CIRCUIT WITH AN AC SOURCE: From the phasor diagram $$V = \sqrt{(IR)^{2} + (IX_{L} - IX_{C})^{2}} = I\sqrt{(R)^{2} + (X_{L} - X_{C})^{2}} = IZZ = \sqrt{(R)^{2} + (X_{L} - X_{C})^{2}}$$ $$\tan \phi = \frac{I(X_{L} - X_{C})}{IR} = \frac{(X_{L} - X_{C})}{R}$$ #### 13.1 Resonance: Amplitude of current (and therefore I_{rms} also) in an RLC series circuit is maximum for a given value of V_m and R, if the impedance of the circuit is minimum, which will be when X_L - X_C =0. This condition is called **resonance**. So at resonance: $X_L-X_C=0$. or $\omega L = \frac{1}{\omega C}$ or $\omega = \frac{1}{\sqrt{LC}}$. Let us denote this ω as ω_r . # Solved Examples #### **Example 18.** In the circuit shown in the figure, find : - (a) the reactance of the circuit . - (b) impedance of the circuit - (c) the current - (d) readings of the ideal AC voltmeters (these are hot wire instruments and read rms values). :. The reactance of the circuit $X = X_L - X_C = 200-100 = 100 \Omega$ Since $X_L > X_C$, the circuit is called inductive. (b) impedance of the circuit $$Z = \sqrt{R^2 + X^2} = \sqrt{100^2 + 100^2} = 100\Omega$$ (c) the current $$I_{rms} = \frac{V_{rms}}{Z} = \frac{200}{100\sqrt{2}} = \sqrt{2} A$$ (d) readings of the ideal voltmeter $$V_1$$: $I_{rms}X_L = 200 \sqrt{2} \text{ Volt}$ $$V_2$$: $I_{rms}R = 100 \sqrt{2} \text{ Volt}$ V₃: $$I_{rms}X_c = 100\sqrt{2}$$ Volt V4: $$I_{rms} \sqrt{R^2 + X_L^2} = 100 \sqrt{10} \text{ Volt}$$ V_5 : $I_{rms}Z = 200$ Volt, which also happens to be the voltage of source. # 13.2 Q VALUE (QUALITY FACTOR) OF LCR SERIES CIRCUIT (NOT IN IIT SYLLABUS) : Q value is defined as $\frac{X_L}{R}$ where X_L is the inductive reactance of the circuit, at resonance. More Q value implies more sharpness of I v/s ω curve. Quality factor : Q = $$\frac{X_L}{R} = \frac{X_C}{R}$$ $$Q = \frac{\text{Re sonance freq.}}{\text{Band width}} = \frac{\omega_R}{\Delta \omega} = \frac{f_R}{f_2 - f_1}$$ where f₁ & f₂ are half power frequencies. #### 14. TRANSFORMER A transformer changes an alternating potential difference from one value to another of greater or smaller value using the principle of mutual induction. Two coils called the primary and secondary windings, which are not connected to one another in any way, are wound on a complete soft iron core. When an alternating voltage E_P is applied to the primary, the resulting current produces a large alternating magnetic flux which links the secondary and induces an emf E_S in it. It can be shown that for an ideal transformer $$\frac{\mathsf{E}_{\mathsf{S}}}{\mathsf{E}_{\mathsf{D}}} = \frac{\mathsf{N}_{\mathsf{S}}}{\mathsf{N}_{\mathsf{D}}} = \frac{\mathsf{I}_{\mathsf{p}}}{\mathsf{I}_{\mathsf{S}}} \; ;$$ $\frac{N_s}{N_p}$ = turns ratio of the transformer. $\mathsf{E}_\mathsf{S},\,\mathsf{N}$ and I are the emf, number of turns and current in the coils. $$N_{\text{S}} > N_{\text{P}} \Rightarrow \ E_{\text{S}} > E_{\text{P}} \qquad \rightarrow \qquad \text{step up transformer}.$$ $$N_S < N_P \Rightarrow E_S < E_P \rightarrow \text{step down transformer.}$$ **Note:** Phase difference between the primary and
secondary voltage is π . ### 15. ENERGY LOSSES IN TRANSFORMER Although transformers are very efficient devices, small energy losses do occur in them due to four main causes. #### 15.1. RESISTANCE OF THE WINDINGS: The copper wire used for the windings has resistance and so I²R heat losses occur. #### 15.2. EDDY CURRENT: Eddy current is induced in a conductor when it is placed in a changing magnetic field or when a conductor is moved in a magnetic field and/or both. Any imagined circuit within the conductor will change its magnetic flux linkage and the subsequent induced emf. will drive current around the circuit. Thus the alternating magnetic flux induces eddy currents in the iron core and causes heating. The effect is reduced by **laminating** the core, i.e., the core is made of this sheets of iron with insulating sheets between them so that the circuits for the eddy currents are broken. #### 15.3. HYSTERESIS: The magnetization of the core is repeatedly reversed by the alternating magnetic field. The resulting expenditure of energy in the core appears as heat and is kept to a minimum by using a magnetic material which has a low hysteresis loss. #### 15.4. FLUX LEAKAGE: The flux due to the primary may not all link the secondary if the core is badly designed or has air gaps in it .Very large transformers have to be oil cooled to prevent overheating. # – Solved Example - **Example 19.** In a step-up transformer the turns ratio is 10. If the frequency of the current in the primary coil is 50 Hz then the frequency of the current in the secondary coil will b (A) 500 Hz (B) 5 Hz (C) 60 Hz (D*) 50 Hz **Solution :** Frequency of the current remains same, only magnitudes of current changes in a tranformer. **Example 20.** A power transformer is used to step up an alternating emf of 220 volt to11 kv to transmit 4.4 kw of power. If the primary coil has 1000 turns, what is the current in the secondary? (A) 4 A (B) 0.4 A (C) 0.04 A (D) 0.2 A 2007(~) Answer: (C) **Solution :** $I_s = P_S/V_S \implies I_S = \frac{4.4 \times 10^3}{11 \times 10^3} = 0.4 A$ **Ans.** **Example 21.** In the circuit diagram shown, $X_C = 100\Omega$, $X_L = 200\Omega$ & $R = 100\Omega$. The effective current through the source is: (A) 2 A (B) $2\sqrt{2}$ A (C) 0.5 A (D) $\sqrt{0.4}$ A $$I_R = \frac{V}{R} = \frac{200}{100} = 2A$$ $$I' = \frac{V}{X_1 - X_C} = \frac{200}{100} = 2A$$ $$I = \sqrt{I_{R}^{2} + I'^{2}} = 2\sqrt{2} \text{ Amp.}$$ 200V $$\rightleftharpoons$$ R \rightleftharpoons L ($X_c = 100\Omega$) $$I = \sqrt{I_R} + I = 2\sqrt{2} \text{ Amp}$$ Example 22. If for above circuit the capacitive reactance is two times of Inductive Reactance, and resistance R is equal to Inductive Reactance then power factor of circuit is. (C) $$\frac{1}{2}$$ (D) $$\frac{2}{\sqrt{5}}$$ Answer: $X_C = 2X_L = 2R$ Solution: $$\frac{1}{z^2} = \frac{1}{R^2} + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2 = \frac{1}{R^2} + \left(\frac{1}{2R} - \frac{1}{R}\right)^2 = \frac{5}{4R^2}$$ $$z=\frac{2R}{\sqrt{5}}$$ Power factor in parallel combination = $\cos \theta = \frac{z}{R} = \frac{2}{\sqrt{L_R}}$. Alternate solution: $$\frac{1}{\sqrt{I^{2} + \frac{I^{2}}{4}}} = \frac{2}{\sqrt{5}}$$ # Solved Miscellaneous Problems. Problem 1. The peak voltage in a 220 V AC source is (A) 220 V (B) about 160 V (C) about 310 V (D) 440 V Solution: $V_0 = \sqrt{2} V_{rms} = \sqrt{2} \times 220 \approx 330 V$ Ans. is (C) Problem 2. An AC source is rated 220V, 50 Hz. The average voltage is calculated in a time interval of 0.01 s. It (A) must be zero (B) may be zero (C) is never zero (D) is (220/√2)V Solution: May be zero Ans. is (B) Problem 3. Find the effective value of current $i = 2 + 4 \cos 100 \pi t$. Solution: $I_{rms} = \left[\int_0^T \frac{(2 + 4\cos 100\pi t)^2 dt}{T} \right]^{1/2} = 2\sqrt{3}$ **Problem 4.** The peak value of an alternating current is 5 A and its frequency is 60 Hz. Find its rms value. How long will the current take to reach the peak value starting from zero? **Solution :** $I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{5}{\sqrt{2}} A$, $t = \frac{T}{4} = \frac{1}{240} s$ **Problem 5.** An alternating current having peak value 14 A is used to heat a metal wire. To produce the same heating effect, a constant current i can be used where i is (A) 14 A (B) about 20 A (C) 7 A (D) about 10 A **Solution**: $I_{RMS} = \frac{I_0}{\sqrt{2}} = \frac{14}{\sqrt{2}} \approx 10$ Ans. is (D) **Problem 6.** Find the average power concumed in the circuit if a voltage $v_s = 200\sqrt{2} \sin \omega t$ is applied to an AC circuit and the current in the circuit is found to be $i = 2 \sin (\omega t + \pi/4)$. **Solution :** $P = V_{RMS} I_{RMS} \cos \phi = \frac{200\sqrt{2}}{\sqrt{2}} \times \frac{2}{\sqrt{2}} \times \cos \frac{\pi}{4} = 200 \text{ W}$ **Problem 7.** A capacitor acts as an infinite resistance for (A) DC (B) AC (C) DC as well as AC (D) neither AC nor DC **Solution :** $x_C = \frac{1}{\omega c}$ for DC $\omega = 0$. So, $x_C = \infty$ Ans. is (A) **Problem 8.** A 10 μ F capacitor is connected with an ac source E = 200 $\sqrt{2}$ sin (100 t) V through an ac ammeter (it reads rms value). What will be the reading of the ammeter? **Solution :** $I_0 = \frac{V_0}{x_C} = \frac{200\sqrt{2}}{1/\omega C}$; $I_{RMS} = \frac{I_0}{\sqrt{2}} = 200 \text{ mA}$ **Problem 9.** Find the reactance of a capacitor (C = 200 μ F) when it is connected to (a) 10 Hz AC source, (b) a 50 Hz AC source and (c) a 500 Hz AC source. **Solution :** (a) $x_C = \frac{1}{\omega C} = \frac{1}{2\pi fC} \approx 80\Omega$ for f = 10 Hz AC source, (b) $x_C = \frac{1}{\omega C} = \frac{1}{2\pi fC} \approx 16\Omega$ for f = 50 Hz and (c) $x_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} \approx 1.6\Omega$ for f= 500 Hz. **Problem 10.** An inductor (L = 200mH) is connected to an AC source of peak current. What is the instantaneous voltage of the source when the current is at its peak value? **Solution :** Because phase difference between voltage and current is $\pi/2$ for pure inductor. So, Ans. is zero **Problem 11.** An AC source producing emf $E = E_0[\cos(100\pi \, s^{-1})t + \cos(500 \, \pi s^{-1})t]$ is connected in series with a capacitor and a resistor. The current in the circuit is found to be $i = i_1 \cos[(100 \pi s^{-1})t + \phi_1] + i_2 \cos[(500 \pi s^{-1})t + \phi_1]$ (A) $i_1 > i_2$ (B) $i_1 = i_2$ (C) $i_1 < i_2$ (D) the information is insufficient to find the relation between i₁ and i₂ **Solution :** Impedence z is given by $z = \sqrt{\left(\frac{1}{\omega C}\right)^2 + R^2}$ For higher ω, z will be lower so current will be higher. Ans is (C) Problem 12. An alternating voltage of 220 volt r.m.s. at a frequency of 40 cycles/sec is supplied to a circuit containing a pure inductance of 0.01 H and a pure resistance of 6 ohms in series. Calculate (i) the current, (ii) potential difference across the resistance, (iii) potential difference across the inductance, (iv) the time lag, (v) power factor. (i) $z = \sqrt{(\omega L)^2 + R^2} = \sqrt{(2\pi \times 40 \times 0.01^2)^2 + 6^2} = \sqrt{(42.4)}$ Solution: $I_{rms} = \frac{220}{z} = 33.83 \text{ amp.}$ (ii) $V_{rms} = I_{rms} \times R = 202.98 \text{ volts}$ (ii) $V_{rms} = I_{rms} \times R = 202.98 \text{ volts}$ (iii) $\omega L \times I_{rms} = 96.83 \text{ volts}$ (iv) $t = T \frac{\phi}{2\pi} = 0.01579 \text{ sec}$ (v) $\cos \phi = \frac{R}{Z} = 0.92$ Which of the following plots may represents the reactance of a series LC combination? Problem 13. Answer: (D) Problem 14. A series AC circuit has resistance of 4Ω and a reactance of 3Ω . The impedance of the circuit is (A) 5Ω (B) 7Ω (C) $12/7 \Omega$ (D) $7/12 \Omega$ $Z = \sqrt{4^2 + 3^2} = 5\Omega$ Solution: Ans. is (A) # Exercise-1 Marked Questions can be used as Revision Questions. 🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है। ### **PART - I: SUBJECTIVE QUESTIONS** ### भाग - I: विषयात्मक प्रश्न (SUBJECTIVE QUESTIONS) ### Section (A): Average, peak and RMS value खण्ड (A): औसत,शीर्ष तथा वर्गमाध्य मूल मान **A-1.** The household supply of electricity is at 220 V rms value and 50 Hz .Calculate the peak voltage and the minimum possible time in which the voltage can change from the rms value to zero. **Ans.** $220\sqrt{2}$ V. 2.5 ms **Sol.** $V_O = \sqrt{2} \ V_{rms} = 220 \ \sqrt{2}$ $$\Delta V = \frac{V_0}{\sqrt{2}} \implies \frac{V_0}{\sqrt{2}} = V_0 \sin \omega t$$ $\Rightarrow 2\pi f \times t = \frac{\pi}{4} \quad t = 2.5 \text{ ms}$ Hindi घरों में 220 V वर्गमाध्य मूल मान तथा 50 Hz की विद्युत आपूर्ती की जाती है तो शीर्ष विभव ज्ञात करो तथा विभव को वर्गमाध्य मूल मान से शून्य तक परिवर्तित होने में न्यूनतम कितना समय लगेगा। **Ans:** $220\sqrt{2}$ V, 2.5 ms **Sol.** $V_0 = \sqrt{2}$ $V_{rms} = 220 \sqrt{2}$ $$\Delta V = \frac{V_0}{\sqrt{2}} \implies \frac{V_0}{\sqrt{2}} = V_0 \sin \omega t$$ $$\Rightarrow 2\pi f \times t = \frac{\pi}{4} \quad t = 2.5 \text{ ms}$$ **A-2.** In a LR circuit discharging current is given by $I = I_0 e^{-t/\tau}$ where τ is the time constant of the circuit find the rms current for the period t = 0 to $t = \tau$. Ans. $\frac{I_o}{e} \sqrt{(e^2 - 1)/2}$ Sol. $$I_{rms}^2 = \frac{\int_0^{\tau} \left(I_O e^{-\frac{t}{\tau}}\right)^2 . dt}{\tau} \Rightarrow I_{rms} = \frac{I_O}{e} \sqrt{(e^2 - 1)/2}$$ Hindi **A-2.** LR परिपथ में प्रवाहित निरावेशन धारा $I = I_0 e^{-t/\tau}$ से व्यक्त की जाती है, जहां τ परिपथ का समय नियतांक है। तो t = 0 से $t = \tau$ के लिए वर्गमाध्य मूल धारा ज्ञात करो। Ans. $\frac{I_o}{e}\sqrt{(e^2-1)/2}$ Sol. $$I_{\text{rms}}^2 = \int_0^{\tau} \left(I_0 - e^{-\frac{t}{\tau}} \right)^2 . dt = \frac{I_0}{e} \sqrt{(e^2 - 1)/2}$$ **A-3.** If a direct current of value 'a' ampere is superimposed on an alternating current $I = b \sin ωt$ flowing through a wire, what is the effective(rms) value of the resulting current in the circuit? **Ans.** $$I_{eff} = \left[a^2 + \frac{1}{2} b^2 \right]^{1/2}$$ **Sol.** $$I_{rms} = \begin{bmatrix} \int_{0}^{T} (a + b \sin \omega t)^{2} dt \\ \frac{o}{T} \end{bmatrix}^{\frac{1}{2}} = I_{eff} =
\left[a^{2} + \frac{1}{2}b^{2} \right]^{\frac{1}{2}}$$ Hindi **A-3.** एक तार में प्रवाहित प्रत्यावर्ती धारा $I = b \sin ωt$ पर 'a' ऐम्पियर वाली दिष्ट धारा अध्यारोपित की जाती है तो परिपथ में परिणामी धारा का प्रभावी (वर्गमाध्य मूल) मान क्या है ? **Ans.** $$I_{eff} = \left[a^2 + \frac{1}{2} b^2 \right]^{1/2}$$ **Sol.** $$I_{rms} = \begin{bmatrix} \int_{0}^{T} (a + b \sin \omega t)^{2} dt \\ T \end{bmatrix}^{\frac{1}{2}} = I_{eff} = \left[a^{2} + \frac{1}{2} b^{2} \right]^{1/2}$$ **A-4.** Find the average for the saw-tooth voltage of peak value V_0 from t=0 to t=2T as shown in figure. Ans. (**Sol.** For t = 0 to t = 2T here area under the curve is zero so < V > = 0 A-4. चित्र में दर्शाये, शीर्ष मान Vo वाले त्रिभुजाकार विभव (आरादात) का t = 0 से t = 2T के लिए औसत मान ज्ञात करो — Ans. (**Sol.** t = 0 से t = 2 T तक यहाँ वक्र से घिरो क्षेत्रफल शून्य है अतः < V > = 0 ### Section (B): Power consumed in an ac circuit खण्ड (B): प्रत्यावर्ती धारा परिपथ में शक्ति व्यय **B-1.** A bulb is designed to operate at 12 volts constant direct current. If this bulb is connected to an alternating current source and gives same brightness. What would be the peak voltage of the source? Ans: $12\sqrt{2}$ volts **Sol.** $V_0 = V_{rms} \times \sqrt{2} = 12\sqrt{2}$ Hindi **B-1.** एक विद्युत बल्ब 12 वोल्ट अचर दिष्ट धारा स्त्रोत पर कार्य करता है। इस बल्ब को प्रत्यावर्ती स्रोत से जोड़ने पर यह उसी के समान चमक देता है तो स्रोत का शीर्ष विभव क्या होगा? Ans: $12\sqrt{2}$ volts **Sol.** $V_0 = V_{rms} \times \sqrt{2} = 12\sqrt{2}$ **B-2.** A resistor of resistance 100 Ω is connected to an AC source ε = (12V) sin (250 π s $^{-1}$)t. Find the power consumed by the bulb. **Ans:** 0.72 W **Sol.** P = V_{rms} I_{rms} cos ϕ = I_{rms}² × R = $\frac{\varepsilon_{rms}^2}{R}$ = $\frac{144}{2 \times 100}$ = 0.72 W Hindi **B-2.** 100 Ω का प्रतिरोध ε = (12V) sin (250 π s $^{-1}$)t के प्रत्यावर्ती धारा स्रोत से जुड़ा है। तो बल्ब द्वारा व्ययित शक्ति ज्ञात करों? **Ans:** 0.72 W **Sol.** $P = V_{rms} I_{rms} \cos \phi = I_{rms}^2 \times R = \frac{\varepsilon_{rms}^2}{R} = \frac{144}{2 \times 100} = 0.72 \text{ W}$ B 3.2a In an ac circuit the instantaneous values of current and applied voltage are respectively i = 2(Amp) sin $(250 \ \pi s^{-1})t$ and $\varepsilon = (10V) \sin \left[(250 \ \pi \ s^{-1})t + \frac{\pi}{3} \right]$. Find the instantaneous power drawn from the source at $t = \frac{2}{3}$ ms and its average value. **Ans.** 10 W, 5 W **Sol.** $$P = i \epsilon = [2 \sin 250 \pi t] [10 \sin (250\pi t + \pi/3)]$$ at $t = \frac{2}{3} \times 10^{-3} \Rightarrow P = 10$ watt $P = i_{rms} \epsilon_{rms} \cos \phi = \frac{2}{\sqrt{2}} \times \frac{10}{\sqrt{2}} \times \cos \pi/3$ Hindi **B** 3. प्रत्यावर्ती धारा परिपथ में धारा तथा आरोपित विभव के तात्क्षणिक मान क्रमशः $i = 2(Amp) \sin{(250 \pi s^{-1})}t$ तथा $\epsilon = (10V) \sin{[(250 \pi s^{-1})t + \frac{\pi}{3}]}$ है। तो $t = \frac{2}{3} ms$ समय पर स्रोत द्वारा दी गई तात्क्षणिक शक्ति तथा इसका औसत मान ज्ञात करो। **Ans:** 10 W, 5 W # Section (C) : AC source with R, L, C connected in series खण्ड (C) : R, L, C श्रेणीक्रम के साथ प्रत्यावर्ती धारा स्रोत **C-1.** The dielectric strength of air is 3.0×10^6 V/m. A parallel plate air capacitor has area 20 cm² and plate separation $\sqrt{2}$ mm. Find the maximum rms voltage of an AC source which can be safely connected to this capacitor . **Ans.** 3.0 kV **Sol.** $$V_0 = 3 \times 10^6 \times \sqrt{2} \times 10^{-3}$$ $V_{rms} = \frac{V_0}{\sqrt{2}} = 3 \text{ kV}$ **C-1.** एक समान्तर वायु पट्ट संधारित्र का क्षेत्रफल 20 cm² तथा प्लेटों के मध्य की दूरी $\sqrt{2}$ mm है। वायु की परावैद्युत सामर्थ्य 3.0×10^6 V/m है। संधारित्र को प्रत्यावर्ती धारा स्रोत से जोड़ने पर संधारित्र सुरक्षित रहे इसके लिए AC स्रोत का अधिकतम वर्गमाध्य मूल विभव ज्ञात करो। **Ans.:** 3.0 kV **Sol.** $$V_0 = 3 \times 10^6 \times \sqrt{2} \times 10^{-3}$$ $V_{rms} = \frac{V_0}{\sqrt{2}} = 3 \text{ kV}$ C-2. An electric bulb is designed to consume 55 W when operated at 110 volts. It is connected to a 220 V, 50 Hz line through a choke coil in series. What should be the inductance of the coil for which the bulb gets correct voltage? **Ans.** $$\frac{2.2\sqrt{3}}{\pi}$$ =1.2 H = $\frac{7\sqrt{3}}{10}$ H **Sol.** $$[(\omega L) i_{rms}]^2 + (110)^2 = (220)^2$$ here $\omega = 2\pi \times 50$ and $i_{rms} = \frac{55}{110}$ L = 1.2 H Hindi C-2. एक विद्युत बल्ब पर 110 वोल्ट आरोपित करने पर यह 55 W शक्ति व्यय करता है। इसे 220 V, 50 Hz स्त्रोत से चोक कुण्डली द्वारा श्रेणी में जोड़ा जाता है। बल्ब पर सही विभव प्राप्त करने के लिए कुण्डली का प्रेरकत्व कितना होना चाहिए? **Ans.