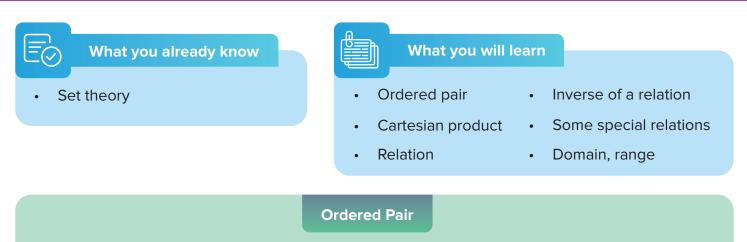
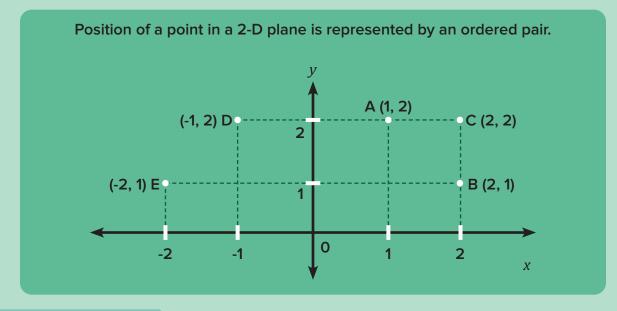
RELATIONS AND FUNCTIONS

INTRODUCTION TO RELATIONS



An ordered pair consists of two objects or elements in a given fixed order.

Example: (2,3) is an ordered pair, where 2 is the first element and 3 is the second element.



Equality of ordered pair