** $$\frac{2.2\sqrt{3}}{\pi}$$ =1.2 H = $\frac{7\sqrt{3}}{10}$ H Sol. $$[(\omega L) i_{rms}]^2 + (110)^2 = (220)^2$$ ਯहाँ $\omega = 2\pi \times 50$ ਰथा $i_{rms} = \frac{55}{110}$ L = 1.2 H C 3. A resistor, a capacitor and an inductor (R = 300 Ω , C = 20 μ F, L = 1.0 henry) are connected in series with an AC source of, E_{rms} = 50 V and $\nu = \frac{50}{\pi}$ Hz. Find (a) the rms current in the circuit and (b) the rms potential differences across the capacitor, the resistor and the inductor. **Ans:** (a) 0.1 A (b) 50 V, 30 V, 10 V (Note that the sum of the rms potential differences across the three elements is greater than the rms voltage of the source.) Sol. (a) $$I_{rms} = \frac{E_{rms}}{z}$$ where $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ (b) $V_{R rms} = I_{rms} R = 30$, $V_{L rms} = I_{rms} (\omega L) = 10$ $V_{C rms} = I_{rms} \left(\frac{1}{\omega C}\right) = 50$ Hindi **C 3.** एक परिपथ में प्रतिरोध, संधारित्र एवं प्रेरण कुण्डली (R = 300 Ω , C = 20 μ F, L = 1.0 हेनरी) श्रेणीक्रम में एक प्रत्यावर्ती स्त्रोत, $E_{rms} = 50 \text{ V}$ तथा $v = \frac{50}{\pi} \text{Hz}$ से जुड़े हो तो (a) परिपथ में वर्गमाध्य मूल धारा तथा (b) संधारित्र, प्रतिरोध तथा प्रेरकत्व के सिरों पर वर्गमाध्य मूल विभवान्तर ज्ञात करो। Ans: (a) 0.1 A (b) 50 V, 30 V, 10 V (नोटः तीनों अवयवों पर वर्गमाध्य मूल विभवान्तर का योग स्रोत के वर्गमाध्य मूल वोल्टेज से अधिक होता है) Sol. (a) $$I_{rms} = \frac{E_{rms}}{z}$$ where $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ (b) $V_{R \, rms} = I_{rms} \, R = 30$, $V_{L \, rms} = I_{rms} \, (\omega L) = 10$ $V_{C \, rms} = I_{rms} \left(\frac{1}{\omega C}\right) = 50$ - **C-4.** Consider the situation of the previous problem calculate the average electric field energy stored in the capacitor and the average magnetic field energy stored in the inductor coil. - **Ans.** 25 mJ, 5mJ Sol. $$\langle U_C \rangle = \frac{1}{2} \frac{C_0^T V^2 dt}{T} = \frac{1}{2} C V_{rms}^2 = 25 \text{ mJ}$$ $\langle U_L \rangle = \frac{1}{2} L I_{rms}^2 = \frac{1}{2} \times (1) \times (0.1)^2 = 5 \text{ mJ}$ Hindi C-4. उपरोक्त प्रश्न में संधारित्र में संग्रहित औसत विद्युत क्षेत्र ऊर्जा तथा प्रेरण कुण्डली में संग्रहित औसत चुम्बकीय क्षेत्र ऊर्जा ज्ञात करो। **Ans.** 25 mJ, 5mJ Sol. $$\langle U_C \rangle = \frac{1}{2} \frac{C_0^T V^2 dt}{T} = \frac{1}{2} C V_{rms}^2 = 25 \text{ mJ}$$ $\langle U_L \rangle = \frac{1}{2} L I_{rms}^2 = \frac{1}{2} \times (1) \times (0.1)^2 = 5 \text{ mJ}$ - C-5. A 20 volts 5 watt lamp (lamp to be treated as a resistor) is used on AC mains of 200 volts and $\frac{50}{\pi}\sqrt{11}$ c.p.s. Calculate the (i) capacitance of the capacitor, or inductance of the inductor, to be put in series to run the lamp. (ii) How much pure resistance should be included in place of the above device so that the lamp can run on its rated voltage. (iii) which is more economical (the capacitor, the inductor or the resistor). - Ans. (i) $\frac{125}{33} \, \mu F$ or 2.4 H (ii) 720 Ω (iii) It will be more economical to use inductance or capacitance in series with the lamp to run it as it.It consumes no power while there would be dissipation of power when resistance is inserted in series with the lamp. **Sol.** (i) $$\left[\frac{1}{\omega C} \times I_{rms}\right]^2 + [20]^2 = [200]^2$$ where $I_{rms} = \frac{5}{20} \& \omega = 2\pi \times \frac{50}{\pi} \sqrt{11}$ or $[(\omega L) I_{rms}]^2 + (20)^2 = 200^2$ (ii) $I_{rms} \times R + 20 = 200$ (iii) does not loss in C and L. ### Hindi - **C-5.** 200 वोल्ट तथा $\frac{50}{\pi}\sqrt{11}$ चक्कर प्रति सैकण्ड आवृति की मुख्य प्रत्यावर्ती धारा से 20 वोल्ट तथा 5 वॉट का लेम्प जुड़ा है (लेम्प शुद्ध प्रतिरोधी परिपथ रखता है) । तो ज्ञात करो ? (i) लेम्प को कार्य करने के लिए श्रेणीक्रम में जुड़े संधारित्र की धारिता, या कुण्डली का प्रेरकत्व, (ii) उपरोक्त उपकरण के स्थान पर कितना प्रतिरोध जोड़ा जाये जिससे लेम्प स्वंय के अंकित विभव पर कार्य कर सके। (iii) उपरोक्त में से कौनसी व्यवस्था (संधारित्र, प्रेरकत्व या प्रतिरोध) मितव्ययी (कम लागत) होगी। - Ans. (i) $\frac{125}{33} \, \mu F$ या $2.4 \, H$ (ii) $720 \, \Omega$ (iii) लैम्प के साथ श्रेणी क्रम में प्रेरकत्व अथवा संधारित्र को जोड़कर उपयोग में लेना ज्यादा मितव्ययी होगा क्योंकि इसमें कोई शक्ति क्षय नहीं होगा लेकिन जब लैम्प के साथ प्रतिरोध जोड़ा जाता है तो उसमें शक्ति क्षय होता है। **Sol.** (i) $$\left[\frac{1}{\omega C} \times I_{rms}\right]^2 + [20]^2 = [200]^2$$ where $I_{rms} = \frac{5}{20}$ & $\omega = 2\pi \times \frac{50}{\pi} \sqrt{11}$ या $[(\omega L) I_{rms}]^2 + (20)^2 = 200^2$ (ii) $I_{rms} \times R + 20 = 200$ (iii) does not loss in C and L. C ਰथा L में हानी नहीं होती है। - **C-6.** A circuit has a resistance of 50 ohms and an inductance of $\frac{3}{\pi}$ henry. It is connected in series with a condenser of $\frac{40}{\pi}$ µF and AC supply voltage of 200 V and 50 cycles/sec. Calculate **[16JP120249]** - (i) the impedance of the circuit, - (ii) the p.d. across inductor coil and condenser. - (iii) Power factor **Ans.** $$Z = 50\sqrt{2}$$ ohm, $V_C = 500\sqrt{2}$ volt and $V_L = 600\sqrt{2}$ volt, $\frac{1}{\sqrt{2}}$ **Sol.** (i) $$z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$ (ii) $$V_L = (\omega L) \times \frac{200}{Z} = 600\sqrt{2}$$ and $V_C = \frac{1}{\omega C} \times \frac{200}{Z} = 500\sqrt{2}$ (iii) $$\cos \phi = \frac{R}{Z} = \frac{50}{50\sqrt{2}} = \frac{1}{\sqrt{2}}$$ ### Hindi **C-6.** एक परिपथ में 50
ओम का प्रतिरोध तथा $\frac{3}{\pi}$ हेनरी का प्रेरकत्व है। यह $\frac{40}{\pi}\mu$ F संधारित्र तथा 200 V, 50 चक्कर /सैकण्ड के प्रत्यावर्ती स्त्रोत के साथ श्रेणीक्रम में जुड़े है तो गणना करो - (i) परिपथ की प्रतिबाधा (ii) प्रेरण कुण्डली तथा संधारित्र के सिरों पर विभवान्तर। (iii) शक्ति गुणांक Ans. $Z = 50\sqrt{2}$ ohm, $V_C = 500\sqrt{2}$ volt ਰथा $V_L = 600\sqrt{2}$ volt, $\frac{1}{\sqrt{2}}$ **Sol.** (i) $z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ (ii) $V_L = (\omega L) \times \frac{200}{Z} = 600\sqrt{2}$ and $V_C = \frac{1}{\omega C} \times \frac{200}{Z} = 500\sqrt{2}$ (iii) $\cos \phi = \frac{R}{Z} = \frac{50}{50\sqrt{2}} = \frac{1}{\sqrt{2}}$ C-7. A coil draws a current of 1.0 ampere and a power of 100 watt from an A.C. source of 110 volt and $\frac{5\sqrt{22}}{\pi}$ hertz. Find the inductance and resistance of the coil. **Ans.** $\sqrt{\frac{21}{22}}$ H, 100 Ω **Sol.** $I_{rms}^2 \times R = 100$(1) $(1)^2 \times R = 100$ \Rightarrow $R = 100 \Omega$ $V_{rms} = I_{rms} Z$ 110 = $I_{rms} Z$ 110 = 1 × Z = $\sqrt{R^2 + (\omega L)^2}$ L = $\sqrt{\frac{21}{22}} H$ #### Hindi **C-7.** एक कुण्डली 110 volt तथा $\frac{5\sqrt{22}}{\pi}$ हर्टज वाले प्रत्यावर्ती धारा स्रोत से 1.0 ऐम्पियर की धारा तथा 100 वॉट शक्ति लेती है। तो कृण्डली का प्रेरकत्व तथा प्रतिरोध ज्ञात करो ? **Ans.** $\sqrt{\frac{21}{22}}$ H, 100 Ω **Sol.** $I_{rms}^2 \times R = 100$(1) $(1)^2 \times R = 100$ \Rightarrow $R = 100 \Omega$ $V_{rms} = I_{rms} Z$ $110 = I_{rms} Z$ $110 = 1 \times Z = \sqrt{R^2 + (\omega L)^2}$ $L = \sqrt{\frac{21}{22}} H$ C-8. An inductor $2/\pi$ Henry, a capacitor $100/\pi$ µF and a resistor 75 Ω are connected in series across a source of emf V = 10 sin 100 π t. Here t is in second. (a) find the impedance of the circuit.(b) find the energy dissipated in the circuit in 20 minutes. **Ans.** 125 Ω , 288 J **Sol.** (a) $$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = 125$$ (b) H = $$I_{rms}^2$$ R t = $\left[\frac{10/\sqrt{2}}{Z}\right]^2$ × R × 20 × 60 = 288 HINDI **C-8.** V = 10 sin 100 π t विद्युत वाहक बल वाले स्रोत से $2/\pi$ हेनरी प्रेरकत्व, $100/\pi$ μ F संधारित्र तथा 75 Ω प्रतिरोध श्रेणी क्रम में जुड़े है यहाँ t सैकण्ड में है तो (a) परिपथ की प्रतिबाधा ज्ञात करो (b) 20 मिनट में परिपथ में क्षयित ऊर्जा ज्ञात करो ? **Ans.** 125 Ω , 288 J **Sol.** (a) $$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = 125$$ (b) H = Rt = $$\left[\frac{10/\sqrt{2}}{Z}\right]^2 \times R \times 20 \times 60 = 288$$ Section (D): resonance खण्ड (D) : अनुनाद **D-1.** A series circuit consists of a resistance, inductance and capacitance. The applied voltage and the current at any instant are given by $$E = 141.4 \cos (5000 t - 10^{\circ})$$ and $I = 5 \cos (5000 t - 370^{\circ})$ The inductance is 0.01 henry. Calculate the value of capacitance and resistance. **Ans.** $$4 \mu F, R = \frac{141.4}{5} \Omega$$ **Sol.** Here phase difference $\phi = 360^{\circ}$ & $\omega = 5000$ at Resonance $C = \frac{1}{\omega^2 L} = \frac{1}{(5000)^2} \times \frac{1}{0.01}$ $$R = \frac{V_0}{I_0} = \frac{141.4}{5}$$ Hindi D-1. एक श्रेणी परिपथ में प्रतिरोध, प्रेरकत्व तथा संधारित्र जुड़े है। किसी क्षण आरोपित विभव तथा धारा को निम्न द्वारा व्यक्त करते है $$E = 141.4 \cos (5000 t - 10^{\circ})$$ प्रेरकत्व 0.01 हेनरी हो तो धारिता का मान तथा प्रतिरोध का मान ज्ञात करो। **Ans.** $$4 \mu F, R = \frac{141.4}{5} \Omega$$ **Sol.** यहाँ कलान्तर $\phi = 360^\circ$ और अनुनाद $C = \frac{1}{\omega^2 L} = \frac{1}{(5000)^2} \times \frac{1}{0.01}$ पर $\omega = 5000$ है। $$R = \frac{V_0}{I_0} = \frac{141.4}{5}$$ **D-2.** An inductance of 2.0 H, a capacitance of 18 μ F and a resistance of 10 $k\Omega$ are connected to an AC source of 20 V with adjustable frequency (a) What frequency should be chosen to maximise the current(RMS) in the circuit? (b) What is the value of this maximum current (RMS) ? (a) $\frac{250}{3\pi}$ Hz (b) 2 mA Ans: (a) $f = \frac{1}{2\pi\sqrt{IC}}$ (b) I_{rms} (max) = $\frac{20}{R} = \frac{20}{10 \times 10^3} = 2$ mA. Sol. Hindi D-2. प्रक 2.0 H का प्रेरकत्व,18 μF का संधारित्र तथा 10 kΩ का प्रतिरोध समायोजित आवृति (adjustable frequency) वाले 20 V के प्रत्यावर्ती धारा स्रोत से जुड़े है तो (a) परिपथ में अधिकतम धारा (RMS) प्रवाहित करने के लिए चयनित आवृति का मान क्या होना चाहिए? (b) अधिकतम धारा (RMS) का मान क्या है ? (a) $\frac{250}{3}$ Hz (b) 2 mA Ans: (a) $f = \frac{1}{2\pi\sqrt{IC}}$ (b) I_{rms} (max) = $\frac{20}{R} = \frac{20}{10 \times 10^3} = 2 \text{ mA}.$ Sol. D-3. An inductor-coil, a capacitor are connected in series with an AC source of rms voltage 24 V. When the frequency of the source is varied a maximum rms current of 6.0 A is observed. If this inductor coil is connected to a DC source of 12 V and having internal resistance 4.0 Ω , what will be the current in steady state? Ans: 1.5 A $R = \frac{24}{6} = 4 \Omega$ \Rightarrow $I = \frac{12}{4+4} = 1.5 \text{ Amp.}$ Sol. Hindi एक प्रेरण कुण्डली तथा एक संधारित्र प्रत्यावर्ती धारा स्रोत से श्रेणी क्रम में जुड़े है। प्रत्यावर्ती धारा स्रोत का वर्गमाध्य मूल D-3. विभव 24 V है। जब स्रोत की आवृति परिवर्तित की जाती है तो अधिकतम वर्गमाध्य मूल धारा 6.0 A प्रेक्षित की जाती है। यदि प्रेरण कृण्डली को 12 V के दिष्टधारा स्त्रोत तथा 4.0 Ω आन्तरिक प्रतिरोध वाली बैटरी से जोड़ दिया जाये तो स्थाई अवस्था धारा क्या होगी? **Ans:** 1.5 A $R = \frac{24}{6} = 4 \Omega$ \Rightarrow $I = \frac{12}{4+4} = 1.5 \text{ Amp.}$ Sol. An electro magnetic wave of wavelength 300 metre can be transmitted by a transmission centre. A D-4. condenser of capacity 2.5 μF is available. Calculate the inductance of the required coil for a resonant circuit.Use π^2 =10. 1×10⁻⁸ henry Ans. L = $\frac{1}{\omega^2 C}$ here $\omega = 2\pi f = 2\pi$ $\frac{3 \times 10^8}{\lambda} = \frac{2 \pi \times 3 \times 10^8}{300}$ Sol. HINDI एक संचार केन्द्र से 300 मीटर तरंगदैर्ध्य वाली विद्युत चुम्बकीय तरंग संचरित की जाती है। 2.5 μF धारिता वाला संधारित्र D-4. उपलब्ध है। अनुनाद परिपथ के लिए आवश्यक कुण्डली का प्रेरकत्व ज्ञात करो। $\pi^2=10$ का उपयोग करो। Ans. L = $\frac{1}{\omega^2 C}$ here ਧੁਵੱ $\omega = 2\pi f = 2\pi \frac{3 \times 10^8}{\lambda} = \frac{2\pi \times 3 \times 10^8}{300}$ Sol. ### Section (E): Transformer ### खण्ड (E): ट्रांसफार्मर E-1 A transformer has 50 turns in the primary and 100 turns in the secondary. If the primary is connected to a 220 V DC supply, what will be the voltage across the secondary? Ans: Sol. Transfoormer does not work on D.C. Hindi एक ट्रांसफार्मर की प्राथमिक कुण्डली में 50 घेरे तथा द्वितीयक कुण्डली में 100 घेरे है। यदि प्राथमिक कुण्डली 220 V की E-1 दिष्टधारा स्रोत से जुड़ी हो तो द्वितीय कृण्डली के परितः विभव क्या होगा ? Ans: शुन्य ट्रांसफार्मर D.C. पर कार्य नही करता है Sol. In a transformer ratio of secondary turns (N₂) and primary turns (N₁) i.e. $\frac{N_2}{N_1} = 4$. If the voltage applied E-2. in primary is 200 V, 50 Hz, find (a) voltage induced in secondary (b) If current in primary is 1A, find the current in secondary if the transformer is (i) ideal and (ii) 80% efficient and there is no flux leakage. **Ans.** (a) 800 V (b) (i) 0.25 A (ii) 0.2 A. **Sol.** (a) $$\frac{V_2}{V_1} = \frac{N_2}{N_1} = 4$$ $$\Rightarrow V_2 = 200 \times 4 = 800$$ (b) (i) $$\frac{I_2}{I_1} = \frac{N_1}{N_2} = \frac{1}{4}$$ \Rightarrow $I_2 = \frac{1}{4} = 0.25 \text{ A}$ $$\Rightarrow I_2 = \frac{1}{4} = 0.25 \text{ A}$$ (ii) $$I_1 V_1 \times 0.80 = V_2 I_2$$ \Rightarrow $I_2 = 0.8 \times 0.25 = 0.2 A$ $$I_2 = 0.8 \times 0.25 = 0.2 \text{ A}$$ Hindi एक ट्रांसफार्मर में द्वितीयक कुण्डली में घेरों (N_2) तथा प्राथमिक कुण्डली में घेरों (N_1) का अनुपात अर्थात् $\frac{N_2}{N_1} = 4$ है। E-2. प्राथमिक कुण्डली में आरोपित विभव 200 V, 50 Hz है तो (a) द्वितीयक कुण्डली में प्रेरित विभव ज्ञात करो ? (b) यदि प्राथमिक में धारा 1A, हो तो द्वितीयक कुण्डली में धारा ज्ञात करो ? यदि ट्रांसफार्मर (i) आदर्श हो तथा (ii) दक्षता 80% हो, कोई फ्लक्स क्षय नहीं है। **Ans.** (a) 800 V (b) (i) 0.25 A (ii) 0.2 A. **Sol.** (a) $$\frac{V_2}{V_1} = \frac{N_2}{N_1} = 4$$ $$\Rightarrow V_2 = 200 \times 4 = 800$$ $$V_1$$ N_1 (b) (i) $\frac{I_2}{I_1} = \frac{N_1}{N_2} = \frac{1}{4}$ \Rightarrow $I_2 = \frac{1}{4} = 0.25 \text{ A}$ $$\Rightarrow I_2 = \frac{1}{4} = 0.25 \text{ A}$$ (ii) $$I_1 V_1 \times 0.80 = V_2 I_2$$ (ii) $$I_1 V_1 \times 0.80 = V_2 I_2$$ \Rightarrow $I_2 = 0.8 \times 0.25 = 0.2 A$ ### PART - II: ONLY ONE OPTION CORRECT TYPE # भाग - II : केवल एक सही विकल्प प्रकार (ONLY ONE OPTION CORRECT TYPE) ## Section (A): Average, peak and RMS values and RMS values खण्ड (A): औसत,शीर्ष तथा वर्गमाध्य मूल मान r.m.s. value of current i = 3 + 4 sin (ω t + π /3) is: A-1. (B*) $$\sqrt{17}$$ A (C) $\frac{5}{\sqrt{2}}$ A (D) $\frac{7}{\sqrt{2}}$ A (D) $$\frac{7}{\sqrt{2}}$$ A **Sol.** $$I_{rms} = \begin{bmatrix} \int_{0}^{T} i^2 & dt \\ 0 & T \end{bmatrix}^{\frac{1}{2}} = \begin{bmatrix} \int_{0}^{T} \frac{[3+4\sin(\omega t + \pi/3)]^2}{T} dt \end{bmatrix}^{1/2} = \sqrt{17}$$. - धारा $i = 3 + 4 \sin(\omega t + \pi/3)$ का वर्ग माध्यमूल मान होगा— A-1. - (A) 5 A - (B*) $\sqrt{17}$ A - (C) $\frac{5}{\sqrt{2}}$ A - (D) $\frac{7}{\sqrt{2}}$ A Sol. $$I_{rms} = \begin{bmatrix} \int_{0}^{T} i^2 & dt \\ 0 & T \end{bmatrix}^{\frac{1}{2}} = \begin{bmatrix} \int_{0}^{T} \frac{[3 + 4\sin(\omega t + \pi/3)]^2}{T} dt \end{bmatrix}^{1/2} = \sqrt{17}$$. - A-2. The peak value of an alternating e.m.f given by E = $E_0 \cos \omega t$, is 10 volt and frequency is 50 Hz. At time t = (1/600) sec, the instantaneous value of e.m.f is: - (A) 10 volt - (B*) $5\sqrt{3}$ volt - (C) 5 volt - (D) 1 volt **Sol.** E = 10 cos $$\left(2\pi \times 50 \times \frac{1}{600}\right) = 5\sqrt{3}$$ - Hindi प्रत्यावर्ती वि.वा.बल $E = E_0 \cos \omega t$ का शीर्ष मान 10 volt तथा आवृति 50 Hz है। समय $t = (1/600) \sec \upsilon t$ वि.वा.बल का तात्क्षणिक मान है : - (A) 10 volt - (B*) $5\sqrt{3}$ volt - (C) 5 volt - (D) 1 volt **Sol.** E = 10 cos $$\left(2\pi \times 50 \times \frac{1}{600}\right) = 5\sqrt{3}$$ - A-3. The voltage of an AC source varies with time according to
the equation, V = 100 sin 100 π t cos 100 π t. Where t is in second and V is in volt. Then: - (A) the peak voltage of the source is 100 volt - (B) the peak voltage of the source is $(100/\sqrt{2})$ volt - (C*) the peak voltage of the source is 50 volt - (D) the frequency of the source is 50 Hz - Sol. $V = 100 \sin 100\pi t \cos 100 \pi t$ $V = 50 \sin 200 \pi t$ here $V_0 = 50$ ω = 200 π f = 100 Hz Hindi प्रत्यावर्ती धारा स्रोत का विभव . समय के साथ समीकरण $V = 100 \sin 100 \pi t \cos 100 \pi t$ द्वारा परिवर्तित होता है . जहाँ t सैकण्ड तथा V वोल्ट में है तो : - (A) स्रोत का शीर्ष विभव 100 वोल्ट है। - (B) स्रोत का शीर्ष विभव (100/ $\sqrt{2}$) वोल्ट है। - (C*) स्रोत का शीर्ष विभव 50 वोल्ट है। - (D) स्रोत की आवृति 50 Hz है। - $V = 100 \sin 100\pi t \cos 100 \pi t$ Sol. $V = 50 \sin 200 \pi t$ ਯहाँ Vo = 50 $\omega = 200 \,\pi$ f = 100 Hz A-4. An alternating voltage is given by : $e = e_1 \sin \omega t + e_2 \cos \omega t$. Then the root mean square value of voltage is given by: (A) $$\sqrt{e_1^2 + e_2^2}$$ (B) $\sqrt{e_1 e_2}$ (B) $$\sqrt{e_1 e_2}$$ $$(C) \sqrt{\frac{e_1 e_2}{2}}$$ (C) $$\sqrt{\frac{e_1 - e_2}{2}}$$ (D*) $\sqrt{\frac{e_1^2 + e_2^2}{2}}$ $V^{2}_{rms} = \int_{0}^{T} \frac{(e_{1} \sin \omega t + e_{2} \cos \omega t)^{2} dt}{T}$ $$= \sqrt{\frac{e_1^2 + e_2^2}{2}}$$ where $\omega = \frac{2\pi}{T}$. Hindi प्रत्यावर्ती धारा विभव : $e=e_1\sin\omega t+e_2\cos\omega t$ है तो विभव का वर्गमाध्य मूल मान है : (A) $$\sqrt{e_1^2 + e_2^2}$$ (B) $$\sqrt{e_1 e_2}$$ (C) $$\sqrt{\frac{e_1 e_2}{2}}$$ (A) $$\sqrt{e_1^2 + e_2^2}$$ (B) $\sqrt{e_1 - e_2}$ (C) $\sqrt{\frac{e_1 - e_2}{2}}$ (D*) $\sqrt{\frac{e_1^2 + e_2^2}{2}}$ Sol. $V^{2}_{rms} = \int_{-T}^{T} \frac{(e_{1} \sin \omega t + e_{2} \cos \omega t)^{2} dt}{T}$ $$= \sqrt{\frac{e_1^2 + e_2^2}{2}}$$ ਯहाँ $$ω = \frac{2\pi}{T}$$. An AC voltage is given by : $E = E_0 \sin \frac{2\pi t}{T}$ A-5. Then the mean value of voltage calculated over time interval of T/2 seconds : - (A) is always zero - (B) is never zero - (C) is $(2E_0/\pi)$ always - (D*) may be zero Sol. If net area of E – t curve is zero for given interval then average value will be zero. Hindi एक प्रत्यावर्ती विभव निम्न द्वारा दिया जाता है - $$E = E_0 \sin \frac{2\pi t}{T}$$ तो T/2 सैकण्ड समयान्तराल के लिए गणना करने से विभव का औसत मान: - (A) हमेशा शून्य होगा। - (B) कभी शून्य नहीं होगा। (C) हमेशा ($2E_0/\pi$) होगा। (D*) शून्य हो सकता है। Sol. यदि E – t वक्र का क्षे०फ० शुन्य हो (दिये गये अन्तराल में) तो E का औसत मान शुन्य होगा। | A-6. | An AC voltage of V = $220\sqrt{2}$ sin $\left(100\pi t + \frac{\pi}{2}\right)$ is applied across a DC voltmeter, its reading will be: | | | | | |--|---|---|---|-------------------------------------|--| | Sol. | (A) $220\sqrt{2}$ V D.C. Voltmeter measure | | (C) 220 V | (D*) zero | | | Hindi | | $\left(1+\frac{\pi}{2}\right)$ प्रत्यावर्ती धारा विभव | को दिष्ट धारा वोल्टमीटर | पर लगाया जाता है। वोल्टमीटर का | | | Sol. | पाठयांक होगा : (A) $220 \sqrt{2} \text{ V}$ D.C. वोल्ट मीटर केवल औ | (B) √ ² V
सत विभवान्तर मापता है। | (C) 220 V | (D*) शून्य | | | Section (B) : Power consumed in an AC circuit
खण्ड (B) : प्रत्यावर्ती धारा परिपथ में शक्ति व्यय | | | | | | | B-1.
Hindi | The average power deli | vered to a series AC circ
(B*) E _{rms} I _{rms} cos φ | | have their usual meaning): (D) zero | | | iiiiai | ındı
श्रेणी प्रत्यावर्ती धारा परिपथ को दी गई औसत शक्ति होती है (जहाँ संकेतों का अर्थ सामान्य है) : | | | | | | | (A) E _{rms} I _{rms} | (B*) $E_{rms} I_{rms} \cos \phi$ | (C) E _{rms} I _{rms} sin φ | (D) शून्य | | | B-2.
Hindi | Energy dissipates in LC (A) L only | R circuit in :
(B) C only | (C*) R only | (D) all of these | | | | LCR परिपथ में ऊर्जा हानि | होती है : | | | | | | (A) केवल L में | (B) केवल C में | (C*) केवल R में | (D) उपरोक्त सभी पर | | | B-3. | The potential difference V across and the current I flowing through an instrument in an AC circuit are given by : | | | | | | Sol. | $V = 5 \cos \omega t \text{ vo}$ $I = 2 \sin \omega t \text{ Am}$ The power dissipated in (A*) zero $P_{av} = v_{rms} I_{rms} \cos \phi$ | p. | (C) 10 watt | (D) 2.5 watt | | | Hindi | Here $\phi = 90^{\circ}$ so $P_{av} = 0$ | | | | | | niliui | ा
प्रत्यावर्ती धारा परिपथ में किसी यंत्र के सिरों पर विभवान्तर V तथा प्रवाहित धारा I निम्न द्वारा दिये जाते है।
V = 5 cos ωt volt
I = 2 sin ωt Amp.
यंत्र में व्यय शक्ति होगी — | | | | | | Sol. | (A*) शून्य
P _{av} = v _{rms} I _{rms} cos φ
यहाँ φ = 90° अतः P _{av} = 0 | (B) 5 वॉट | (C) 10 ਥੱਟ | (D) 2.5 वॉट | | | B-4. | A direct current of 2 A and an alternating current having a maximum value of 2 A flow through identical resistances. The ratio of heat produced in the two resistances in the same time interval will | | | | | |---------|--|--|--|---|-----------------------------------| | | | | (C*) 2 : 1 | (D) 4 : 1 | interval will be. | | Sol. | $\frac{H_{D.C.}}{H_{A.C.}} = \frac{I^2 R}{I_{rms}^2 R} = 2$ | | | • • | | | Hindi | दो समान प्रतिरोधों से | 2 A की दिष्ट धारा | तथा 2 A अधिकतम मान | वाली प्रत्यावर्ती धारा प्रवाहित | ा की जाती है तो | | | समान समय अंतराल में | i, दोनों प्रतिरोधों में उत | पन्न ऊष्माओं का अनुपात हो | गा – | | | | (A) 1:1 | (B) 1:2 | (C*) 2 : 1 | (D) 4:1 | | | Sol. | $\frac{H_{D.C.}}{H_{A.C.}} = \frac{I^2 R}{I_{ms}^2 R} = 2$ | | | | | | B-5. | A sinusoidal AC current flows through a resistor of resistance R. If the peak current is I_p , then ave power dissipated is : एक प्रतिरोध R से ज्यावक्रीय प्रत्यावर्ती धारा प्रवाहित हो रही है। यदि शीर्ष धारा I_p हो तो औसत शक्ति व्यय है $-$ | | | | | | | | | | | વ્યય દ — | | | (A) $I_p^2 R \cos \theta$ | $(B^*) \frac{1}{2} I_p^2 R$ | (C) $\frac{4}{\pi}I_p^2R$ | (D) $\frac{1}{\pi^2}I_p^2R$ | | | Sol. | $P> = I^2_{rms} R = \left(\frac{I_p}{\sqrt{2}}\right)$ | $R = \frac{I_p^2 R}{2}$ | | | | | B-6. | What is the rms value of an alternating current which when passed through a resistor produces he which is thrice that produced by a D.C. current of 2 ampere in the same resistor in the same tir interval? | | | | | | | (A) 6 ampere
एक प्रतिरोध से प्रत्याव
समान समय तक प्रवाहि | र्ती धारा प्रवाहित की उ
हेत करने पर उत्पन्न उ | नाती है तो इससे उत्पन्न ऊ
ज्या की तीन गुनी है तो प्रत्य | pere (D) 0.65 ampe
ष्मा, उसी प्रतिरोध से 2 ऐस्पि
गवर्ती धारा का वर्गमाध्य मूल | ायर की दिष्ट धारा
मान क्या है? | | | | | | यर (D) 0.65 एम्पियर | Ţ | | Sol. | $P = I^2_{rms} R = [(2)^2 R]$ |] × 3 \Rightarrow I _{rms} = | 2√3 A | | | | B-7.2s. | A resistor and a capacitor are connected to an AC supply of 200 volt, 50 Hz in series. The current in to circuit is 2 ampere. If the power consumed in the circuit is 100 watt, then the resistance in the circuit is एक प्रतिरोध तथा संधारित्र 200 volt, 50 Hz आवृति के प्रत्यावर्ती धारा स्त्रोत के साथ श्रेणीक्रम में जुड़े है। परिपथ 2 ऐम्पियर की धारा प्रवाहित हो रही है। यदि परिपथ में व्यय शक्ति 100 watt, हो तो परिपथ में प्रतिरोध होगा। — | | | | | | | (A) 100 Ω | (B*) 25 Ω | (C) $\sqrt{125\times75}$ | Ω (D) 400 $Ω$ | | | Sol. | $I^2R = 100$ | | | | | | | $R = \frac{100}{I^2} = \frac{100}{(2)^2} = 2$ | 5. | | | | | B-8. | The impedance of a series circuit consists of 3 ohm resistance and 4 ohm reactance. The power factor of the circuit is : एक परिपथ की प्रतिबाधा में 3 ओम प्रतिरोध तथा 4 ओम प्रतिघात है तो परिपथ का शक्ति गुणांक है : | | | | he power factor | | | | | | ~ | | (C) 0.8 (D) 1.0 (B*) 0.6 (A) 0.4 Sol. $\tan \phi = \frac{x}{R} = \frac{4}{3}$ $\cos \phi = \frac{3}{5} = 0.6$ B-9.5 A coil of inductance 5.0 mH and negligible resistance is connected to an alternating voltage $V = 10 \sin (100 t)$. The peak current in the circuit will be: - (B) 1 amp - (C) 10 amp - (D*) 20 amp Sol. Hindi 5.0 mH प्रेरकत्व तथा नगण्य प्रतिरोध वाली कुण्डली V = 10 sin (100 t) वाले प्रत्यावर्ती विभव से जुड़ी है तो परिपथ में शीर्ष धारा होगी - - (A) 2 amp - (B) 1 amp - (C) 10 amp - (D*) 20 amp Sol. $$I_O = \frac{V_0}{\omega L} = \frac{10}{100 \times 5 \times 10^{-3}}$$ $I_0 = \frac{V_0}{\omega L} = \frac{10}{100 \times 5 \times 10^{-3}}$ - An electric bulb and a capacitor are connected in series with an AC source. On increasing the B-10. frequency of the source, the brightness of the bulb: - (A*) increase (B) decreases (C) remains unchanged (D) sometimes increases and sometimes decreases एक प्रत्यावर्ती धारा स्रोत से विद्युत बल्ब तथा संधारित्र, श्रेणीक्रम में जुड़ें है। स्रोत की आवृति बढ़ाने पर बल्ब की चमक : (A*) बढेगी (B) घटेगी (C) अपरिवर्तित रहेगी - (D) कुछ समय तक बढ़ेगी तथा कुछ समय तक घटेगी - $X_C = \frac{1}{\omega C}$ will decrease if we increase frequency then z will decrease so current will increase & intensity Sol. will increase. स्रोत की आवृत्ति बढ़ाने में $X_C = \frac{1}{\omega C}$ घटता है। अतः z घटेगा। अतः चमक बढ़ेगी। B-11. By what percentage the impedance in an AC series circuit should be increased so that the power factor changes from (1/2) to (1/4) (when R is constant)? शक्ति गुणांक को (1/2) से (1/4) तक परिवर्तित करने के लिए प्रत्यावर्ती धारा परिपथ की प्रतिबाधा में कितने प्रतिशत से वृद्धि करनी होगी (R अचर
रखा गया है)? - (A) 200% - (B*) 100% - (C) 50% - (D) 400% $\cos\phi = \frac{R}{3}$ Sol. % change = $$\frac{z'-z}{z}$$ × 100 = 100%. **B-12.** ★ If the frequency of the source e.m.f. in an AC circuit is n, the power varies with a frequency: एक प्रत्यावर्ती धारा परिपथ में स्रोत वि.वा.बल की आवृति n है तो शक्ति किस आवृति से परिवर्तित होगी – - (A) n - $(B^*) 2 n$ - (C) n/2 - (D) zero श्रन्य Sol. ## Section (C): AC source with R, L, C connected in series R, L, C श्रेणीक्रम में प्रत्यावर्ती धारा स्रोत से जुड़े है C-1. A 0.21-H inductor and a 88- Ω resistor are connected in series to a 220-V, 50-Hz AC source. The current in the circuit and the phase angle between the current and the source voltage are respectively. (Use $\pi = 22/7$) 0.21-H का प्रेरकत्व तथा 88-Ω का प्रतिरोध 220-V तथा 50-Hz वाले प्रत्यावर्ती धारा स्रोत से जुड़ा है तो परिपथ में धारा तथा स्रोत विभव एवं धारा के मध्य कलान्तर क्रमशः होंगे (π = 22/7 का उपयोग करें) (B) 14.4 A, tan⁻¹ 7/8 (C) 14.4 A, tan⁻¹ 8/7 (D) 3.28 A, tan⁻¹ 2/11 **Sol.** $$I_{rms} = \frac{V_{rms}}{Z} = \frac{V_{rms}}{\sqrt{R^2 + (\omega L)^2}} = 2A$$ $$\tan \phi = \frac{\omega L}{R} = \frac{66}{88} = \frac{3}{4}$$. C-2. A 100 volt AC source of angular frequency 500 rad/s is connected to a LCR circuit with L = 0.8 H, C = 5 μ F and R = 10 Ω , all connected in series. The potential difference across the resistance is LCR परिपथ से 100 वोल्ट तथा 500 रैडियन ∕ सैकण्ड आवृति का प्रत्यावर्ती धारा स्रोत जुडा है, जहां L = 0.8 H, C = 5 μF तथा R = 10 Ω सभी श्रेणीक्रम में जुड़े है तो प्रतिरोध के सिरों पर विभवान्तर है - (A) $\frac{100}{\sqrt{2}}$ volt (B*) 100 volt (C) 50 volt (D) $50\sqrt{3}$ $I_{rms} = \frac{V_{rms}}{Z} = \frac{100}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$ P.d. across resistance प्रतिरोध का विभवान्तर = R Irms = 100 volt. C-3. A pure resistive circuit element X when connected to an AC supply of peak voltage 200 V gives a peak current of 5 A which is in phase with the voltage. A second circuit element Y, when connected to the same AC supply also gives the same value of peak current but the current lags behind by 90°. If the series combination of X and Y is connected to the same supply, what will be the rms value of current? एक शुद्ध प्रतिरोधी परिपथ अवयव X के साथ 200 V शीर्ष विभव वाला प्रत्यावर्ती धारा स्रोत जुड़ा है। इसमें 5 A शीर्ष धारा प्रवाहित हो रही है, जो विभव से समान कला में है। दूसरे परिपथ अवयव Y को उसी प्रत्यावर्ती धारा स्रोत से जोड़ने पर उतनी ही शीर्ष धारा प्रवाहित होती है, परन्तू यह धारा 90° पश्चगामी है। यदि X तथा Y के श्रेणी संयोजन को उसी स्त्रोत से जोड़ दिया जाये तो धारा का वर्गमाध्य मूल मान क्या होगा ? (A) $\frac{10}{\sqrt{2}}$ amp (B) $\frac{5}{\sqrt{2}}$ amp (C*) $\frac{5}{2}$ amp (D) 5 amp R = $\frac{V_0}{I_0} = \frac{200}{5}$ = 40 Ω (For circuit x) (परिपथ x के लिए) Sol. $X_L = \frac{V_0}{I_0} = 40 \Omega$ (For circuit y) (परिपथ y के लिए) If x & y are in series यदि x तथा y श्रेणी में है तो $I = \frac{200}{40 \times \sqrt{2}} = \frac{5}{\sqrt{2}} \text{ Amp.} \Rightarrow I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{5}{2} \text{ amp.}$ **Sol.** $R = \frac{100}{1} = 100 \Omega$ $Z = \frac{100}{0.5} = 200 \Omega$ $L = \frac{x}{\omega} = 1H.$ | C-8. | If in a series LCR AC circuit, the rms voltage across L, C and R are V_1 , V_2 and V_3 respectively, then the voltage of the source is always: | | | | | |------|--|--|--|--|--| | | (A) equal to $V_1 + V_2 + V_3$ | (B) equal to $V_1 - V_2 + V_3$ | | | | | | (C) more than $V_1 + V_2 + V_3$ | (D*) none of these is true | | | | | | LCR श्रेणी प्रत्यावर्ती धारा परिपथ में L, C | तथा R के सिरों पर विभव क्रमशः V1, V2 तथा V3 है तो स्रोत के सिरों पर विभव | | | | | | हमेशा — | | | | | | | (A) V₁ + V₂ + V₃ के समान है। | (B) V1 − V2 + V3 के समान है। | | | | | | (C) V₁ + V₂ + V₃ से अधिक। | (D*) उपरोक्त में से कोई भी सत्य नहीं है। | | | | | Sol. | Voltage of source is always less than $(V_1 + V_2 + V_3)$, $V_{net} = \sqrt{V_1^2 + V_2^2 + V_3^2}$ | | | | | | | स्रोत की वोल्टता सदैव ($V_1 + V_2 + V_3$) से कम होती है। | | | | | # Section (D) : resonance अनुनाद - **D-1.** The value of power factor cosφ in series LCR circuit at resonance is : LCR श्रेणी परिपथ में अनुनाद पर शक्ति गुणांक cosφ का मान है – - (A) zero शुन्य (B*) 1 (C) 1/2 (D) 1/2 ohm Sol. At resonance अनुनाद की स्थिति पर $x_L = x_C$ - So, इसलिए z = R, ⇒ cos\phi = 1 - **D-2.** A series LCR circuit containing a resistance of 120 ohm has angular resonance frequency 4×10^3 rad s^{-1} . At resonance, the voltage across resistance and inductance are 60V and 40 V respectively. The values of L and C are respectively: एक श्रेणी LCR परिपथ में 120 ओम का प्रतिरोध जुड़ा है तथा इसकी कोणीय अनुनादी आवृति 4×10^3 रेडियन/सै॰ है। अनुनाद पर प्रतिरोध तथा प्रेरकत्व के सिरों पर विभव क्रमशः 60V तथा 40 V है तो L तथा C के मान क्रमशः है: - (A*) 20 mH, 25/8 μ F (B) 2mH, 1/35 μ F (C) 20 mH, 1/40 μ F (D) 2mH, 25/8 nF - Sol. $I_{rms} = \frac{60}{120} = \frac{1}{2} Amp.$ $V_L = I_{rms} \times (\omega L)$ $40 = \frac{1}{2} \times (40 \times 10^3) \times L$ L = 20 mH - At resonance अनुनाद पर $V_C = I_{rms} \left(\frac{1}{\omega c}\right) = V_L$ $C = \frac{1}{2} \times \frac{1}{4 \times 10^3} \times \frac{1}{40}$ $C = \frac{25}{8} \, \mu F$. - D-3. In an LCR circuit, the capacitance is made one-fourth, when in resonance. Then what should be the change in inductance, so that the circuit remains in resonance? LCR परिपथ में अनुनाद पर धारिता एक चौथाई कर दी जाती है तो परिपथ में अनुनाद बनाये रखने के लिए प्रेरकत्व में कितना परिवर्तन होना चाहिए ? (A*) 4 times (B) 1/4 times (C) 8 times (D) 2 times (A*) 4 गुना (B) 1/4 गुना (C) 8 गुना (D) 2 गुना Sol. At resonance अनुनाद पर $\omega L = \frac{1}{\omega C}$ $L \propto \frac{1}{C}.$ **D-4.** A resistor R, an inductor L and a capacitor C are connected in series to an oscillator of frequency υ . If the resonant frequency is υ_r , then the current lags behind voltage, when : บ आवृति वाले दोलित्र से प्रतिरोध R, प्रेरकत्व L तथा संधारित्र C श्रेणीक्रम में जुड़े है। यदि अनुनादी आवृति บา हो , तो धारा विभव से पश्चगामी होगी जब : (A) $$v = 0$$ (B) $$\upsilon < \upsilon_r$$ (C) $$\upsilon = \upsilon_r$$ $$(D^*) \upsilon > \upsilon_r$$ **Sol.** Current lags behind voltage. अतः धारा विभव से पीछे होगी। If यदि X∟ > Xc $$\Rightarrow \qquad 2\pi \nu L > \frac{1}{2\pi \nu C} \Rightarrow \nu > \frac{1}{2\pi \sqrt{LC}}$$ But as $$v_r = \frac{1}{2\pi\sqrt{LC}}$$ therefore, $v > v_r$ **D-5.** A resistor R, an inductor L, a capacitor C and voltmeters V_1 , V_2 and V_3 are connected to an oscillator in the circuit as shown in the adjoining diagram. When the frequency of the oscillator is increased, upto resonance frequency, the voltmeter reading (at resonance frequency) is zero in the case of: चित्रानुसार प्रतिरोध R, प्रेरकत्व L, संधारित्र C तथा वोल्टमीटर V_1 , V_2 तथा V_3 दोलित्र के साथ चित्रानुसार परिपथ में जुड़े है। जब दोलित्र की आवृति अनुनादी आवृति तक बढ़ायी जाती है तो किस वोल्टमीटर का पाठयांक अनुनाद आवृति पर शून्य होगा - (A) voltmeter V₁ (B*) voltmeter V₂ (C) voltmeter V₃ (D) all the three voltmeters (A) वोल्टमीटर V₁ (B*) वोल्टमीटर V₂ (C) वोल्टमीटर V₃ - (D) तीनों वोल्टमीटर में - Sol. At resonance voltages across C and L are in opposite phase so net voltage will be zero. अनुनाद की स्थिति में C तथा L पर विभव विपरीत कला में होते है So, अतः V₂ = 0. **D-6.** In the series LCR circuit as shown in figure, the voltmeter and ammeter readings are : चित्रानुसार LCR श्रेणी परिपथ में, वोल्टमीटर तथा अमीटर के पाठयांक है : $$(A^*) V = 100 \text{ volt}, I = 2 \text{ amp}$$ (B) $$V = 100 \text{ volt}, I = 5 \text{ amp}$$ (C) $$V = 1000 \text{ volt}$$, $I = 2 \text{ amp}$ (D) $$V = 300 \text{ volt}$$, $I = 1 \text{ amp}$ Sol. At resonance अनुनाद पर $$(V_C = V_L)$$ $$V = I_{rms} \times R$$ $$= \frac{V_{rms}}{Z} \times R \qquad \text{(here } z = R\text{) (यहां } z = R\text{)}$$ $$V = V_{rms} = 100 \text{ volt}$$ & $I_{rms} = \frac{100}{50} = 2 \text{ Amp.}$ ## Section (E) : Transformer ट्रांसफार्मर **E-1.** A power transformer (step up) with an 1 : 8 turn ratio has 60 Hz, 120 V across the primary; the load in the secondary is $10^4 \Omega$. The current in the secondary is एक शक्ति ट्रांसफार्मर (उच्चायी) में घेरों का अनुपात $1:8\ \hat{\bar{8}}$ । इसके प्राथिमक सिरों पर $60\ Hz$, $120\ V$ तथा द्वितीयक सिरों पर लोड प्रतिरोध $10^4\ \Omega$ जोड़ते है तो द्वितीयक क्ण्डली में धारा है - - (A) 96 A - (B) 0.96 A - (C) 9.6 A - (D*) 96 mA **Sol.** $$\frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{8}{1}$$ $V_2 = 8 \times 120 = 960 \text{ volt}$ $$I = \frac{960}{10^4} = 96 \text{ mA}.$$ **E-2.** A transformer is used to light a 140 watt, 24 volt lamp from 240 V AC mains. The current in the main cable is 0.7 amp. The efficiency of the transformer is : 140 watt, 24 volt के लैम्प को प्रकाशित करने के लिए ट्रांसफार्मर का उपयोग करते हुए 240 V के मुख्य प्रत्यावर्ती धारा स्रोत से जोड़ा जाता है। मुख्य केबल (तार) में धारा 0.7 amp है तो ट्रांसफार्मर की दक्षता है। - (A) 48% - (B) 63.8% - (C*) 83.3% - (D) 90% **Sol.** $$\eta\% = \frac{E_2I_2}{E_4I_4} \times 100 = \frac{140}{240 \times 0.7} \times 100 = 83.3\%.$$ E-3. In a step-up transformer the voltage in the primary is 220 V and the current is 5A. The secondary voltage is found to be 22000 V. The current in the secondary (neglect losses) is उच्चायी ट्रांसफार्मर की प्राथमिक कुण्डली में विभव तथा धारा के परिमाण क्रमशः 220 V तथा 5A है। द्वितीयक कुण्डली में विभव 22000 V प्राप्त होता है तो द्वितीयक में धारा है। (हानियों को नगण्य मानों) - (A) 5 A - (B) 50 A - (C) 500 A - (D*) 0.05 A **Sol.** $I_1 E_1 = I_2 E_2$ $$I_2 = \frac{I_1 E_1}{E_2} = \frac{5 \times 220}{22000} = .05 \text{ A}$$ - **E-4.** The core of a transformer is laminated to reduce - (A^*) eddy current loss (B) hysteresis loss - (C) copper loss - (D) magnetic loss - ट्रांसफार्मर की क्रोड को पटटलित करके किसको कम किया जाता
है - (A*) भंवर धारा हानियाँ - (B) शैथिल्य हानियाँ - (C) ताम्ब्र हानियाँ - (D) चुम्बकीय हानियाँ # Section (F) : Miscellaneous विविध - **F-1.** A capacitor is a perfect insulator for : - (A*) constant direct current - (B) alternating current - (C) direct as well as alternating current - (D) variable direct current | | संधारित्र पूर्ण अचालक का | । व्यवहार है – | | | | |------|--|---|---|--------------|--| | | (A*) अचर दिष्ट धारा के | लिए। | (B) प्रत्यावर्ती धारा के लिए | [] | | | | (C) दिष्ट धारा तथा प्रत्या | वर्ती धारा दोनों के लिए। | (D) परिवर्ति दिष्ट धारा के | लिए। | | | F-2. | A choke coil sould have : (A) high inductance and high resistance (B) low inductance and low resistance (C*) high inductance and low resistance (D) low inductance and high resistance एक चोक कुण्डली में होना चाहिए— | | | | | | | (A) उच्च प्रेरकत्व तथा उ | च्च प्रतिरोध | (B) निम्न प्रेरकत्व तथा नि | म्न प्रतिरोध | | | | (C*) उच्च प्रेरकत्व तथा निम्न प्रतिरोध (D) निम्न प्रेरकत्व तथा उच्च प्रतिरोध | | | | | | F-3. | (A*) it consumes almo(C) it increases power | ſ | (B) it increases current(D) it increases voltage | | | | | (A*) इसमें व्यय शक्ति ल | गभग शून्य है। | (B) यह धारा को बढ़ाती है | | | | | (C) यह शक्ति को बढ़ाती | ह शक्ति को बढ़ाती है। (D) यह विभव को बढ़ाती है। | | | | | F-4. | With increase in frequency of an AC supply, the inductive reactance : (A) decreases (B*) increases directly proportional to frequency (C) increases as square of frequency (D) decreases inversely with frequency प्रत्यावर्ती धारा स्त्रोत की आवृति बढ़ाने पर प्रेरकीय प्रतिघात — | | | | | | | (A) घटेगा। | | (B*) आवृति के समानुपाती | बढ़ेगा। | | | | (C) आवृति के वर्ग के सम | नानुपाती बढ़ेगा। | (D) आवृति के व्युत्क्रमानुपा | ाती घटेगा। | | | F-5. | (A*) varies inversely v(C) varies directly as s | | (B) varies directly with(D) remains constant | frequency | | | | (A*) आवृति के साथ व्युत्क्रमानुपाती परिवर्तित होता है। (B) आवृति के साथ समानुपाती परिवर्तित होता है। | | | | | | | (C) आवृति के वर्ग के सम | गनुपाती परिवर्तित होता है। | (D) नियत रहता है। | | | | F-6. | An AC ammeter is used to measure current in a circuit. When a given direct constant current passes through the circuit, the AC ammeter reads 3 ampere. When an alternating current passes through the circuit, the AC ammeter reads 4 ampere. Then the reading of this ammeter if DC and AC flow through the circuit simultaneously, is: | | | | | | | किसी परिपथ में धारा मापने के लिए प्रत्यावर्ती धारा अमीटर का उपयोग किया जाता है। जब परिपथ में अचर मान की
दिष्ट धारा प्रवाहित की जाती है तो अमीटर का पाठयांक 3 ऐम्पियर है। जब परिपथ से अन्य प्रत्यावर्ती धारा प्रवाहित की | | | | | | | जाती है तो इसका पाठयांक 4 ऐम्पियर है। जब प्रत्यावर्ती धारा तथा दिष्ट धारा दोनों को एक साथ प्रवाहित किया जाता है
तो अमीटर का पाठयांक होगा — | | | | | | | (A) 3 A | (B) 4 A | (C) 7 A | (D*) 5 A | | | F-7. | In an a.c. circuit consisting of resistance R and inductance L, the voltage across R is 60 volt and that across L is 80 volt. The total voltage across the combination is एक प्रत्यावर्ती धारा परिपथ में प्रतिरोध R तथा प्रेरकत्व L है तथा इनके सिरों पर विभव क्रमशः 60 volt तथा 80 volt है तो संयोजन के सिरों का कुल विभव है — | | | | | | | (A) 140 V | (B) 20 V | (C*) 100 V | (D) 70 V | | | | | | | | | ### **PART - III: MATCH THE COLUMN** # भाग - III : कॉलम को सुमेलित कीजिए (MATCH THE COLUMN) **1.** Match the Physical quantities given in column-I with the parameters they depend on as given in column-II. #### Column I - (A) Inductance of a coil - (B) Capacitance - (C) Impedance of a coil - (D) Reactance of a capacitor #### Column II - (p) Depends on resistivity - (q) Depends on shape - (r) Depends on medium inserted - (s) Depends on external AC voltage source स्तम्भ-I में दी गई भौतिक राशियों को स्तम्भ-II में दिये गये प्राचलों जिस पर वे निर्भर करती है, से सुमेलित कीजिए। स्तम्भ-I - (A) कुण्डली का प्रेरकत्व - (B) धारिता - (C) कुण्डली की प्रतिबाधा - (D) संधारित्र की प्रतिघात - स्तम्भ-II - (p) प्रतिरोधकता पर निर्भर करती है। - (q) आकार (shape) पर निर्भर करती है। - (r) प्रवेशित (inserted) माध्यम पर निर्भर करती है। - (s) बाह्य AC वोल्टेज स्रोत पर निर्भर करती है। **Ans.** (A) q,r(B) q,r(C) p,q,r,s(D) q,r, s - **Sol.** (A) Inductance of a coil depends on its shape and magnetic properties of its core (medium inserted) - (B) Capacitance of capacitor depends on its shape and dielectric properties of medium inserted. - (C) Impedance of coil $\sqrt{R^2 + \omega^2 L^2}$ depends on resistivity (due to R), shape (for L), magnetic properties of core inserted and also depends on angular frequency ω of external voltage source. - (D) Reactance of capacitor = $\frac{1}{\omega C}$ depends on shape (for C), nature of dielectric medium (for C) and external voltage source (due to ω). - (A) एक कुण्डली की प्रेरकत्व इसके आकार तथा इसकी क्रोड (प्रवेशित माध्यम में) के चुम्बकीय गुणों पर निर्भर करती है। - (B) संधारित्र की धारिता इसके आकार तथा प्रवेशित माध्यम के परावैद्युत गुणों पर निर्भर करती है। - (C) कुण्डली की प्रतिबाधा $\sqrt{R^2 + \omega^2 L^2}$ प्रतिरोधकता (R के कारण), आकार (L के कारण), प्रवेशित क्रोड के चुम्बकीय गुणों तथा ω कोणीय आवृत्ति के बाह्य वोल्टेज स्त्रोत पर भी निर्भर करती है। - (D) संधारित्र की प्रतिघात = $\frac{1}{\omega C}$ आकार (C के लिए), परावैद्युत माध्यम की प्रकृति (C के लिए) तथा बाह्य वोल्टेज स्त्रोत (ω के कारण) पर निर्भर करती है। A steady current 4 A flows in an inductor coil when connected to a 12 V dc source as shown in figure 1. If the same coil is connected to an ac source of 12 V, 50 rad/s, a current of 2.4 A flows in the circuit as shown in figure 2. Now after these observations, a capacitor of capacitance $\frac{1}{50}$ F is connected in series with the coil as shown in figure 3 with the same AC source: जब एक प्रेरण कुण्डली को 12 वोल्ट के दिष्ट वोल्टता स्त्रोत से चित्र 1 के अनुसार जोड़ा जाता है तो प्रेरण कुण्डली में चित्रानुसार 4 A की स्थायी धारा प्रवाहित होती है। यदि यही समान कुण्डली 12 V व 50 rad/s के प्रत्यावर्ती (AC) वोल्टता स्त्रोत से चित्र 2 के अनुसार जोड़ी जाती है तो परिपथ में 2.4 A की धारा प्रवाहित होती है। अब इन प्रेक्षणों के पश्चात् 1/50 F धारिता के संधारित्र को प्रेरण कुण्डली के साथ श्रेणीक्रम में चित्र-3 के अनुसार उसी प्रत्यावर्ती वोल्टता स्त्रोत से जोड़ा जाता है। Column-I Column-II (in S.I units) (S.I. पद्वति में) - (A) The inductance of the coil (nearly) प्रेरण कृण्डली का प्रेरकत्व (लगभग) – - (p) 24 (B) The resistance of the coil कुण्डली का प्रतिरोध- (q) 3 (C) Average power (nearly) (r) 0.08 - औसत शक्ति (लगभग) - (D) Total reactance कुल प्रतिघात **Ans.** (A) \rightarrow (r), (B) \rightarrow (q), (C) \rightarrow (p), (D) \rightarrow (q) Sol. 1 to 2: When connected with the DC source जब दिष्ट स्रोत से जोड़ा जाता है। $$R = \frac{12}{4} = 3 \Omega$$ When connected to ac source जब प्रत्यावर्ती स्रोत से जोड़ा जाता है। $$I = \frac{V}{Z}$$ $$\therefore 2.4 = \frac{12}{\sqrt{3^2 + \omega^2 L^2}} \Rightarrow L = 0.08 \text{ H}$$ Using प्रयोग करने से P = $I_{rms} V_{rms} \cos \phi \frac{V_{rms}^2}{Z} = \cos \phi = \frac{V_{rms}^2 R}{R^2 + (\omega L - \frac{1}{\omega C})^2} = 24 \text{ W}$ 🥦 चिन्हित प्रश्न दोहराने योग्य प्रश्न है। ### PART - I: ONLY ONE OPTION CORRECT TYPE ### भाग - I: केवल एक सही विकल्प प्रकार (ONLY ONE OPTION CORRECT TYPE) #### Section (B): Power consumed in an ac circuit खण्ड (B): प्रत्यावर्ती धारा परिपथ में शक्ति व्यय A coil has an inductance of $\frac{2.2}{\pi}$ H and is joined in series with a resistance of 220 Ω . When an alternating e.m.f. of 220 V at 50 c.p.s. is applied to it, then the wattless component of the rms current in the circuit is (A) 5 ampere (B*) 0.5 ampere (C) 0.7 ampere (D) 7 ampere Wattless current = Irms sin o Sol. Where $\tan \phi = \frac{\omega L}{R} = \frac{2\pi fL}{R} = 1$ and $$I_{rms} = \frac{v_{rms}}{z} = \frac{v_{rms}}{\sqrt{R^2 + (\omega L)^2}} = \frac{1}{\sqrt{2}}$$ Hindi एक कुण्डली का प्रेरकत्व $\frac{2.2}{\pi}$ H है तथा इसे 220 Ω के प्रतिरोध के साथ श्रेणी में जोड़ा जाता है। जब इसको 220 Vवि.वा.बल, 50 चक्कर प्रति सैकण्ड आवृति वाले प्रत्यावर्ती स्रोत से जोड़ा जाता है तो परिपथ में वर्गमाध्य मूल धारा का शक्तिहीन घटक है (A) 5 ऐम्पियर (B*) 0.5 ऐम्पियर (C) 0.7 ऐम्पियर (D) 7 ऐम्पियर शक्तिहीन धारा = Irms sin ϕ Sol. जहाँ $$\tan \phi = \frac{\omega L}{R} = \frac{2\pi f L}{R} = 1$$ तथा $I_{rms} = \frac{v_{rms}}{z} = \frac{v_{rms}}{\sqrt{R^2 + (\omega L)^2}} = \frac{1}{\sqrt{2}}$ # Section (C): AC source with R, L, C connected in series खण्ड (C): R, L, C श्रेणीक्रम के साथ प्रत्यावर्ती धारा स्रोत 2. The current in a circuit containing a capacitance C and a resistance R in series leads over the applied voltage of frequency $\frac{\omega}{2\pi}$ by. [REE - 91] [REE - 1991] एक परिपथ में संधारित्र C तथा प्रतिरोध R श्रेणीक्रम में जुड़े है तो इसमें प्रवाहित धारा, $\frac{\omega}{2\pi}$ आवृति वाले आरोपित विभव से कितनी आगे है। $(A^*) \ tan^{-1} \bigg(\frac{1}{\omega CR} \bigg) \qquad (B) \ \ tan^{-1} \ \ (\omega CR) \qquad \qquad (C) \ tan^{-1} \bigg(\omega \frac{1}{R} \bigg) \qquad \quad (D) \ cos^{-1} \ (\omega CR)$ $\tan \phi = \frac{x_c}{R} = \frac{1/\omega c}{R} \Rightarrow \phi = \tan^{-1} \frac{1}{\omega CR}$ Sol. 3.ऋ An inductor $\left(L = \frac{1}{100\pi}H\right)$, a capacitor $\left(C = \frac{1}{500\pi}F\right)$ and a resistance (3 Ω) is connected in series with an AC voltage source as shown in the figure. The voltage of the AC source is given as V = 10 cos(100 π t) volt. What will be the potential difference between A and B? $(C = \frac{1}{100\pi}H), \text{ एक संधारित्र } \left(C =
\frac{1}{500\pi}F\right) \text{ तथा एक प्रतिरोध (3}\Omega) \text{ चित्रानुसार AC विभव स्रोत से श्रेणीक्रम में जुड़े हैं। AC स्रोत का विभव V = 10 cos(100 <math>\pi$ t) वोल्ट है। A तथा B के मध्य विभवान्तर होगा ? (A) 8 $\cos(100 \pi t - 127^{\circ})$ volt (C*) 8 $\cos(100 \pi t - 37^{\circ})$ volt (B) 8 $\cos(100 \pi t - 53^{\circ})$ volt (D) 8 $\cos(100 \pi t + 37^{\circ})$ volt **Sol.** $$z = \sqrt{3^2 + (5-1)^2} = 5\Omega$$ $i = 2 \cos(100\pi t + 53^{\circ})$ $v_{AB} = 8 \cos(100\pi t + 53^{\circ} - 90^{\circ}) \text{ volt}$ $v_{AB} = 8 \cos(100\pi t - 37^{\circ}) \text{ volt}$ Ans An ac voltage source V = V₀ sin ω t is connected across resistance R and capacitance C as shown in figure. It is given that R = $\frac{1}{\omega C}$. The peak current is I₀. If the angular frequency of the voltage source is changed to $\frac{\omega}{\sqrt{3}}$ keeping R and C fixed, then the new peak current in the circuit is: चित्रानुसार प्रतिरोध R तथा धारिता C के सिरों पर एक प्रत्यावर्ती वोल्टेज $V = V_0 \sin \omega t$ का स्रोत जोड़ा जाता है। यह दिया गया है कि $R = \frac{1}{\omega C}$ है। शिखर धारा I_0 है। यदि वोल्टेज स्रोत की कोणीय आवृत्ति बदलकर $\frac{\omega}{\sqrt{3}}$ कर दी जाती है (R a C को नियत रखते ह्ये) तो परिपथ में नई शिखर धारा होगी - **Sol.** The peak value of the current is धारा का शिखर मान है – $$I_0 = \frac{V_0}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} = \frac{V_0}{\sqrt{2} R}$$ when the angular frequency is changed to $\frac{\omega}{\sqrt{3}}$ जब कोणीय आवृत्ति बदलकर $\frac{\omega}{\sqrt{3}}$ हो जाती है। The new peak value is धारा का नया शिखर मान है— $$I_0' = \frac{V_0}{\sqrt{R^2 + \frac{3}{\omega^2 C^2}}} = \frac{V_0}{\sqrt{4R^2}} = \frac{V_0}{2R}$$ \therefore $I_0' = \frac{I_0}{\sqrt{2}}$ - **5.** For a LCR series circuit with an A.C. source of angular frequency ω. एक ω कोणीय आवृत्ति के प्रत्यावर्ती धारा स्त्रोत से संबंद्ध एक LCR श्रेणी परिपथ के लिए - (A) circuit will be capacitive if $\omega > \frac{1}{\sqrt{LC}}$ परिपथ धारितीय होगा यदि $\omega > \frac{1}{\sqrt{LC}}$ - (B) circuit will be inductive if $\omega = \frac{1}{\sqrt{LC}}$ $\omega = \frac{1}{\sqrt{LC}}$ हो तो परिपथ प्रेरकीय होगा - (C*) power factor of circuit will by unity if capacitive reactance equals inductive reactance परिपथ का शक्ति गुणांक एक होगा। यदि धारितीय प्रतिघात, प्रेरकीय प्रतिघात के बराबर है। - (D) current will be leading voltage if $\omega > \frac{1}{\sqrt{LC}}$ धारा विभव से अग्रगामी होगी यदि $\omega > \frac{1}{\sqrt{LC}}$ - **Sol.** (C) The circuit will have inductive nature if $\omega > \frac{1}{\sqrt{LC}} \left(\omega L > \frac{1}{\sqrt{LC}} \right)$. Hence A is false. Also if circuit has inductive nature the current will lag behind voltage. Hence D is also false. If $\omega = \frac{1}{\sqrt{LC}} \left(\omega L = \frac{1}{\omega C} \right)$ the circuit will have resistive nature. Hence B is false Power factor $\cos \phi = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = 1$ it $\omega L = \frac{1}{\omega C}$. Hence C is true. **Sol.** यदि $\omega > \frac{1}{\sqrt{LC}} \left(\omega L > \frac{1}{\sqrt{LC}} \right)$ है तो परिपथ प्रेरणीक प्रकृत्ति का होगा। अतः A असत्य है। यदि परिपथ प्रेरणीक प्रकृत्ति का है तो धारा वोल्टेज से पीछे होगी। अतः D भी असत्य है। यदि $\omega = \frac{1}{\sqrt{LC}} \left(\omega L = \frac{1}{\omega C} \right)$ है तो परिपथ प्रतिरोध प्रकृत्ति का होगा। अतः B असत्य है। शक्ति गुणांक $\cos\phi = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = 1$ it $\omega L = \frac{1}{\omega C}$. अतः C सत्य है । 6. An LCR series circuit with 100 Ω resistance is connected to an AC source of 200 V and angular frequency 300 radians per second. When only the capacitance is removed, the current lags the voltage by 60°. When only the inductance is removed, the current leads the voltage by 60°. Then the current and power dissipated in LCR circuit are respectively एक LCR श्रेणी परिपथ 100 Ω प्रतिरोध के साथ 200 V तथा 300 रेडियन प्रति सैकण्ड की कोणीय आवृति वाले प्रत्यावर्ती धारा स्रोत से जुड़ा है। जब परिपथ से केवल संधारित्र हटाया जाता है तो धारा विभव से 60° पश्चगामी हो जाती है। जब केवल प्रेरकत्व हटाया जाता है तो धारा विभव से 60° अग्रगामी हो जाती है तो LCR परिपथ में धारा तथा शक्ति व्यय क्रमशः है - (A) 1A, 200 watt. - (B) 1A, 400 watt. - (C) 2A, 200 watt. - (D*) 2A, 400 watt. **Sol.** When all (L,C,R) are connected then net phase difference = 60 - 60 = 0. So, there will be resoance. जब सभी (L,C,R) जुड़े होंगे तो V तथा I में कलान्तर 60 - 60 = 0 हो जायेगा, अतः अनुनाद होगा। $$I = \frac{V}{R} = 2A$$ & तथा P = I² R = 400 watt. 7. In an L-R series circuit (L = $\frac{175}{11}$ mH and R = 12Ω), a variable emf source (V = Vo sin ω t) of Vms = $130\sqrt{2}$ V and frequency 50 Hz is applied. The current amplitude in the circuit and phase of current with respect to voltage are respectively(Use π = 22/7) L-Rश्रेणी परिपथ (L = $\frac{175}{11}$ mH तथा R = 12Ω) से परिवर्ती वि.वा.बल स्रोत (V = Vo sin ω t) जुड़ा है। इसका Vms = $130\sqrt{2}$ V तथा आवृति 50 Hz है। परिपथ में धारा आयाम तथा धारा की विभव के सापेक्ष कला क्रमशः होंगे — (π = 22/7 का उपयोग करें) (A) 14.14A, 30° (B) $$10\sqrt{2}$$ A, $\tan^{-1}\frac{5}{12}$ (C) 10 A, $\tan^{-1}\frac{5}{12}$ (D*) 20 A, $\tan^{-1}\frac{5}{12}$ $$\begin{aligned} \text{Sol.} \qquad & I_0 = \sqrt{2} \quad I_{rms} = \sqrt{2} \, \frac{V_{rms}}{Z} & I_0 = \frac{\sqrt{2} \times 130 \sqrt{2}}{\sqrt{R^2 + (\omega L)^2}} \\ & \tan \varphi = \frac{\omega L}{R} & \varphi = \tan^{-1} \bigg(\frac{\omega L}{R} \bigg). \end{aligned}$$ #### Section (D): Resonance ### खण्ड (D): अनुनाद - 8. In LCR circuit at resonance current in the circuit is $10\sqrt{2}$ A. If now frequency of the source is changed such that now current lags by 45° than applied voltage in the circuit. Which of the following is correct : अनुनाद पर LCR परिपथ में धारा $10\sqrt{2}$ A है। अब स्त्रोत की आवृति इस प्रकार से बदलती है कि परिपथ में धारा आरोपित विभवान्तर से 45° कलाकोण पीछे चलती हो, तो कौनसा कथन **सही** है। - (A*) Frequency must be increased and current after the change is 10 A आवृति निश्चित रूप से बढ़ाई जानी चाहिये तथा परिवर्तन के पश्चात परिपथ में धारा 10 A होगी। - (B) Frequency must be decreased and current after the change is 10 A आवृति निश्चित रूप से घटाई जानी चाहिये तथा परिवर्तन के पश्चात परिपथ में धारा 10 A होगी। - (C) Frequency must be decreased and current is same as that of initial value आवृति निश्चित रूप से घटाई जानी चाहिये तथा परिवर्तन के पश्चात धारा प्रारम्भिक मान के बराबर होगी। - (D) The given information is insufficient to conclude anything कुछ निष्कर्ष के लिये दी गई जानकारी अधुरी है। - Sol. At resonance अनुनाद पर $$X_L = X_C$$ $$I_{rms} = \frac{V_{rms}}{R} = 10\sqrt{2}$$...(i) When current lags by $\frac{\pi}{4}$: जब धारा $\frac{\pi}{4}$ से पिछे चलती है $$(R = X)$$ $I_{rms} = \frac{V_{rms}}{\sqrt{R^2 + X^2}} \frac{V_{rms}}{\sqrt{2R}} = 10A$ ### Section (E): Transformer ### खण्ड (E): ट्रांसफार्मर The overall efficiency of a transformer is 90%. The transformer is rated for an output of 9000 watt. The 9.3 primary voltage is 1000 volt. The ratio of turns in the primary to the secondary coil is 5 : 1. The iron losses at full load are 700 watt. The primary coil has a resistance of 1 ohm. ट्रांसफार्मर की कुल प्रभावी दक्षता 90% है। इसकी निर्गत शक्ति 9000 watt अंकित है। प्राथमिक कुण्डली पर विभव 1000 वोल्ट है। प्राथमिक तथा द्वितीयक कुण्डली में घेरों का अनुपात 5:1 है। पूर्ण लोड पर लौह–हानियां 700 watt है। प्राथमिक कृण्डली में प्रतिरोध 1 ओम है The voltage in secondary coil is: (i) द्वितीयक कुण्डली में विभव है - - (A) 1000 volt - (B) 5000 volt - (C*) 200 volt - (D) zero volt $\frac{\mathsf{E}_2}{\mathsf{E}_1} = \frac{\mathsf{N}_2}{\mathsf{N}_1} = \frac{1}{5}$ Sol. $$E_2 = \frac{1000}{5} = 200 \text{ volt.}$$ (ii) In the above, the current in the primary coil is: उपरोक्त प्रश्न में, प्राथमिक कुण्डली में धारा है – - (A) 9 amp - (B*) 10 amp - (C) 1 amp - (D) 4.5 amp $E_2I_2 = E_1I_1 \times \eta \%$ Sol. $$9000 = 1000 \times I_1 \times \frac{90}{100}$$ $I_1 = 10 \text{ amp.}$ In the above, the copper loss in the primary coil is: उपरोक्त प्रश्न में, प्राथमिक कुण्डली में ताम्ब्र हानियां है – - (A*) 100 watt - (B) 700 watt - (C) 200 watt - (D) 1000 watt प्राथमिक कुण्डली में ताम्र हानियाँ Sol. $$= I_1^2 R_1 = (10)^2 \times 1 = 100.$$ कुल हानियाँ $= E_1I_1 - E_2I_2$ = 10.000 - 9000 = 1000 (iv) In the above, the copper loss in the secondary coil is : उपरोक्त प्रश्न में, द्वितीयक कुण्डली में ताम्ब्र हानियां है – - (A) 100 watt - (B) 700 watt - (C*) 200 watt - (D) 1000 watt Cu losses in secondary coil Sol. द्वितीय कृण्डली में ताम्र हानि - = (1000 700) 100 - = 200 watt. - In the above, the current in the secondary coil is: उपरोक्त प्रश्न में, द्वितीयक कुण्डली में धारा है - - (A) 45 amp - (B*) 46 amp - (C) 10 amp - (D) 50 amp - (A) 45 ऐम्पियर - (B*) 46 ऐम्पियर - (C) 10 ऐम्पियर - (D) 50 ऐम्पियर Sol. $E_2 I_2 = 9000 + 200$ $$I_2 = \frac{9200}{200} = 46 \text{ A}.$$ (vi) In the above, the resistance of the secondary coil is approximately: उपरोक्त प्रश्न में, द्वितीयक कुण्डली में प्रतिरोध लगभग है (A) 0.01Ω - (B*) 0.1Ω - (C) 0.2Ω - (D) 0.4Ω Sol. $I_2^2 = R_2 = 200$ $$R_2 = \frac{200}{(46)^2} = 0.0945.$$ 10._ In the following circuit the current is in phase with the applied voltage. Therefore, the current in the circuit and the frequency of the source voltage respectively, are निम्न परिपथ में धारा आरोपित विभव के साथ कला में है। इसलिए परिपथ में धारा तथा स्त्रोत विभव की आवृत्ति क्रमशः है [Olympiad (Stage-1) 2017] - (A*) $\frac{v_i}{R}$ and तथा $\frac{1}{2\pi\sqrt{LC}}$ - (C) $\sqrt{\frac{C}{L}} v_i$ and तथा $\frac{2}{\pi \sqrt{LC}}$ (B) zero and शून्य तथा $\frac{1}{\sqrt{LC}}$ (D) $4\sqrt{\frac{C}{LR^2}}$ and तथा $\frac{2}{\sqrt{LC}}$ Ans. (A) - **Sol.** $f = \frac{1}{2\pi\sqrt{LC}}$ the circuit is in resonance with the applied voltage. - $f = \frac{1}{2\pi\sqrt{LC}}$ परिपथ आरोपित विभव के साथ अनुनाद में है। - $i = \frac{V_i}{R}$ # PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE भाग - II : एकल एवं द्वि—पूर्णांक मान प्रकार (SINGLE AND DOUBLE VALUE INTEGER TYPE) #
Section (A): Average, peak and RMS value खण्ड (A): औसत,शीर्ष तथा वर्गमाध्य मूल मान 1. The rms value for the saw-tooth voltage of peak value V_0 from t=0 to t=2T as shown in figure is $\frac{V_0}{\sqrt{x}}$. Find the value of x. चित्रानुसार शीर्ष मान V_0 वाले त्रिभुजाकार विभव का वर्गमाध्य मूल t=0 से t=2T के लिए $\frac{V_0}{\sqrt{x}}$ हो तो x का मान ज्ञात करो। Ans. x = 3 #### **Sol.** general equation of V V की सामान्य समीकरण $$V = \frac{V_o}{T/2}t - V_0 = \frac{2V_0}{T}t - V_0$$ $$V_{rms} = \begin{bmatrix} \int_{0}^{T} V^{2} dt \\ T \end{bmatrix}^{\frac{1}{2}} = \begin{bmatrix} \int_{0}^{T} \left(\frac{2V_{0}}{T} t - V_{0} \right)^{2} dt \\ T \end{bmatrix}^{\frac{1}{2}} = \frac{V_{0}}{\sqrt{3}}$$ $x = 3$ Ans. #### Section (C): AC source with R, L, C connected in series ### खण्ड (C): R, L, C श्रेणीक्रम के साथ प्रत्यावर्ती धारा स्रोत # 2. An inductor $(x_L = 2\Omega)$ a capacitor $(x_C = 8\Omega)$ and a resistance (8Ω) is connected in series with an ac source. The voltage output of A.C source is given by $v = 10 \cos 100\pi t$. एक प्रेरक कुण्डली ($x_L = 2\Omega$), एक संधारित्र ($x_C = 8\Omega$) तथा एक प्रतिरोध (8Ω) श्रेणी क्रम में एक प्रत्यावर्ती धारा स्त्रोत से जुड़े है प्रत्यावर्ती धारा स्त्रोत के द्वारा प्रदत्त विभव $v = 10\cos 100\pi t$ है। The instantaneous p.d. between A and B is equal to $x \times 10^{-1}$ volt, when it is half of the voltage output from source at that instant Find out value of x. A तथा B के मध्य तात्क्षणिक विभव पतन $x \times 10^{-1}$ volt हो तो x का मान ज्ञात करो, यदि इस क्षण यह विभव पतन स्त्रोत द्वारा प्रदत्त विभव का आधा है। #### **Ans.** 48 **Sol.** impedance of circuit परिपथ की प्रतिबाधा = $$\sqrt{R^2 + (X_C - X_L)^2}$$ $$Z = \sqrt{8^2 + (8-2)^2} = 10\Omega$$ The current leads in phase by धारा कला कोण से ϕ = 37° आगे ($X_C > X_L$) $$\phi = 37^{\circ}$$ $$\therefore i = \frac{10\cos(100\pi t + 37^{\circ})}{Z} = \cos(100\pi t + 37^{\circ})$$ The instantaneous potential difference across A B is AB के सिरों पर किसी क्षण प्रतिबाधा = $$I_m (X_C - X_L) \cos (100\pi t + 37^\circ - 90^\circ)$$ = $6 \cos (100 \pi t - 53^\circ)$ The instantaneous potential difference across A B is half of source voltage. AB के सिरों पर क्षणीक वोल्ट का स्त्रोत वोल्टता का आधा है। $$\Rightarrow$$ 6 cos (100 π t – 53°) = 5 cos 100 π t solving we get हल करने पर $$\cos 100 \pi t = \frac{1}{\sqrt{1 + (7/24)^2}} = \frac{24}{25}$$ ∴ instantaneous potential difference क्षणीक विभवान्तर = $$5 \times \frac{24}{25} = \frac{24}{5}$$ volts = 48×10^{-1} V x = 48 - <u>3.</u> A 2000 Hz, 20 volt source is connected to a resistance of 20 ohm, an inductance of $0.125/\pi$ H and a capacitance of $500/\pi$ nF all in series. Calculate the time (in seconds) in which the resistance (thermal capacity = 100 joule/°C) will get heated by 10° C. (Assume no loss of heat) 20 Ω प्रतिरोध, 0.125/ π H प्रेरकत्व तथा 500/ π nF संधारित्र श्रेणी क्रम में 2000 Hz, 20 volt के स्रोत से जुड़े है। तो कितने समय में प्रतिरोध का ताप 10°C जायेगा ? (प्रतिरोध की ऊष्मा धारिता = 100 J/°C) (ऊष्मा हानि नगण्य मानिए।) - Ans. - power शक्ति (P) = $I_{ms}^2 R$ $P = \frac{20}{\sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}} \times R$ Sol. where ਯहाँ $\omega = 2 \times \pi \times 2000$ $$\Delta H = (ms) \Delta \theta = P (\Delta t)$$ \Rightarrow $\Delta t = \frac{(ms)\Delta \theta}{P} = \frac{100 \times 10}{P} = 50 \text{ sec.}$ A series LCR circuit containing a resistance of 120 ohm has angular resonance frequency 4 × 105 rad <u>4</u>. s⁻¹. At resonance, the voltage across resistance and inductance are 60V and 40 V respectively. At frequency the current in the circuit lags the voltage by 45° is equal to $x \times 10^{5}$ rad/sec. Find value of x. एक श्रेणी LCR परिपथ में 120 ओम का प्रतिरोध है तथा इसकी कोणीय अनुनादी आवृत्ति 4 × 10⁵ rad s⁻¹ है। अनुनाद पर, प्रतिरोध तथा प्रेरकत्व पर विभवान्तर क्रमशः 60V व 40 V है। x × 10⁵ rad/sec आवृत्ति पर परिपथ में धारा, विभवान्तर से 45° पीछे है, तो x का मान ज्ञात करो ? [REE - 95] - Ans. - $\omega = \frac{1}{\sqrt{1 C}}$ Sol. $$\frac{V}{R}$$ × (ω L) = 40 ...(ii) $$\frac{V}{R} \times R = V = 60$$...(iii) $$\omega L = \frac{40}{60} R$$...(iv) $$\frac{1}{\omega C} = \frac{40 \text{ R}}{60}$$...(v) From equation (i), (iv) & (v) समी० (i), (iv) तथा (v) के लिए $$L = 2 \times 10^{-4} \text{ H}; C = \frac{1}{32} \mu\text{F}$$ from phasor diagram, $V_L - V_C = V_R$ फेजर चित्र से $V_L - V_C = V_R$ $$\Rightarrow X_L - V_C = R \qquad \Rightarrow \omega L - \frac{1}{\omega_C} = R$$ $$\Rightarrow \qquad X_L - V_C = R \qquad \Rightarrow \qquad \omega L - \frac{1}{\omega_C} = R$$ $$\Rightarrow \qquad \omega^2 L - \omega R - \frac{1}{C} = 0 \qquad \Rightarrow \qquad \omega = \frac{R + \sqrt{R^2 + 4L/C}}{2 L} = 8 \times 10^5 \, \text{rad/sec.}$$ $$x = 8$$ ### **SECTION (D): RESONANCE** खण्ड (D): अनुनाद An LCR circuit has L = 10 mH, R = 150 Ω and C = 1 μ F connected in series to a source of 150 $\sqrt{2}$ cos <u>5.</u> ωt volt. At a frequency that is 50% of the resonant frequency, calculate the average power (in watt) dissipated per cycle. एक LCR परिपथ में L = 10 mH, R = 150 Ω तथा C = 1 μ F श्रेणीक्रम में 150 $\sqrt{2}$ cos ω t वोल्ट के स्रोत से जुड़े है यदि आवृत्ति , अनुनादी आवृत्ति की 50% हो तो प्रति चक्र व्ययित औसत शक्ति (वॉट में) ज्ञात करो। Ans. **Sol.** $$f = \frac{50}{100} \times f_r$$ $f = \frac{1}{2} \times \frac{1}{2 \pi \sqrt{LC}}$ $\omega = \frac{1}{2 \sqrt{LC}}$ $$X = \left| \omega L - \frac{1}{\omega C} \right| = 150$$ $$I_0 = \frac{V_0}{Z} = \frac{150 \sqrt{2}}{\sqrt{R^2 + x^2}}$$ $$I_0 = \frac{V_0}{Z} = \frac{150 \quad \sqrt{2}}{\sqrt{R^2 + x^2}}$$ $P_{CW} = I_{rms} V_{rms} \cos \phi = \frac{I_0 V_0}{2} \times \frac{R}{Z} = 75 \text{ W}$ In the figure shown an ideal alternative current (A.C.) source of 10 Volt is connected. Find half of the 6.3 total average power (in watts) given by the cell to the circuit. चित्रानुसार 10 वोल्ट का एक आदर्श प्रत्यावर्ती धारा (A.C.) स्त्रोत परिपथ में संयोजित है। सैल द्वारा परिपथ को दी गई कुल औसत शक्ति (वॉट में) का आधा मान ज्ञात करो। Ans. 9 ### PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE # भाग - III : एक या एक से अधिक सही विकल्प प्रकार(ONE OR MORE THAN ONE OPTION **CORRECT TYPE)** ### Section (B): Power consumed in an ac circuit खण्ड (B): प्रत्यावर्ती धारा परिपथ में शक्ति व्यय Average power consumed in an A.C. series circuit is given by (symbols have their usual meaning): 1. प्रत्यावर्ती धारा श्रेणी परिपथ में औसत शक्ति व्यय निम्न द्वारा दी जाती है (जहाँ संकेतों का अर्थ सामान्य है) $$(B^*) (I_{rms})^2 R$$ $$(C^*) \frac{E_{max}^2 R}{2(|z|)^2}$$ (C*) $$\frac{E_{\text{max}}^2 R}{2(|z|)^2}$$ (D*) $\frac{I_{\text{max}}^2 |z| \cos \phi}{2}$ Sol. $P_{av} = (A) = (B) = (C) = (D).$ - An AC source supplies a current of 10 A (rms) to a circuit, rms voltage of source is 100 V. The average power delivered by the source : - (A) must be 1000 W - (B*) may be less than 1000 W - (C) may be greater than 1000 W - (D*) may be 1000 W एक प्रत्यावर्ती धारा स्रोत का विभव 100 V (व.मा.मूल) है तथा इस परिपथ में 10 A (व.मा.मूल) मान की धारा प्रवाहित हो रहा है तो स्रोत द्वारा दी गई औसत शक्ति: (A) 1000 W होनी चाहिए। - (B*) 1000 W से कम हो सकती है। - (C) 1000 W से अधिक हो सकती है। - (D*) 1000 W हो सकती है। **Sol.** $P_{avr} = I_{rms} V_{rms} \cos \phi$ $\cos \phi$ can not be more than 1 so power can not be more than 1000. cos ♦ एक से अधिक नहीं हो सकता अतः शक्ति 1000 से अधिक नहीं हो सकती है। 3. Which of the following quantities have zero average value over a cycle. If an inductor coil having some resistance is connected to a sinusoidal AC source. (A*) induced emf in the inductor (B*) current (C) joule heat (D) magnetic energy stored in the inductor निम्न में से कौनसी राशियों का एक पूर्ण चक्र के लिए औसत मान शून्य हैं। यदि कुछ प्रतिरोध वाली प्रेरण कुण्डली ज्यावक्रीय प्रत्यावर्ती धारा स्रोत से जुड़ी है। (A*) प्रेरक में प्रेरित वि.वा.बल (B*) धारा (C) जूल ऊष्मा (D) प्रेरक में संग्रहित चुम्बकीय ऊर्जा **Sol.** Joule heat जूल ऊष्मा I^2_{rms} R Energy in inducting coil प्रेरण कुण्डली की ऊर्जा = $\frac{1}{2}$ LI²_{rms} . In a series LCR circuit with an AC source (E_{rms} = 50 V and v = 50/ π Hz), R = 300 Ω , C = 0.02 mF, L = 1.0 H, Which of the following is correct श्रेणी LCR परिपथ में प्रत्यावर्ती धारा स्रोत (E_{rms} = 50 V तथा v = 50/ π Hz) जुड़ा है तथा R = 300 Ω , C = 0.02 mF, L = 1.0 H जुड़ा हो तो निम्न में कौन सही है। (A*) the rms current in the circuit is 0.1 A परिपथ में वर्गमाध्य मूल धारा 0.1 A है। (B*) the rms potential difference across the capacitor is 50 V संधारित्र के सिरों पर वर्गमाध्य मूल विभवान्तर 50 V है। (C) the rms potential difference across the capacitor is 14.1 V संधारित्र के सिरों पर वर्गमाध्य मूल विभवान्तर 14.1 V है। (D) the rms current in the circuit is 0.14 A परिपथ में वर्गमाध्य मूल धारा 0.14 A है। #### Section (C): AC source with R, L, C connected in series #### खण्ड (C): R, L, C श्रेणीक्रम के साथ प्रत्यावर्ती धारा स्रोत - 5. In an AC series circuit when the instantaneous source voltage is maximum, the instantaneous current is zero. Connected to the source may be a - (A*) pure capacitor - (B*) pure inductor - (C*) combination of pure an inductor and pure capacitor - (D) pure resistor प्रत्यावर्ती धारा श्रेणी परिपथ में जब तात्क्षणिक विभव अधिकतम होता है तब तात्क्षणिक धारा शून्य होती है तो स्रोत से जुड़ा हो सकता है – (A*) शुद्ध संधारित्र (B*) शुद्ध प्रेरकत्व (C*) शुद्ध प्रेरकत्व तथा शुद्ध संधारित्र का संयोजन (D) शुद्ध प्रतिरोध **6.** A coil of inductance 5.0 mH and negligible resistance is connected to an oscillator giving an output voltage $E = (10V) \sin ωt$. Which of the following is correct (A*) for ω = 100 s⁻¹ peak current is 20 A(B*) for ω = 500 s⁻¹ peak current is 4 A (C^*) for $\omega = 1000 \text{ s}^{-1}$ peak current is 2 A(D) for $\omega = 1000 \text{ s}^{-1}$ peak current is 4 A 5.0 mH प्रेरकत्व तथा नगण्य प्रतिरोध वाली कुण्डली एक दोलित्र से जुड़ी है। इसका निर्गत विभव E = (10V) sin ot. है। सही कथनों का चयन करो। (A^*) ω = 100 s⁻¹ के लिए
शीर्ष धारा 20 A है। (B*) ω = 500 s⁻¹ के लिए शीर्ष धारा 4 A है। (C*) ω = 1000 s⁻¹ के लिए शीर्ष धारा 2 A है। (D) $\omega = 1000 \text{ s}^{-1}$ के लिए शीर्ष धारा 4 A है। **Sol.** $$I_0 = \frac{V_0}{\omega L} = \frac{10}{\omega \times 5 \times 10^{-3}}$$ - A pure inductance of 1 henry is connected across a 110 V, 70Hz source. Then correct option are 7. (Use $\pi = 22/7$): - (A*) reactance of the circuit is 440 Ω - (B*) current of the circuit is 0.25 A - (C) reactance of the circuit is 880 Ω - (D) current of the circuit is 0.5 A - . 1 हेनरी का शुद्ध प्रेरकत्व 110 V, 70Hz स्रोत के साथ जुंडा है तो सही कथन है (π = 22/7): - (A*) परिपथ का प्रतिघात 440 Ω है। - (B*) परिपथ में धारा 0.25 A है। - (C) परिपथ का प्रतिघात 880 Ω है। - (D) परिपथ में धारा 0.5 A है। - In the circuit shown in figure, if both the bulbs B_1 and B_2 are identical: 8.3 चित्रानुसार यदि बल्ब B1 तथा B2 पूर्णतः समान है तो : - (A) their brightness will be the same - (B*) B₂ will be brighter than B₁ - (C*) as frequency of supply voltage is increased the brightness of bulb B₁ will increase and that of B₂ will decrease. - (D) only B₂ will glow because the capacitor has infinite impedance - (A) उनकी चमक समान होगी। - (B*) B₂ की चमक B₁ से अधिक होगी। - (C*) यदि स्त्रोत विभव की आवृति बढ़ा दी जाये तो B₁ की चमक बढ़ेगी तथा B₂ की घटेगी। - (D) केवल B2 चमकेगा क्योंकि संधारित्र की प्रतिबाधा अनन्त है। - Sol. $$I_C = \frac{220}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$$ Brightness of $B_1 = I_C^2 R$ B_1 की चमक = I_C^2 R $$I_{L} = \frac{220}{\sqrt{R^2 + \left(\omega L\right)^2}}$$ Brightness of $B_2 = I_L^2 R$ B_2 की चमक = I_L^2 R here $I_L > I_C$ So, B_2 will be brighter. यहाँ $I_L > I_C$ अतः, B_2 अधिक चमकेगा। 9. A circuit is set up by connecting L = 100 mH, C = 5 μ F and R =100 Ω in series. An alternating emf of (150 $\sqrt{2}$) volt, $\frac{500}{\pi}$ Hz is applied across this series combination. Which of the following is correct एक परिपथ से L = 100 mH, C = 5 μ F तथा R =100 Ω श्रेणी में जुड़े है। श्रेणी संयोजन को (150 $\sqrt{2}$) वोल्ट , - $\frac{500}{\pi}\, Hz$ के प्रत्यावर्ती वि.वा.बल स्रोत से जोड़ा गया है तो सही कथनों का चयन करो - - (A*) the impedance of the circuit is 141.4 Ω परिपथ की प्रतिबाधा 141.4 Ω है । - (B*) the average power dissipated across resistance 225 W प्रतिरोध के सिरों पर व्यय औसत शक्ति 225 W है। - (C*) the average power dissipated across inductor is zero. प्रेरक के सिरों पर औसत शक्ति व्यय 0 W है। - (D*) the average power dissipated across capacitor is zero. संधारित्र के सिरों पर व्यय औसत शक्ति शून्य है। **Sol.** $$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{(100)^2 + (100 - 200)^2} = 100\sqrt{2}$$ $$I_{rms} = \frac{V_{rms}}{Z}$$ $$P_R = I_{rms}^2 R$$ $$P_L = 0$$ $$P_C = 0$$ 10. In a series RC circuit with an AC source(peak voltage E_0 = 50 V and f = 50 / π Hz), R = 300 Ω ,C = 25 μ F. Then : ें श्रेणी RC परिपथ प्रत्यावर्ती धारा स्रोत से जोड़ा है। जहां (शीर्ष वोल्टेज E_0 = 50 V तथा f = 50 I_π Hz), R = 300 I_π C = 25 I_π F है तो : - (A*) the peak current is 0.1 A - (C*) the average power dissipated is 1.5 W - (A*) शीर्ष धारा 0.1 A है। - (C*) औसत शक्ति व्यय 1.5 W है। - (B) the peak current is 0.7 A - (D) the average power dissipated is 3 W - (B) शीर्ष धारा 0.7 A है। - (D) औसत शक्ति व्यय 3 W है। #### **SECTION (D): RESONANCE** #### खण्ड (D): अनुनाद 11. In the AC circuit shown below, the supply voltage has constant rms value V but variable frequency f. At resonance, the circuit: - (A*) has a current I given by I = $\frac{V}{R}$ - (B*) has a resonance frequency 500 Hz - (C*) has a voltage across the capacitor which is 1800 out of phase with that across the inductor - (D) has a current given by I = $\frac{V}{\sqrt{R^2 + \left(\frac{1}{\pi} + \frac{1}{\pi}\right)^2}}$ दिये गये प्रत्यावर्ती धारा परिपथ में स्त्रोत विभव का वर्गमाध्य मूल मान V नियत है तथा आवृति f परिवर्ति है तो परिपथ में अनुनाद की स्थिति पर — - (A*) परिपथ में धारा $I = \frac{V}{R}$ है। - (B*) परिपथ की अनुनादी आवृति 500 Hz है। - (C*) परिपथ में संधारित्र के सिरों पर विभव प्रेरकत्व पर आरोपित विभव से 180º कलान्तर पर है। (D) परिपथ में धारा $$I = \frac{V}{\sqrt{R^2 + \left(\frac{1}{\pi} + \frac{1}{\pi}\right)^2}}$$ है। **Sol.** Resonance frequency अनुनाद आवृत्ति $f = \frac{1}{2\pi} \frac{1}{\sqrt{LC}} = 500 \text{ Hz}$ At resonance अनुनाद पर $$Z = R$$ & तथा I = $$\frac{V}{z} = \frac{V}{R}$$ L & C are in out of phase. L तथा C विपरित कला में होते है। #### Section (E): Transformer #### खण्ड (E): ट्रांसफार्मर - 12. A town situated 20 km away from a power house at 440 V, requires 600 KW of electric power at 220 V. The resistance of transmission line carrying power is 0.4 Ω per km. The town gets power from the line through a 3000 V–220 V step-down transformer at a substation in the town. Which of the following is/are correct - (A*) The loss in the form of heat is 640 kW - (B) The loss in the form of heat is 1240 kW (C*) Plant should supply 1240 kW - (D) Plant should supply 640 kW - 440 V विद्युत शक्ति स्टेशन से एक शहर 20 km दूर स्थिति है जिसे 220 V पर 600 Kw विद्युत शक्ति चाहिए। विद्युत प्रवाह करने वाली तार लाईन का प्रतिरोध 0.4 Ω प्रति किमी० है। शहर को संचरण लाईन द्वारा एक सब—स्टेशन पर अपचायी ट्रांसफार्मर (step-down) 3000 V–220 V से शक्ति प्राप्त होती है। निम्न में से कौनसे कथन सही है/है? — - (A*) ऊष्मा के रूप में क्षय 640 kW है। - (B) ऊष्मा के रूप में क्षय 1240 kW है। - (C*) सयंत्र को 1240 kW आपूर्ति करनी चाहिए। - (D) सयंत्र को 640 kW आपूर्ति करनी चाहिए। - 13. \(\) 11 kW of electric power can be transmitted to a distant station at (i) 220 V or (ii) 22000 V. Which of the following is correct - (i) 220 V या (ii) 22000 V पर 11 kW की विद्युत शक्ति दुरस्त स्टेशन पर भेजी जाती है तो निम्न में से सही कथनों का चयन करो। - (A) first mode of transmission consumes less power - संचरण का प्रथम तरीका कम शक्ति व्यय करेगा। - (B*) second mode of transmission consumes less power संचरण का द्वितीय तरीका कम शक्ति व्यय करेगा। - (C) first mode of transmission draws less current संचरण का प्रथम तरीका कम धारा प्रवाहित करेगा। - (D*) second mode of transmission draws less current संचरण का द्वितीय तरीका कम धारा प्रवाहित करेगा। - **14.** Power factor may be equal to 1 for : निम्न में से किसका शक्ति गुणांक एकांक हो सकता है -- - (A) pure inductor - (B) pure capacitor - (C*) pure resistor - (D*) An LCR circuit - (A) शुद्ध प्रेरक - (B) शद्ध संधारित्र - (C*) शुद्ध प्रतिरोध - (D*) एक LCR परिपथ Sol. $$\cos \phi = \frac{R}{z} = \frac{R}{\sqrt{R^2 + (x_L - x_C)^2}} = 1$$ Because क्यों कि $x_L = x_C$ $$\text{(A) } f^2 \text{ against } V_R^2 \qquad \qquad \text{(B*) } \frac{1}{f^2} \text{ against } \frac{V_S^2}{V_R^2} \qquad \text{(C*) } \frac{1}{f^2} \text{ against } \frac{1}{V_R^2} \qquad \text{(D*) f against } \frac{V_R}{\sqrt{V_s^2-V_R^2}}$$ R-C श्रेणीक्रम परिपथ में विभव की आपूर्ति (Vs) को 2V पर नियम रखते है तथा ज्यावक्रीय विभव की आवृत्ति f को 500 Hz से 2000 Hz तक बदलते है। R=1000 ओम प्रतिरोध से पारित विभव प्रत्येक समय V_R नापा जाता है। C के निर्धारण के लिए एक विद्यार्थी एक रेखीय वक्र खींचना चाहती है तथा ढाल से C को प्राप्त करने की कोशिश करती है तब वह निम्न के बीच वक्र खींच सकती है। (A) $$f^2$$ तथा V_R^2 (B*) $\frac{1}{f^2}$ तथा $\frac{V_S^2}{V_R^2}$ (C*) $\frac{1}{f^2}$ तथा $\frac{1}{V_R^2}$ (D*) f तथा $\frac{V_R}{\sqrt{V_s^2-V_R^2}}$ Ans. (BCD) Sol. $$V_R = \frac{VR}{\sqrt{R^2 + \left(\frac{1}{2\pi fc}\right)^2}}$$ $$R^2 + \left(\frac{1}{2\pi fc}\right)^2 = \frac{v^2}{v_R^2}R^2$$ $$\left(\frac{2\pi fc}{v_R^2}\right) = \sqrt{\frac{v^2 - v_R^2}{v_R^2}} R$$ $$2\pi fc (R) = \frac{v_R}{\sqrt{v^2 - v_R^2}}$$ Graph between f & $\frac{v_R}{\sqrt{v^2 - v_R^2}}$ is a straight line. $$\frac{1}{f^2}$$ vs $\frac{1}{v_R^2}$ is also straight line # भाग - IV : अनुच्छेद (COMPREHENSION) #### Comprehension - 1 A voltage source V = V₀ sin (100 t) is connected to a black box in which there can be either one element out of L, C, R or any two of them connected in series. $V = V_0 \sin(100 \text{ t})$ का विभव स्रोत, एक काले बक्से (black box) से जूड़ा हुआ है। इस बक्से में L,C,R में से कोई एक अवयव हो सकता है या दो अवयव श्रेणी क्रम में हो सकते हैं। At steady state, the variation of current in the circuit and the source voltage are plotted together with time, using an oscilloscope, as shown स्थाई अवस्था में धारा तथा स्रोत के विभव का समय के साथ परिवर्तन दोलित्र की सहायता से प्रदर्शित है। 1. The element(s) present in black box is/are: काले बक्से में उपस्थित अवयव है/होगे : - (A) only C - (B) L and C - (C) L and R - (D*) R and C - (A) केवल C - (B) L तथा C - (C) L तथा R - (D*) R तथा C - As current is leading the source voltage, so circuit should be capacitive in nature and as phase Sol. difference is not $\frac{\pi}{2}$, it must contain resistor also. - चूंकि धारा विभव स्रोत से कला में आगे हैं इसलिये परिपथ की प्रकृति धारतीय नहीं होगी तथा कलान्तर $\frac{\pi}{2}$ नहीं है। अतः हल इसमें कुछ प्रतिरोध उपस्थित है। - Values of the parameters of the elements, present in the black box are -2. $$(A^*) R = 50\Omega$$, $C = 200 \mu f$ (B) $$R = 50\Omega$$, $L = 2m\mu$ (C) R = 400Ω , C = $50 \mu f$ (D) None of these काले बॉक्स में उपस्थित अवयव के प्रांचालों के मान होगे - $$(A^*) R = 50\Omega$$, $C = 200 \mu f$ (B) $$R = 50\Omega$$, $L = 2m\mu$ (C) R = 400 $$\Omega$$, C = 50 μ f Sol. Time delay विलम्ब समय = $$\frac{\phi}{\omega} = \frac{\pi}{400}$$ $$\Rightarrow \phi = \frac{\pi}{4}$$ $$\tan^{-1}\left(\frac{1}{R\omega C}\right) = \frac{\pi}{4}$$ $\Rightarrow \frac{1}{\omega C} = R$ $$\Rightarrow \frac{1}{\omega C} = R$$ $$i_0 = \frac{v_0}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$$ $$\sqrt{2} = \frac{100}{\sqrt{R^2 + R^2}} \rightarrow R = 50 \ \Omega$$ and तथा $$C = \frac{1}{50 \times 100} = 200 \ \mu F$$ - 3. If AC source is removed, the circuit is shorted for some time so that capacitor is fully discharged and then a battery of constant EMF is connected across the black box, at t = 0. The current in the circuit will - (A) increase exponentially with time constant = 0.02 sec. - (B^*) decrease
exponentially with time constant = 0.01 sec. - (C) oscillate with angular frequency 20 rad/sec - (D) first increase and then decrease अब यदि AC स्रोत हटा दिया जाए तो परिपथ कुछ समय के लिए लघुपथित हो जाता है ताकि संधारित्र पूर्णतः निरावेशित हो जाए और तत्पश्चात एक नियत विद्युत वाहक बल की बैट्री काले बॉक्स (black box) से t = 0 समय पर जोड़ी जाती है। तो परिपथ में धारा — - (A) चर घातांकीय रूप से समय नियतांक = 0.02 sec. के साथ बढ़ेगी। - (B*) समय नियतांक = 0.01 sec. के साथ चर घातांकीय रूप से घटेगी। - (C) कोणीय आवृति 20 rad/sec से दोलन करेगी। - (D) पहले बढेगी तथा बाद में घटेगी। - Sol. For DC circuit DC परिपथ के लिए $i = i_0 e^{-\frac{t}{RC}}$ and तथा RC = 0.01 sec. #### Comprehension-2 An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown. समायोजित दोलित्र आवृति वाले एक प्रत्यावृती जिनत्र G का प्रयोग प्रदर्शित परिपथ में किया जाता है। - 4. Current drawn from the ac source will be maximum if its angular frequency is प्रत्यावर्ती स्रोत से ली गई धारा अधिकतम होगी यदि इसकी कोणीय आवृति है - - (A) 10⁵ rad/s - (B) 10⁴ rad/s - (C*) 5000 rad/s - (D) 500 rad/s | Sol. | Current drawn is maximum at resonant angular अधिकतम धारा अनुनादी आवृति की स्थिति में मिलती है $L_{\text{eq}} = 4 \text{ mH } C_{\text{eq}} = 10 \ \mu\text{F}$ $\omega = \frac{1}{\sqrt{\text{LC}}} = 5000 \text{ rad/s}$ | | _{eq} = 10 μF | |------|---|---------------------------|----------------------------| | 5. | To increase resonant frequency of the circuit, some of the changes in the circuit are carried out. Which change(s) would certainly result in the increase in resonant frequency? (A) R is increased. (B) L_1 is increased and C_1 is decreased. (C) L_2 is decreased and C_2 is increased. (D*) C_3 is removed from the circuit. परिपथ की अनुनादी आवृित बढ़ाने के लिए परिपथ में कुछ परिवर्तन करने पड़ते हैं। कौनसे परिवर्तन/परिवर्तनों के परिणामस्वरूप अनुनादी आवृित बढ़ जाएगी। (A) R बढ़ाने पर | | | | | (C) C2 बढ़ाने पर तथा L2 घटाने पर | | | | Sol. | (C) C2 बढ़ान पर तथा L2 घटान पर
(D) Ceq decreases thereby increasing resonant (D) Ceq घटने के कारण अनुनादी आवृत्ति बढ़ जाएगी | • • | 44 | | 6. | If the ac source G is of 100 V rating at resonar by the source is -
यदि प्रत्यावृति स्रोत G का अनुनादी आवृति पर पाठ्यांक
(A) 50 W (B*) 100 W | , , | | | Sol. | At resonance अनुनाद पर i _{rms} = $\frac{100}{100}$ = 1A
Power supplied दी गई शक्ति = V _{rms} I _{rms} cos ϕ (ϕ = | ः 0 at resonance अनुनाद ए | नर φ = 0 है।) P = 100 W | | | | 3 | 1 - 7 | 7. Average energy stored by the inductor L₂ (Source is at resonance frequency) is equal to प्रेरकत्व L2 द्वारा संचित औसत ऊर्जा है (स्रोत अनुनादी आवृति पर है) (A) zero (B*) 1.2 mJ (D) 4 mJ Average energy stored संचित औसत उर्जा = $\frac{1}{2}$ Li_{rms}^2 Sol. = $$\frac{1}{2}$$ (2.4 × 10⁻³ H) . (1 A)² = 1.2 mJ 8. Thermal energy produced by the resistance R in time duration 1 µs, using the source at resonant condition, is (A) 0 J (B) $1 \mu J$ (C) 100 µJ (D*) not possible to calculate from the given information 1 μs, समयान्तराल में प्रतिरोध R द्वारा उत्पन्न उष्मीय ऊर्जा होगी, (स्रोत की अनुनादी स्थिति पर) - (A) 0 J $(B) 1 \mu J$ (C) $100 \mu J$ (D*) दी गई सूचना से गणना संभव नहीं है। Sol. As 1µs time duration is very less than time period T at resonance, thermal energy produced is not possible to calculate without information about start of the given time duration. 1µs समयान्तराल, अनुनाद की स्थिति में आवर्त काल T से बहुत कम है, अतः इस समयान्तराल के प्रारम्भ होने की सूचना के अभाव में उत्पन्न उष्मीय कर्ज़ा की गणना संभव नहीं है। #### Comprehension-32 ## अनुच्छेद-३ 🕿 In the LCR circuit shown in figure unknown resistance and alternating voltage source are connected. When switch 'S' is closed then there is a phase difference of $\frac{\pi}{4}$ between current and applied voltage and voltage accross resister is $\frac{100}{\sqrt{2}}$ V. When switch is open current and applied voltage are in same phase. Neglecting resistance of connecting wire answer the following questions: चित्र में दर्शाए LCR परिपथ में अज्ञात प्रतिरोध तथा प्रत्यावर्ति वोल्टेज स्त्रोत जुड़े हुए है। जब कुंजी 'S' को बंद किया जाता है, तो धारा व आरोपित विभव में कलान्तर $\frac{\pi}{4}$ है, तथा प्रतिरोध पर विभवान्तर $\frac{100}{\sqrt{2}}$ V है। जब कुंजी खोली जाती है धारा तथा आरोपित विभव समान कला में है। सम्पर्क तारों का प्रतिरोध नगण्य मानते हुए निम्न प्रश्नों के उत्तर दीजिए Peak voltage of applied voltage sources is : 9.3 आरोपित विभव स्त्रोत की शीर्ष वोल्टता है : (A) $$200\sqrt{2}$$ V - (B) 100 V - (C*) $100\sqrt{2}$ V (D) $\frac{100}{\sqrt{2}}$ V 10.5 Resonance frequency of circuit is: परिपथ की अनुनाद आवृत्ति है : - (A) 50 Hz (B*) 25 Hz (C) 75 Hz (D) Data insufficient for caculation गणना के लिए आंकडे अपर्याप्त - 11.3 Average power consumption in the circuit when 'S' is open: जब 'S' खुली है,तब परिपथ में औसत शक्ति उपभोग है : - (A) 2500 W - (B) 3000 W - (C*) 5000 W - (D) 1250 W When switch is closed जब कूंजी बंद है Sol. $v_{rms (applied)} = 100 \text{ volts}$ $v_{\text{peak (applied)}} = 100\sqrt{2}$ When switch is open जब कुंजी खुली है $$f = \frac{1}{2\pi\sqrt{\frac{1}{25\pi}} \times \frac{1}{100\pi}} = \frac{50}{2} = 25 \text{ Hz}$$ Resistance प्रतिरोध $R = X_L = X_C = 2\pi fL = 2\Omega$ Average power consumption औसत शक्ति उपभोग = $\left(\frac{100}{2}\right)^2 2 = \frac{10000}{2} = 5000 \text{ W}.$ # **Exercise-3** - Marked Questions can be used as Revision Questions. - 🥦 चिन्हित प्रश्न दोहराने योग्य प्रश्न है। - * Marked Questions may have more than one correct option. - * चिन्हित प्रश्न एक से अधिक सही विकल्प वाले प्रश्न है - # PART - I: JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS) # भाग - I : JEE (ADVANCED) / IIT-JEE (पिछले वर्षी) के प्रश्न 1. An AC voltage source of variable angular frequency ω and fixed amplitude V connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased : [JEE 2010; 3/163, -1] (A) the bulb glows dimmer - (B*) the bulb glows brighter - (C) total impedence of the circuit is unchanged (D) total impedence of the circuit increases - एक C धारिता वाले संधारित्र तथा R प्रतिरोध वाले एक विद्युत बल्ब (जिसका प्रेरकत्व शून्य है) को एक परिवर्ती कोणीय आवृत्ति ω तथा स्थिर आयाम V_0 वाले AC वोल्टता स्त्रोत से श्रेणीक्रम में जोड़ा गया है। ω का मान बढ़ाने पर : [JEE 2010; 3/163, -1] - (A) बल्ब की दीप्ति मन्द हो जाती है - (B*) बल्ब की दीप्ति तीव्र हो जाती है - (C) परिपथ की कुल प्रतिबाधा नहीं बदलती है - (D) परिपथ की कुल प्रतिबाधा बढ जाती है Sol. when ω increases, irms increases so the bulb glows brighter Sol. जब 🛈 बढेगी, irms बढेगी इसलिये बल्ब की दीप्ति तीव्र हो जाती है। 2. You are given many resistances, capacitors and inductors. These are connected to a variable DC voltage source (the first two circuits) or an AC voltage source of 50 Hz frequency (the next three circuits) in different ways as shown in **Column II.** When a current I (steady state for DC or rms for AC) flows through the circuit, the corresponding voltage V_1 and V_2 . (indicated in circuits) are related as shown in **Column I.** Match the two column. #### [JEE 2010; 8/163] आप को कई प्रतिरोध, संधारित्र एवं प्रेरकत्व दिये हैं। इनको एक परिवर्ती DC वोल्टता श्रोत (पहले दो परिपथ) या 50 Hz का AC वोल्टता श्रोत (बाद के तीन परिपथ) से अलग—अलग तरीके से **कॉलम II** में दिखाये गये चित्रों के अनुसार जोड़ा गया है। परिपथ में I धारा (स्थिर अवस्था DC के लिये या व.मा.मू. AC के लिये) प्रवाहित होने पर वोल्टता V₁ तथा V₂ (परिपथों में दर्शायी गई) का आपस में संबन्ध **कॉलम I** में दिखाया गया है। दोनों का मेल कीजिये। [JEE 2010; 8/163] Ans. (A) – r,s,t; (B) – q,r,s,t; (C) – p,q; (D) – q,r,s,t As per given conditions, there will be no steady state in circuit 'p', so it should not be considered in options of 'c'. दी गई स्थिति में 'p' में स्थाई अवस्था नहीं है। अतः यह विकल्प 'c' में नहीं आना चाहिए। Sol. As I is steady state current $$V_1 = 0$$; $I = 0$ Hence, $V_2 = V$ So , answer of $P \Rightarrow C$ (q) In the steady state; $$V_1 = 0$$ $$\frac{dI}{dt} = 0$$ $$\therefore$$ V₂ = V = IR or $$V_2 \propto I$$ and $$V_2 \times I$$ So , answer of $$q \Rightarrow B, C, D$$ (r) Inductive reactance $X_L = \omega L$ $$X_L = 6\pi \times 10^{-1} \Omega$$ and resistance = $R = 2\Omega$ So, $$V_1 = IX_L$$ and $$V_2 = IR$$ Hence, $$V_2 > V_1$$ So, Answer of $r \Rightarrow A,B,D$ $V_1 = IX_L$, where, Here, $$X_L = 6\pi \times 10^{-1} \Omega$$ Also, $$V_2 = IX_C$$, where, $X_C = \frac{10^4}{3\pi}$ So, $$V_2 > V_1$$ $$V_1 \propto \mathrm{I}$$ $$V_2 \propto \mathrm{I}$$ So, answer of $s \Rightarrow A,B,D$ (t) $$V_1$$ V_2 V_2 V_3 V_4 V_2 V_4 V_2 V_4 Here, $$V_1$$ = IR, where, R = 1000 Ω , $X_C = \frac{10^4}{3\pi} \Omega$ $$V_2$$ = IX_C , where, X_C = $\frac{10^4}{3\pi}\Omega$ So, $$V_2 > V_1$$ and $$V_1 \propto I$$ $$V_2 \propto \mathrm{I}$$ So, answer of $t \Rightarrow A,B,D$ Ans. (A) $$-r,s,t$$; (B) $-q,r,s,t$; (C) $-p,q$; (D) $-q,r,s,t$ Note: For circuit 'p': $$V - \frac{Ldi}{dt} - \frac{q}{C} = 0 \quad \text{or} \qquad CV = CL \frac{di}{dt} + q \quad \text{or} \qquad 0 = LC \frac{d^2i}{dt^2} + \frac{dq}{dt} \quad \text{or} \qquad \frac{d^2i}{dt^2} = -\frac{1}{LC} \frac{dq}{dt}$$ So, $$i = i_0 \sin\left(\frac{1}{\sqrt{LC}}t + \phi_0\right)$$ As per given conditions, there will be no steady state in circuit 'p'. So it should not be considered in options Sol. I स्थाई अवस्था धारा है $$V_1 = 0$$; $I = 0$ अतः P का सही उत्तर C है। $$V_1 = 0$$ as $\frac{dI}{dt} = 0$ $$\therefore$$ $V_2 = V = IR$ या $$V_2 \propto I$$ अतः q का उत्तर $$\Rightarrow$$ B, C, D (r) प्रेरकीय
प्रतिघात $X_L = \omega L$ $$X_L = 6\pi \times 10^{-1} \Omega$$ तथा प्रतिरोध = $$R = 2\Omega$$ तथा $$V_2 = IR$$ अतः r का उत्तर ⇒ A,B,D है। $$X_L = 6\pi \times 10^{-1} \Omega$$ $$X_{\rm C} = \frac{10^4}{3\pi}$$ $$V_1 \propto \mathrm{I}$$ $$V_2 \propto \mathrm{I}$$ अतः s का उत्तर ⇒ A,B,D अतः, $$V_1$$ = IR, जहाँ, R = 1000 Ω , $X_C = \frac{10^4}{3\pi} \Omega$ $$V_2 = IX_C$$, जहाँ, $X_C = \frac{10^4}{3\pi} \Omega$ तथा $$V_1 \propto I$$ $V_2 \propto \mathrm{I}$ अतः t का उत्तर ⇒ A,B,D Ans. (A) $$-r,s,t$$; (B) $-q,r,s,t$; (C) $-p,q$; (D) $-q,r,s,t$ Note: परिपथ 'p' के लिए $$V - \frac{Ldi}{dt} - \frac{q}{C} = 0$$ या $CV = CL\frac{di}{dt} + q$ या $0 = LC\frac{d^2i}{dt^2} + \frac{dq}{dt}$ या $\frac{d^2i}{dt^2} = -\frac{1}{LC}\frac{dq}{dt}$ अतः, $$i = i_0 \sin\left(\frac{1}{\sqrt{LC}}t + \phi_0\right)$$ दी गई स्थिति में 'p' में स्थाई अवस्था नहीं है। अतः यह विकल्प 'c' में नहीं आना चाहिए। Ans. (A) $$- r, s, t$$; (B) $- q, r, s, t$; (C) $- q$; (D) $- q, r, s, t$ - 3. A series R-C circuit is connected to AC voltage source. Consider two cases; (A) when C is without a dielectric medium and (B) when C is filled with dielectric of constant 4. The current IR through the resistor and voltage V_C across the capacitor are compared in the two cases. Which of the following is/are true? - एक सीरीज R-C परिपथ AC वोल्टेज स्रोत से जुडा है। दो स्थितियों पर विचार कीजियेः (A) जब C में परावैद्युत नही है और (B) जब C में 4 परा वैद्युतांक का पदार्थ भरा है। प्रतिरोध R से प्रवाहित धारा IR तथा संधारित्र C पर विभवांतर Vc की तुलना इन दो स्थितियों में की गई है। तब निम्न में से कौन सही है (हैं) ? [JEE 2011; 4/160] - (A) $I_R^A > I_R^B$ - (B*) $I_R^A < I_R^B$ - (D) $V_C^A < V_C^B$ A.C. Ans. Sol. $$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$$ $$I_R^A = \frac{V}{Z}$$ $$I_{\mathsf{R}}^{\mathsf{B}} = \frac{\mathsf{V}}{\mathsf{Z}'}$$ $$I_{\mathsf{R}}^{\mathsf{A}} < I_{\mathsf{R}}^{\mathsf{B}}$$ $$V_{p}^{A} < V_{p}^{B}$$ $$V_R^2 + V_C^2 = V$$ Sol. स्थिति I $$I_{\mathsf{R}}^{\mathsf{A}} = \frac{\mathsf{V}}{\mathsf{Z}}$$ $$I_{\mathsf{R}}^{\mathsf{B}} = \frac{\mathsf{V}}{\mathsf{Z}'}$$ $$I_{\text{R}}^{\text{A}} < I_{\text{F}}^{\text{E}}$$ $$V_{\mathsf{R}}^{\mathsf{A}} < V_{\mathsf{R}}^{\mathsf{B}}$$ $$V_R^2 + V_C^2 = V_C^2$$ - 4. A series R-C combination is connected to an AC voltage of angular frequency ω = 500 radian/s. If the impedance of the R-C circuit is $R\sqrt{1.25}$, the time constant (in millisecond) of the circuit is श्रेणी—बद्ध R तथा C को ω = 500 radian/s कोणीय आवृत्ति के AC स्रोत से जोड़ा गया है यदि R-C परिपथ की प्रतिबाधा $R\sqrt{1.25}$ हो तब उसका कालांक (time constant) (मिली सेंकण्ड में) होगा। [JEE 2011; 4/160] - Ans. 4 Sol. 5.७ In the given circuit, the AC source has ω = 100 rad/s. considering the inductor and capacitor to be ideal, the correct choice (s) is(are) [IIT-JEE-2012, Paper-2; 4/66] दिये गये परिपथ में AC स्त्रोत की आवृति ω = 100 rad/s है। प्रेरकत्व तथा संधारित्र को आदर्श मानकर सही विकल्प (विकल्पों) का चूनाव करें। - (A*) The current through the circuit, I is approximately 0.3 A - (B) The current through the circuit, I is $0.3\sqrt{2}$ A. - (C*) The voltage across 100Ω resistor = $10\sqrt{2}$ V - (D) The voltage across 50Ω resistor = 10V - (A *) परिपथ में धारा लगभग I = 0.3 A है। - (B) परिपथ में धारा $I = 0.3\sqrt{2}$ A है। - (C *) 100 Ω प्रतिरोध के सिरो पर विभव 10 $\sqrt{2}$ V है। - (D) 50 Ω प्रतिरोध के सिरो पर विभव 10 V है। Ans. (A,C or C) Since $I_{rms} = \frac{1}{\sqrt{10}} \approx 0.3$ A so A may or may not be correct. क्योंकि $I_{rms} = \frac{1}{\sqrt{10}} \approx 0.3 \text{ A}$ है इसलिए A को सही भी माना जा सकता और गलत भी माना जा सकता है। Sol. $$C = 100 \ \mu F, \ \frac{1}{\omega C} = \frac{1}{(100) \ (100 \times 10^{-6})}$$ $$X_C = 100 \Omega$$, $X_L = \omega L = (100) (.5) = 50 \Omega$ $Z_1 = \sqrt{x_C^2 + 100^2} = 100 \sqrt{2}\Omega$ $$Z_1 = \sqrt{x_C^2 + 100^2} = 100\sqrt{2}\Omega$$ $$Z_2 = \sqrt{x_L^2 + 50^2} = \sqrt{50^2 + 50^2} = 50\sqrt{2}$$ $$\varepsilon = 20\sqrt{2} \sin \omega t$$ $$i_1 = \frac{20\sqrt{2}}{100\sqrt{2}} \sin(\omega t + \pi/4)$$ $$i_1 = \frac{1}{5}\sin\left(\omega t + \pi/4\right)$$ $$I_2 = \frac{20\sqrt{2}}{50\sqrt{2}}\sin(\omega t - \pi/4)$$ $$I = \sqrt{(.2)^2 + (.4)^2}$$ $$= (.2) \sqrt{1+4}$$ $$=\frac{1}{5}\sqrt{5}=\frac{1}{\sqrt{5}}$$ $$(I)_{rms} = \frac{1}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$$ ≈ 0.3A $$(V_{100\Omega})_{rms} = (I_1)_{rms}) \times 100 = \left(\frac{0.2}{\sqrt{2}}\right) \times 100 = \frac{20}{\sqrt{2}} = 10\sqrt{2}$$ V $$V_{50\Omega}$$)_{rms} = $\left(\frac{0.4}{\sqrt{2}}\right) \times 50 = \frac{20}{\sqrt{2}} = 10\sqrt{2} V$ Since $I_{rms} = \frac{1}{\sqrt{10}} \approx 0.3 \text{ A so A may or may not be correct.}$ क्यों कि $I_{rms} = \frac{1}{\sqrt{10}} \approx 0.3 \, A$ है इसलिए A को सही भी माना जा सकता और गलत भी माना जा सकता है। ### Paragraph for Questions 6 and 7 प्रश्न 6 और 7 के लिए अनुच्छेद A thermal power plant produces electric power of 600 kW at 4000 V, which is to be transported to a place 20 km away from the power plant for consumers' usage. It can be transported either directly with a cable of large current carrying capacity or by using a combination of step-up and step-down transformers at the two ends. The drawback of the direct transmission is the large energy dissipation. In the method using transformers, the dissipation is much smaller. In this method, a step-up transformer is used at the plant side so that the current is reduced to a smaller value. At the consumers' end, a step-down transformer is used to supply power to the consumers at the specified lower voltage. It is reasonable to assume that the power cable is purely resistive and the transformers are ideal with a power factor unity. All the currents and voltages mentioned are rms values. _[JEE(Advanced)-2013; 3/60]] एक तापीय विद्युत संयंत्र 600 kW की शक्ति 4000 V पर उत्पादित करता है, जो 20 km की दूरी पर उपभोक्ताओं के उपयोग के लिए ले जायी जाती है। इसको या तो उच्च धारा वहन—क्षमता वाले केबिल से भेजा जा सकता है या दोंनो सिरों पर उच्चायी व अपचायी ट्रांसफॉर्मर का प्रयोग करके किया जा सकता है। प्रत्यक्ष प्रेषण का दोष यह है कि इसमे ऊर्जा का क्षय बहुत अधिक होता है जबकि ट्रॉन्सफॉर्मर के उपयोग के तरीके में क्षय बहुत कम होता है। इस तरीके में एक उच्चायी ट्रॉन्सफॉर्मर संयंत्र की ओर लगाया जाता है जिससे धारा का मान कम हो जाए। उपभोक्ता के सिरे में अपचायी ट्रॉन्सफॉर्मर का प्रयोग किया जाता है जिससे उपभोकताओं को एक विशेष कम वोल्ट पर विद्युत शक्ति दी जा सके। यह माना जा सकता है कि केबिल शुद्ध प्रतिरोधित है तथा ट्रॉन्सफॉर्मर आदर्श हैं, व उनका शक्ति गुणांक एक है। उल्लिखित समस्त धाराओं व वोल्टताओं का माप rms है। 6. If the direct transmission method with a cable of resistance 0.4 Ω km⁻¹ is used, the power dissipation (in %) during transmission is : यदि ऐसे केबिल का उपयोग किया जाए जिसका प्रतिरोध $0.4~\Omega~km^{-1}$ है तब प्रत्यक्ष प्रेषण की स्थिति में शक्ति क्षय (% में) है : (A) 20 (B*) 30 (C) 40 (D) 50 Ans. (B) **Sol.** $P = 600 \times 1000 = 4000 \times I \Rightarrow I = 150 A$ Power loss शक्ति क्षय = $I^2r = (150)^2 \times 0.4 \times 20 = 180$ kW Power loss percentage प्रतिशत में शक्ति क्षय = $\frac{\text{Power loss}}{\text{Power input}} \times 100 = \frac{180}{600} \times 100$ \Rightarrow 30 % 7. In the method using the transformers, assume that the ratio of the number of turns in the primary to that in the secondary in the step-up transformer is 1 : 10. If the power to the consumers has to be supplied at 200V, the ratio of the number of turns in the primary to that in the secondary in the step-down transformer is : ट्रॉन्सफॉर्मर के प्रयोग करने वाली विधि में, यह मानें उच्चायी ट्रॉन्सफार्मर के प्राथमिक व द्वितीयक में लपेटों की संख्या का अनुपात 1:10 है। यदि विद्युत शक्ति, उपभोक्ताओं को 200V पर दी जाती है तो अपचायी ट्रॉन्सफॉर्मर में प्राथमिक व द्वितीयक के लपेंटों की संख्या का अनुपात है: (A) 200:1 (B) 150:1 (C) 100:1 (D) 50:1 Ans. (A) **Sol.** $\frac{N_p}{N_s} = \frac{40,000}{200} = \frac{200}{1}$ - 8.a At time t = 0, terminal A in the circuit shown in the figure is connected to B by a key and alternating current - $I(t) = I_0 cos(\omega t,), \text{ with } I_0 = 1 \text{A and } \omega = 500 \text{ rad s}^{-1} \text{ starts flowing in it with the initial direction shown in the figure. At } t = \frac{7\pi}{6\omega}, \text{ the key is switched from B to D. Now onwards only A and D are connected. A total$ charge Q flows from the battery to charge the capacitor fully. If $C = 20\mu$, $R = 10\Omega$ and the battery is ideal with emf of 50V, identify the correct statement (s) **[JEE (Advanced)-2014,P-1, 3/60]** - (A) Magnitude of the maximum charge on the capacitor before t = $\frac{7\pi}{6\omega}$ is 1 × 10⁻³ C. - (B) The current in the left part of the circuit just before t = $\frac{7\pi}{6\omega}$ is clockwise - (C*) Immediately after A is connected to D. the current in R is 10A. - (D^*) Q = 2 × 10⁻³ C. चित्र में दर्शाए गये परिपथ में समय t=0 पर बिन्दु A को स्विच द्वारा बिन्दु B से जोड़ा जाता है। इससे परिपथ में एक प्रत्यावर्ती धारा $I(t)=I_0cos(\omega t)$ चित्र में दिखाई गई दिशा में प्रवाहित होने लगती है, जहाँ $I_0=1A$ तथा $\omega=500$ rad s^{-1} । समय $t=\frac{7\pi}{6\omega}$ पर स्विच को बिन्दु B से हटाकर बिन्दु D से जोड़ा जाता है। इसके पश्चात् सिर्फ A तथा D जुड़े हुए है। संधारित्र को पूरी तरह आवेशित करने के लिए बैटरी से कुल आवेश Q प्रवाहित होता है। यदि $C=20\mu$, $R=10\Omega$ तथा बैटरी 50V विद्युत वाहक बल वाली आदर्श बैटरी हो तब सही विकल्प/विकल्पों को चुनिए। - (A) संधारित्र पर समय $t = \frac{7\pi}{6\omega}$ से पहले अधिकतम आवेश का परिमाण $1 \times 10^{-3} \, \text{C}$ है। - (B) बाँए परिपथ में समय $t=\frac{7\pi}{6\omega}$ से ठीक पहले विद्युत धारा दक्षिणावर्ती (clockwise) है। - (C*) बिन्दु A को बिन्दु D से जोड़ने के तुरन्त पश्चात् प्रतिरोध R में विद्युत धारा का मान 10A है। - $(D^*) Q = 2 \times 10^{-3} C.$ Àns. (C), (D) **Sol.** Charge on capacitor will be maximum at $t = \frac{1}{2\omega}$ $$Q_{max} = 2 \times 10^{-3} C$$ (A) charge supplied by source from t = 0 to t = $\frac{7\pi}{6\omega}$ $$Q = \int_{0}^{\frac{7\pi}{6\omega}}
\cos(500t) dt = \left[\frac{\sin 500t}{500} \right]_{0}^{\frac{7\pi}{6\omega}} = \frac{\sin \frac{7\pi}{6}}{500} = -1mC$$ Apply KVL just after switching $$50 + \frac{Q_1}{C} - IR = 0 \implies I = 10 A$$ In steady state $Q_2 = 1mC$ net charge flown from battery = 2mC **Hindi** संधारित्र पर आवेश $t=\frac{\pi}{2\omega}$ पर अधिकतम होगा $$Q_{max} = 2 \times 10^{-3} C$$ (A) $$t = 0$$ से $t = \frac{7\pi}{6\omega}$ तक स्त्रोत द्वारा सप्लाई आवेश $$Q = \int_{0}^{\frac{7\pi}{6\omega}} \cos(500t) dt = \left[\frac{\sin 500t}{500} \right]_{0}^{\frac{7\pi}{6\omega}} = \frac{\sin \frac{7\pi}{6}}{500} = -1mC$$ कुंजी बंद करने के ठीक बाद KVL लगाने पर $50+\frac{Q_1}{C}-IR=0 \Rightarrow I=10~A$ स्थायी अवस्था में $Q_2=1mC$ बैटरी से प्रवाहित कुल आवेश = 2mC 9. In the circuit shown, L = 1 μ H, C = 1 μ F and R = 1 k Ω . They are connected in series with an a.c. source V = V₀ sin ω t as shown. Which of the following options is/are correct? [JEE (Advanced) 2017, P-1, 4/61, -2] - (A) The current will be in phase with the voltage if $\omega = 10^4 \text{ rad.s}^{-1}$ - (B) At $\omega >> 10^6$ rad.s⁻¹, the circuit behaves like a capacitor - (C*) The frequency at which the current will be in phase with the voltage is independent of R - (D*) At $\omega \sim 0$ the current flowing through the circuit becomes nearly zero चित्र में दिखाये गए परिपथ L = 1 μ H, C = 1 μ F, R = 1 $k\Omega$ है। एक परिवर्ती वोल्टता (V = V_0 sin ω t) स्त्रोत से श्रेणी संबंध है। निम्न में कौन सा (से) कथन सही है/हैं।? - (A) जब $\omega = 10^4 \text{ rad.s}^{-1}$ होगी तब विद्युत धारा (electric current) वोल्टता की समकला में होगी। - (B) जब $\omega >> 10^6 \text{ rad.s}^{-1}$, परिपथ संधारित्र (capacitor) की तरह व्यवहार करता है। - (C*) जब विद्युत धारा वोल्टता की समकला में होगी तो वह आवर्त्ति R पर निर्भर नही करेगी। - (D*) जब ω ~ 0 होगी तब परिपथ में बहती धारा शून्य के निकट होगी। Ans. (CD) **Sol.** Current will be in phase with voltage at resonant frequency. अनुनादी आवृत्ति पर धारा तथा वोल्टता समान कला में होगें। $$\omega L = \frac{1}{\omega C}$$ \Rightarrow $\omega_0 = \frac{1}{\sqrt{LC}} = 10^6 \text{ sec}^{-1}$ If यदि $\omega > \omega_0$ Circuit behaves like inductive. परिपथ प्रेरकीय होगा। If यदि $$\square \omega \sim 0$$ $Z \rightarrow \infty \Rightarrow I \rightarrow 0$ **10.** The instantaneous voltages at three terminals marked X, Y and Z are given by तीन टर्मिनलों के बिन्दुओं X, Y एवं Z के लिए तात्क्षणिक वोल्टता (instantaneous voltage) दी गई है। $$V_X = V_0 \sin \omega t$$, $$V_Y = V_0 \, sin \left(\omega t + \frac{2\pi}{3} \right) \, and \, \, V_Z = V_0 \, sin \left(\omega t + \frac{4\pi}{3} \right)$$ An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points X and Y and then between Y and Z. The reading (s) of the voltmeter will be [JEE(Advanced) 2017; P-2, 4/61, -2] एक आदर्श वोल्टमापी (ideal voltmeter) दो बिन्दुओं के विभवान्तर का आर एम एस (root mean square, V^{rms}) मान देता है। यह वोल्टमापी बिन्दु X एवं Y से जोडा जाता है फिर Y एवं Z से जोडा जाता है। इस वोल्टमापी का मापन होगा/होगें। (A*) $$V_{xy}^{rms} = V_0 \sqrt{\frac{3}{2}}$$ (B) $$V_{YZ}^{rms} = V_0 \sqrt{\frac{1}{2}}$$ (C*) independent of the choice of the two terminals (किसी भी दो बिन्दुओं के चयन पर निर्भर नहीं करता) (D) $$V_{XY}^{rms} = V_0$$ Ans. (AC) Sol. $$V_{xy} = V_x - V_y = (V_{xy})_0 \sin(\omega t + \phi_1)$$ $$(V_{xy})_0 = \sqrt{V_0^2 + V_0^2 - 2V_0^2 \cos \frac{2\pi}{3}} = \sqrt{3}V_0$$ $$(V_{xy})_{rms} = \frac{(V_{xy})_0}{\sqrt{2}} = \sqrt{\frac{3}{2}}V_0$$ $$V_{yz} = V_y - V_z = (V_{yz})_0 \sin (\omega t + \phi_2)$$ $$(V_{yz})_0 = \sqrt{V_0^2 + V_0^2 - 2V_0^2 \cos \frac{2\pi}{3}} = \sqrt{3}V_0$$ $$(V_{yz})_{rms} = \frac{(V_{yz})_0}{\sqrt{2}} = \sqrt{\frac{3}{2}}V_0$$ $$V_{xz} = V_x - V_z = (V_{xz})_0 \sin (\omega t + \phi_3)$$ $$(V_{xz})_0 = \sqrt{V_0^2 + V_0^2 - 2V_0^2 \cos \frac{4\pi}{3}} = \sqrt{3}V_0$$ $$(V_{xz})_{rms} = \frac{(V_{yz})_0}{\sqrt{2}} = \sqrt{\frac{3}{2}}V_0$$ # PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) # भाग - II : JEE (MAIN) / AIEEE (पिछले वर्षी) के प्रश्न 1. A circuit has a resistance of 12 ohm and an impedance of 15 ohm. The power factor of the circuit will be किसी परिपथ का प्रतिरोध 12 ohm तथा प्रतिबाधा 15 ohm है। परिपथ का शक्ति गुणांक होगा - [AIEEE 2005; 4/300] (1*) 0.8 (2) 0.4 (3) 1.25 (4) 0.125 Sol. Power factor $$= \cos \phi = \frac{R}{Z}$$ $$= \frac{12}{15} = \frac{4}{5}$$ $$= 0.8$$ 2. The phase difference between the alternating current and emf is $\pi/2$. Which of the following cannot be the constituent of the circuit? प्रत्यावर्ती धारा तथा विद्युतवाहक बल के बीच कलान्तर π/2 है। निम्नलिखित में से कौन इस परिपथ का अवयव नहीं हो सकता है ? [AIEEE 2005; 4/300] (1) C alone (2*) R, L (3) L, C (1) केवल C (2*) R, L (3) L, C (4) L alone (4) केवल L $\tan \phi = \frac{X}{R} = \infty = \frac{1}{0}$ Sol. In a series LCR circuit R = 200 Ω and the voltage and the frequency of the main supply is 220 V and 50 3.8 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the LCR circuit is एक श्रेणी LCR परिपथ में R = 200 Ω और मुख्य प्रदायी स्त्रोत की वोल्टता एवं आवृत्ति क्रमशः 220 V एवं 50 Hz है। परिपथ में से संधारित्र निकाल लेने पर धारा वोल्टता से 30° पश्च हो जाती है। परिपथ में से प्रेरक निकाल लेने पर धारा वोल्टता से 30° अग्र हो जाती है। LCR परिपथ में खपत शक्ति है [AIEEE 2010; 4/144, -1] (1) 305 W (3) zero शून्य W (4*) 242 W Sol. $$\tan 30^{\circ} = \frac{X_{L}}{R} \quad \Rightarrow \qquad X_{L} = \frac{R}{\sqrt{3}} = \frac{200}{\sqrt{3}}$$ $$\tan 30^{\circ} = \frac{X_{\text{c}}}{R} \quad \Rightarrow \qquad X_{\text{c}} = \frac{200}{\sqrt{3}}$$ $$Z = \sqrt{R + (X_L - X_C)^2} = 200 \Omega$$ $$i_{rms} = \frac{220}{200} = 1.1$$ $$P = (i_{rms})^2 \times R = (1.1)^2 \times 200$$ $P = 242 \text{ W}$ An arc lamp requires a direct current of 10 A at 80 V to function. if it is connected to a 220 V(rms), 50 4. Hz AC supply, the series inductor needed for it to work is close to: [JEE (Main) 2016, 4/120, -11 एक आर्क लैम्प को प्रकाशित करने के लिये 80 V पर 10 A की दिष्ट धारा (DC) की आवश्यकता होती है। उसी आर्क को 220 V(rms), 50 Hz प्रत्यावर्ती धारा (AC) से चलाने के लिये श्रेणी में लगने वाले प्रेरकत्व का मान है। (1) 0.08 H (2) 0.044 H (3) 0.065 H (4) 80 H (3)Ans. $$R = \frac{80}{10} = 8\Omega$$ $$V_L^2 + 80^2 = 220^2$$ $$V_L^2 = (220 + 80)(220 - 80)$$ = $$300 \times 140$$ \Rightarrow $V_L = 204.9$ $$V_L = 204.9$$ $$I_{rns} X_L = 204.9$$ $$\frac{220}{\sqrt{64 + x_{L}^{2}}} x_{L} = 2.5$$ - For an RLC circuit driven with voltage of amplitude v_m and frequency $\omega_0 = \frac{1}{\sqrt{LC}}$ the current exhibits 5. resonance. The quality factor, Q is given by : [JEE (Main) 2018; 4/120, -1] υ_{m} आयाम तथा $\omega_{0}=\frac{1}{\sqrt{LC}}$ आवृत्ति के विभव द्वारा चिलत एक RLC परिपथ अनुनादित होता है। गुणता कारक Q का मान होगा : - (1) $\frac{R}{(\omega_0 C)}$ - $(2) \frac{\mathsf{CR}}{\omega_0} \qquad \qquad (3^*) \frac{\omega_0 \mathsf{L}}{\mathsf{R}}$ - (4) $\frac{\omega_0 R}{I}$ Ans. (3) Sol. Band width बेन्ड चौड़ाई $\omega_2 - \omega_1 = \frac{R}{I}$ Quality factor विशेषता गुणांक Q = $\frac{\omega_0}{\omega_2 - \omega_1} = \frac{\omega_0 L}{R}$ 6. In an a.c circuit, the instantaneous e.m.f and current are given by > एक a.c परिपथ के विद्युत वाहल बल तथा धारा का तात्क्षणिक मान निम्नलिखित समीकरणों से दिया गया है। $e = 100 \sin 30t$ $$i = 20 \sin \left(30t - \frac{\pi}{4} \right)$$ In one cycle of a.c the average power consumed by the circuit and the wattless current are, respectively: [JEE (Main) 2018; 4/120, -1] a.c के एक पूर्ण चक्र में परिपथ द्वारा औसत शक्ति व्यय तथा वाटहीन धारा के मान, क्रमशः है : (1) $$\frac{50}{\sqrt{2}}$$,0 $$(4^*) \frac{1000}{\sqrt{2}},10$$ Ans. $e = 100 \sin 30t$ Sol. $$i = 20sin\left(30t - \frac{\pi}{4}\right)$$ $$P_{av} = e_{rms} i_{rms} cos \phi$$ $$P_{av} = e_{rms} i_{rms} cos \phi$$ = $\frac{100}{\sqrt{2}} \cdot \frac{20}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1000}{\sqrt{2}} W$ wattless current शक्तिहीन धारा = $$\frac{I_0 \sin \phi}{\sqrt{2}} = \frac{20}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = 10 A$$ # **High Level Problems (HLP)** #### SUBJECTIVE QUESTIONS ### विषयात्मक प्रश्न (SUBJECTIVE QUESTIONS) 1. A current of 4 A flows in a coil when connected to a 12 V d.c. source. If the same coil is connected to a 12 V, 50 rad/s, AC source, a current of 2.4 A flows in the circuit. Determine the inductance of the coil. Also, find the power developed in the circuit if a 2500 μF condenser is connected in series with coil. [REE - 1993] जब किसी कुण्डली को 12 V के दिष्ट धारा स्रोत से जोड़ा जाता है तो उसमें 4 A की धारा प्रवाहित होती है। यदि इसी कुण्डली को 12 V, 50 rad/s, के प्रत्यावर्ती धारा स्रोत से जोड़ते है तो 2.4 A की धारा प्रवाहित होती है तो कुण्डली का प्रेरकत्व ज्ञात करो? यदि कुण्डली के साथ 2500 µF का संधारित्र श्रेणीक्रम में जोड़ दिया जाये तो परिपथ में उत्पन्न शिक्त ज्ञात करो ? [REE - 1993] Ans. .08 H; 17.28 watt Sol. given that दिया हैं- $$R = \frac{V}{I} = \frac{12}{4} = 3\Omega$$ $$Z = \frac{12}{2.4} = 5\Omega$$ $$Z^2 = R^2 + (\omega L)^2$$ $Z^2 = R^2 + (\omega L)^2$ $$25 = 9 + (50 \times L)^2 \Rightarrow L = 0.08 H$$ Now for LCR circuit, $$Z = \sqrt{R^2 + (X_L - X_C)^2}$$ अब LCR परिपथ के लिए $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $$= \sqrt{3^2 + \left(50 \times 0.08 - \frac{1}{50 \times 2500 \times 10^{-6}}\right)^2} = 5 \Omega.$$ So Power उत्पन्न शक्ति = $\left(\frac{12}{Z}\right)^2 \times R = \left(\frac{12}{5}\right)^2 \times 3 = 17.28$ watt. 2. A box P and a coil Q are connected in series with an AC source of variable frequency. The EMF. of source is constant at 10 V. Box P contains a capacitance of 1 μ F in series with a resistance of 32 Ω . Coil Q has a self inductance 4.9 mH and a resistance of 68 Ω . The frequency is adjusted so that the maximum current flows in P and Q. Find the impedance of P and Q at this frequency. Also find the voltage across P and Q
respectively. एक बाँक्स P तथा एक कुण्डली Q को श्रेणीक्रम में एक परिवर्ती आवृत्ति वाले प्रत्यावर्ती—धारा स्रोत से जोड़ा जाता है। स्रोत का विद्युतवाहक बल 10 V पर स्थिर रहता है। बक्से P में 1 μ F का संधारित्र तथा 32 Ω का एक प्रतिरोध श्रेणीक्रम में जुड़े है। कुण्डली Q का स्वप्रेरकत्व 4.9 μ H तथा प्रतिरोध 68 μ C है। स्रोत की आवृत्ति इस प्रकार समायोजित की जाती है कि μ C तथा μ C में महत्तम धारा प्रवाहित होती है। इस आवृत्ति पर कि μ C तथा μ C की प्रतिबाधायें ज्ञात कीजिए। μ C तथा μ C के सिरों पर विभव की भी गणना कीजिए। [REE - 1998] Ans. P=76.96 Ω ,Q=97.59 Ω , P \approx 7.7 V; Q = 9.8 V, net impedance = 100 Ω P=76.96 Ω ,Q=97.59 Ω , P \approx 7.7 V; Q = 9.8 V, कुल प्रतिबाधा = 100 Ω Sol. Here ਧहਾੱ L = 4.9 mH $$C = 1\mu F$$ $$R = 68 + 32 = 100 \Omega$$ $$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{7} \times 10^5 \text{ rad/sec}$$ $$Z_p = \sqrt{(32)^2 + (1/\omega C)^2} = 76.96 \Omega$$ $$Z_{\Omega} = \sqrt{(68)^2 + (\omega L)^2} = 97.59 \Omega$$ Total imedence कुल प्रतिबाधा, $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $$= \sqrt{100^2 + \left(\frac{10^5}{7} \times 4.9 \times 10^{-3} - \frac{7 \times 10^{-5}}{10^{-6}}\right)^2} = 100\Omega$$ $$I_{rms} = \frac{10}{100} A$$ $$V_p = Z_p \times I_{rms} = 7.7 \text{ V}$$ $$V_{p} = Z_{p} \times I_{rms} = 7.7 \text{ V}$$ $V_{Q} = Z_{Q} \times I_{rms} = 9.8 \text{ V}$ In a series LCR circuit with an ac source of 50 V, R = 300 Ω , frequency v = $\frac{50}{\pi}$ Hz. The average electric 3._ field energy, stored in the capacitor and average magnetic energy stored in the coil are 25 mJ and 5 mJ respectively. The RMS current in the circuit is 0.10 A. Then find: - (a) Capacitance (c) of capacitor - (b) Inductance (L) of inductor. - (c) The sum of rms potential difference across the three elements. LCR श्रेणीक्रम परिपथ में प्रत्यावर्ती स्त्रोत 50 V, R = 300 Ω , आवृत्ति $v = \frac{50}{\pi}$ Hz हर्ट्ज है। संधारित्र में संचित औसत विधुत ऊर्जा तथा कुण्डली में संचित औसत चुम्बकीय उर्जा क्रमशः 25 mJ तथा 5mJ है जब कि परिपथ में वर्गमाध्यमूल धारा 0.10 A है। तब ज्ञात करे - - (a) संधारित्र की धारिता (c) - (b) कुण्डली का प्रेरकत्व (L) - (c) तीनों तत्वों के सिरों पर वर्गमाध्य मूल विभवान्तर का योग। Ans. (a) $$C = 20 \mu F$$ (b) 1 H Av. electric field energy औसत विद्युत ऊर्जा = $\left(\frac{1}{2}CV_{rms}^2\right)$ = 25 × 10⁻³ J Sol. $$\therefore$$ $\frac{1}{2}$ × c.I²_{rms} × $\frac{1}{4\pi^2 v^2 c^2}$ = 25 × 10⁻³ J \therefore C = 20 μF Av. magnetic energy औसत चुम्बकीय ऊर्जा $$\left(\frac{1}{2}LI_{ms}^2\right) = 5 \times 10^{-3}$$ $$\therefore \qquad L = \frac{2 \times 5 \times 10^{-3}}{(0.10)^2} \qquad \Rightarrow \qquad L= 1 \text{ henry हेनरी}$$ $$V_{R} = I_{rms}.R \qquad V_{C} = I_{rms} X_{C} \qquad V_{L} = I_{rms} \times \omega L$$ $$= 0.10 \times 300 \qquad = (0.10) \times \frac{1}{2\pi \left(\frac{50}{\pi}\right) \times 20 \times 10^{-6}} = 0.10 \times 2\pi \times \frac{50}{\pi} (1)$$ $$= V_{R} = 30 \text{ V} \qquad V_{C} = 50 \text{ V} \qquad V_{L} = 10 \text{ V}$$ rms voltate of source स्त्रोत का वर्ग माध्य मूल E = 50 V (given in the question) प्रश्न में दिया गया है। 4. An inductor 20 \times 10⁻³ Henry, a capacitor 100 μF and a resistor 50 Ω are connected in series across a source of EMF V = 10 sin 314 t. Find the energy dissipated in the circuit in 20 minutes. If resistance is removed from the circuit and the value of inductance is doubled, then find the variation of current with time (t in second) in the new circuit. 20 × 10⁻³ हेनरी प्रेरकत्व, 100 μ F का संधारित्र तथा 50 Ω का प्रतिरोध V = 10 $\sin 314$ t वि.वा.बल स्त्रोत से श्रेणी क्रम में जुड़े है। परिपथ में 20 मिनट मे होने वाली ऊर्जा हानि ज्ञात करो? यदि परिपथ से प्रतिरोध हटा दिया जाये तथा प्रेरकत्व का मान दुगना कर दिया जाये तो नये परिपथ में धारा का समय (सैकण्ड) के साथ परिवर्तन ज्ञात करो? [REE - 99] Solu. Given that दिया हआ है $$L = 20 \times 10^{-3} H$$ $$C = 100 \times 10^{-6} F$$ $$R = 50 \Omega$$ $$\omega = 314$$ $$V = 10 \sin 314 t$$ $$\Delta t = 20 \times 60$$ second $$R = 50 \ \Omega$$ $$V = 10 \sin 314 \ t$$ $$\Delta t = 20 \times 60 \ \text{second}$$ $$(i) \ \Delta H = \ I_{\text{rms}}^2 \ R \ (\Delta t) = \left(\frac{V_0}{\sqrt{2} \ Z}\right)^2 \ R \times \Delta t$$ here $$z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega c}\right)^2} = \sqrt{(50)^2 + \left(6.28 - 31.8\right)^2} = 56.15 \Omega$$ (ii) $$I = I_0 \sin (314 t + \pi/2)$$ परिवर्तित होने में कितना समय लगेगा? (ii) $$I = I_0 \sin (314 t + \pi/2)$$ where ਯहाँ $I_0 = \frac{V_0}{\left(\omega(2L) - \frac{1}{\omega c}\right)}$ 5. The electric current in an AC circuit is given by $i = i_0 \sin \omega t$. What is the time taken by the current to change from its maximum value to the rms value? प्रत्यावर्तीधारा परिपथ में i = i sin ωt धारा प्रवाहित हो रही है। धारा को इसके अधिकतम मान से व.मा. मूल मान तक Ans. T/8 or $$\frac{\pi}{4\omega}$$ **Solu**. $I_1 = I_0 \sin \omega t_1$ $$I_0 = I_0 \sin \omega t_1$$ $$t_1 = \frac{\pi/2}{2\pi/T} = \frac{T}{4}$$ & $$I_2 = \frac{I_0}{\sqrt{2}} = I_0 \sin(\omega t_2)$$ $$t_2 = \frac{\pi/4}{2\pi/T} = \frac{T}{8}$$ $$\Delta t = t_1 - t_2 = \frac{T}{4} - \frac{T}{8} = \frac{T}{8}$$ Ans - 6. A circuit containing a 0.1 H inductor and a 500 μ F capacitor in series is connected to a 230 volt, $100/\pi$ Hz supply. The resistance of the circuit is negligible. (a) Obtain the current amplitude and rms values. (b) Obtain the rms values of potential drops across each element. (c) What is the average power transferred to the inductor? (d) What is the average power transferred to the capacitor? (e) What is the total average power absorbed by the circuit? ['Average' implies average over one cycle.] एक परिपथ में 0.1~H प्रेरकत्व तथा $500~\mu F$ का संधारित्र श्रेणीक्रम में 230~volt, $100/\pi~Hz$ के स्त्रोत से जुड़े है। परिपथ का प्रतिरोध नगण्य है। (a) धारा का शीर्ष मान तथा व.मा.मूल मान ज्ञात करो ? (b) प्रत्येक अवयव के सिरों पर विभवपात का वर्गमाध्य मूल मान ज्ञात करो ? (c) प्रेरकत्व को स्थानान्तरित औसत शक्ति ज्ञात करो ? (d) संधारित्र को स्थानान्तरित औसत शक्ति ज्ञात करो ? (e) परिपथ की कूल औसत शक्ति ज्ञात करो ? ['यहाँ औसत मान, कूल एक चक्र के लिए ज्ञात - (a) 23 √2 A, 23 A (b)460 volt, 230 volt(c) zero शून्य (d) zero शून्य (e) zero शून्य. Ans. - Give that (दिया गया है) Sol. $$L = 0.1 H$$ $$C = 500 \times 10^{-6} F$$ $$V_{rms} = 230 \text{ volt}, f = \frac{100}{\pi} \text{ Hz}$$ (a) $$I_{rms} = \frac{V_{rms}}{Z} = \frac{230}{Z}$$ where ਯੂਗ਼ੱ $$Z = \frac{1}{\omega c} \omega L - = 2\pi f L - \frac{1}{2\pi f c} = 20 - 10 = 10$$ & $$I_{O} = \sqrt{2} \times I_{rms} = 23\sqrt{2}$$ (b) $$V_L = I_{rms} (\omega L)$$ $V_C = I_{rms} \left(\frac{1}{\omega C} \right)$ $$(c) < P_L > = I_{rms} V_{rms} \cos \phi$$ here ਯਗੱ $\phi = 90^{\circ}$ So $< P > = 0$ $(d) < P_C > = 0$ $(e) < P_{Net} > = 0$ (d) $$\langle P_c \rangle = 0$$ (e) $\langle P_{Net} \rangle = 0$ - A series LCR circuit with L = $0.125/\pi$ H, C = $500/\pi$ nF, R = 23 Ω is connected to a 230 V variable frequency 7. - (a) What is the source frequency for which current amplitude is maximum? Obtain this maximum value. - (b) What is the source frequency for which average power absorbed by the circuit is maximum? Obtain the value of this maximum power. (c) For what reactance of the circuit, the power transferred to the circuit is half the power at resonance? What is the current amplitude at this reactance? (d)lf ω is the angular frequency at which the power consumed in the circuit is half the power at resonance, write an expression for ω (e) What is the Q-factor (Quality factor) of the given circuit? - श्रेणी LCR परिपथ 230 V परिवर्तित आवृति वाले स्रोत से जुड़ा है, जहां L = $0.125/\pi$ H, C = $500/\pi$ nF, R = 23Ω है - (a) धारा आयाम के अधिकतम मान के लिए स्रोत की आवृति क्या होगी ? इसका अधिकतम मान ज्ञात करो। - (b) स्रोत की किस आवृति के लिए परिपथ द्वारा व्यय औसत शक्ति अधिकतम होगी ? अधिकतम शक्ति का मान ज्ञात करो। (c) परिपथ के किस प्रतिघात के लिए परिपथ को स्थानान्तरित शक्ति अनुनाद पर प्राप्त शक्ति की आधी है ? इस प्रतिघात पर धारा आयाम क्या है ? (d) यदि कोणीय आवृत्ति 🛭 पर परिपथ में व्यय शक्ति अनुनाद पर शक्ति की आधी है तो इस ω के लिए व्यंजक ज्ञात करो? (e) दिए गए परिपथ का Q-गुणांक (विशेषतां गुणांक) क्या है ? - (a) 2000 Hz, $10\sqrt{2}\,$ A (b) 2000 Hz, 2300 watt (c) 23 Ω , 10 A. Ans. (d) $$\frac{0.125}{\pi}\omega - \frac{1 \times 10^9}{\omega \frac{500}{\pi}} = \pm 23$$ (e) 500/23 Given that (दिया गया है) Sol. L = $$0.125/\pi$$ C = $\frac{500}{\pi}$ × 10^{-9} F R = 23 V_{rms} = 230 volt $$R = 23$$ $V_{rms} = 230 \text{ volt}$ (a) $$f_R = \frac{1}{2\pi} \frac{1}{\sqrt{CL}} = 2000 \text{ Hz}$$ I_{rms} (max) $= \frac{230}{R} = 10 \text{ Amp}$. (b) at Resonance अनुनाद पर $$f_R = 2000$$ $P_{max} = I_{rms}^2 R = (10)^2 \times 23 = 2300$ watt (c) $$\frac{P_{\text{max}}}{2} = I_{\text{rms}}^{2} F$$ (c) $$\frac{P_{max}}{2} = I_{ms}^{'2} R$$ $\frac{I_{ms}^2 R}{2} = I_{ms}^{'2} R = I_{ms}^{'} = \frac{I_{ms}}{\sqrt{2}}$ $$\frac{V_{\text{rms}}}{\sqrt{R^2 + x^2}} = \frac{I_{\text{rms}}}{\sqrt{2}} = \frac{230}{\sqrt{(23)^2 + x^2}} = \frac{10}{\sqrt{2}} \qquad x = 23 \,\Omega$$ $$x = 23 \Omega$$ I_0 = $I_{ms} \times \sqrt{2}$ = 10 Amp. (d) $$\omega L - \frac{1}{\omega C} = +23 \Omega \implies \omega = ?$$ (e) Q = $$\frac{\omega_r L}{R}$$ = $\frac{2 \times \pi \times 2000 \times \frac{0.125}{\pi}}{23}$ = $\frac{500}{23}$ The maximum values of the alternating voltages and current are 400 V and 20 A respectively in a circuit 8. connected to 50 Hz supply and these quantities are sinusoidal. The instantaneous values of the voltage and current are $200\sqrt{2}$ V and 10 A respectively. At that instant both are increasing positively. Determine the average power consumed in the circuit. एक परिपथ जिसे 50Hz आवृत्ति स्त्रोत से जोड़ा गया है, में प्रत्यावर्ती वोल्टता तथा धारा का अधिकतम मान क्रमशः 400 V तथा 20 A है व ये ज्यावक्रीय रूप है। वोल्टता व धारा का तात्क्षणिक मान क्रमशः $200\sqrt{2}$ V तथा 10 A है। इस क्षण दोनों धनात्मक दिशा में वृद्धिमान है। परिपथ में व्ययित औसत शक्ति ज्ञात कीजिए। Sol. $$\omega = 2\pi f =
(100\omega) \text{ rad/s}$$ From the above two figures we can write: Reference circle for voltage Reference circle for current $$V = 400 \sin(\omega t + \theta_1) = 400 \sin \left[100\pi t + \frac{\pi}{4} \right]$$ $$i = 20 \sin(\omega t + \theta_2) = 20 \sin\left[100\pi t + \frac{\pi}{6}\right]$$ Phase difference between V and i: $$\phi = (\pi/4 - \pi/6) = \frac{\pi}{12}$$ or 15° $$P = V_{rms}i_{rms} \cos \phi = \left(\frac{400}{\sqrt{2}}\right) \left(\frac{20}{\sqrt{2}}\right) \cos 15^{\circ} = 3864 \text{ W}$$ $\omega = 2\pi f = (100\omega) \text{ rad/s}$ उपर्युक्त दो चित्रों से हम लिख सकते है : V = 400 sin($$\omega$$ t + θ_1) = 400 sin $\left[100\pi t + \frac{\pi}{4} \right]$ i = 20 sin(ω t + θ_2) = 20 sin $\left[100\pi t + \frac{\pi}{6} \right]$ V तथा i में कलान्तर: $$\phi = (\pi/4 - \pi/6) = \frac{\pi}{12} \quad \text{or } 15^{\circ}$$ $$P = V_{rms} i_{rms} \cos \phi = \left(\frac{400}{\sqrt{2}}\right) \left(\frac{20}{\sqrt{2}}\right) \cos 15^{\circ} = 3864 \text{ W}$$ - 9. A 750 Hz, 20 V source is connected to a resistance of 100 Ω , a capacitance of 1.0 μ F and an inductance of 0.18 H in series. Calculate the following quantities : (Olympaid 2013-14) - (a) Impedence of the circuit - (b) Draw an impedence diagram with suitable scale - (c) Power factor - (d) The time in which the resistance will get heated by 10°C, provided that the thermal capacity of resistance = 2 J/°C 750 Hz आवृति, 20 V स्त्रोत के साथ 100 Ω प्रतिरोध, 1.0 μF संधारित्र तथा 0.18 H का प्रेरकत्व श्रेणी क्रम में जुड़े हुऐ है। निम्न राशियों का मान ज्ञात करो। (Olympaid 2013-14) - (a) परिपथ की प्रतिबाधा - (b) उपयुक्त पैमाने के साथ प्रतिबाधा आरेख प्रदर्शित करो - (c) शक्ति गुणांक - (d) वह समय ज्ञात करो जिसमें प्रतिरोध 10°C गर्म हो जाता है, दिया गया है कि प्रतिरोध की ऊष्मिय धारिता = 2 J/°C है Sol. $$z = \sqrt{(636.4)^2 + (100)^2} = 100\sqrt{(6.364)^2 + 12} = 100 \times 6.44 \cong 644 \Omega$$ $$tan\phi = \frac{X_L - X_C}{R} = \frac{848.5 - 212.12}{100} = 6.36$$ $$(C) \cos\phi = \frac{R}{z} = \frac{100}{644} = 0.155$$ (B) impedence is constant as n is constant प्रतिबाधा नियत है क्योंकि आवृति n नियत है (D) $$i_{rms} = \frac{\varepsilon_{rms}}{z} = \frac{20}{644} A$$ $H = (i_{rms})^2 Rt = \left(\frac{20}{644}\right)^2 (100)t$ (ms) $(\Delta\theta) = \left(\frac{20}{644}\right)^2 (100) t$ (2) $(10) = \left(\frac{20}{644}\right)^2 (100) t$ $$t = \left(\frac{644}{20}\right)^2 \times \frac{1}{100} \times 20$$ t = 207.36 sec 10. In the given circuit दिये गये परिपथ में Calculate ज्ञात कीजिये। - (a) Current in each branch. प्रत्येक शाखा में विद्युत धारा - (b) Power generated in each resistance प्रत्येक प्रतिरोध में उत्पन्न शक्ति। - (c) Total power generated in the circuit. परिपथ में उत्पन्न कुल शक्ति। - (d) Net current drawn from source. स्त्रोत से प्रवाहित कुल धारा। - (e) Net impedance of the circuit. परिपथ की कुल प्रतिबाधा - Sol. Impedence of each branch प्रत्येक शाखा की प्रतिबाधा $$Z_{1} = \sqrt{R_{1}^{2} + X_{L}^{2}} = \sqrt{4^{2} + 3^{2}} = 5$$ $$Z_{2} = \sqrt{6^{2} + 8^{2}} = 10$$ $$Z_{3} = \sqrt{(10)^{2} + (10 - 10)^{2}} = 10$$ (2) Current in each brench Hallet. (a) Current in each branch प्रत्येक शाखा में धारा $$I_1 = \frac{V}{Z_1} = \frac{100}{5} = 20$$ Amp. $$I_2 = \frac{100}{10} = 10$$ Amp. $I_3 = \frac{100}{10} = 10$ Amp. - (b) Power in each branch. प्रत्येक शाखा में शक्ति $P_1 = (I_1)^2 R_1 = (20)^2 (4) = 1600 \text{ watt}$ $P_2 = (I_2)^2 R_2 = (10)^2 (6) = 600 \text{ watt}$ $P_3 = (I_3)^2 R_3 = (10)^2 (10) = 1000 \text{ watt}$ - (c) Net power of the circuit. परिपथ की कुल शक्ति $P = P_1 + P_2 + P_3 = 3200 \text{ watt}$ phase difference between voltage & current in each branch. प्रत्येक शाखा में धारा एवं विभवान्तर के मध्य कलान्तर $$\begin{split} tan\varphi_1 &= \frac{X_L}{R_1} = \frac{3}{4} \Longrightarrow \varphi_1 = 37^\circ \\ tan\varphi_2 &= \frac{X_C}{R_2} = \frac{8}{6} \Longrightarrow \varphi_2 = 53^\circ \end{split}$$ $$tan\varphi_3=0 \Longrightarrow \varphi_3=0$$ - (d) Net current drawn from source. स्त्रोत से प्रवाहित धारा $\sqrt{(I_1 \cos 37^\circ + I_2 \cos 53^\circ + I_3)^2 + (I_1 \sin 37^\circ I_2 \sin 53^\circ)^2} = \sqrt{1040}$ - (e) Net impedance of the circuit. परिपथ की प्रभावी प्रतिबाधा $Z = \frac{V}{I} = \frac{100}{\sqrt{1040}}$ - 11. A metallic coil of N turns of radius a, resistance R, and inductance L is held fixed with its axis along a spatial uniform magnetic field \vec{B} whose magnitude is given by $B_0 \sin(\omega t)$. त्रिज्या a तथा N फेरों वाली जड़वत् धात्विक कुण्डली (coil) का प्रतिरोध R तथा प्रेरकत्व L को सम-स्थानिक चुम्बकीय क्षेत्र \bar{B} जिसका परिमाण $B_0 \sin(\omega t)$ है, में इस तरह रखा है ताकि कुण्डली का अक्ष चुम्बकीय क्षेत्र के अनुदिश है। - (a) Write the emf equation for the current i in the coil. - (b) Assuming that in the steady state i. oscillates with the same frequency $\boldsymbol{\omega}$ as the magnetic field, obtain the expression for i. - (c) Obtain the force per unit length. Further obtain its oscillatory part and the time-averaged compressional part. - (d) Calculate the time-averaged compressional force per unit length given that B_0 = 1.00 tesla, N = 10, a = 10.0 cm, ω = 1000.0 rad-s⁻¹, R = 10.0 Ω , L = 100.0 mH. - (a) धारा i के लिए emf की समीकरण लिखिए। - (b) स्थाई अवस्था में i, चुम्बकीय क्षेत्र की आवृत्ति ω से ही दोलित मानते हुए, i के लिए व्यंजक प्राप्त कीजिए। - (c) प्रति इकाई लम्बाई के लिए बल प्राप्त करे। इसका दोलित मान तथा सम्पीड़न भाग का समय–औसत मान ज्ञात करें। - (d) प्रति इकाई लम्बाई सम्पीड़न बल का समय औसत मान गणना करें। दिया गया है B_0 = 1.00 टेसला, N = 10, a = 10.0 cm, ω = 1000.0 rad-s⁻¹, R = 10.0 Ω , L = 100.0 mH **Sol.** (a) i R + L $$\frac{di}{dt}$$ = -N π a² B₀ ω cos ω t (b) $$i = \frac{N\pi \quad a^2 \quad B_0\omega \quad \left(R\cos\omega t + \omega L\sin\omega t\right)}{R^2 + \omega^2 L^2}$$ (c) $$\frac{dF}{d\ell} = -\frac{NB_0^2 \pi a^2 \omega}{R^2 + \omega^2 L^2}$$ (R sin $\omega t \cos \omega t + \omega L \sin^2 \omega t$) $$=\frac{dF}{d\ell}\Big|_{av} = -\frac{NB_0^2 \pi a^2 \omega^2 L}{2(R^2 + \omega^2 L^2)}$$ $$= \frac{dF}{d\ell}\bigg|_{OSC} = -\frac{NB_0^2 \pi a^2 \omega}{2(R^2 + \omega^2 L^2)} (R \sin 2 \omega t - \omega L \cos 2 \omega t)$$ (d) $$\frac{dF}{d\ell}\Big|_{av} = 1.55 \text{ N.m}^{-1}$$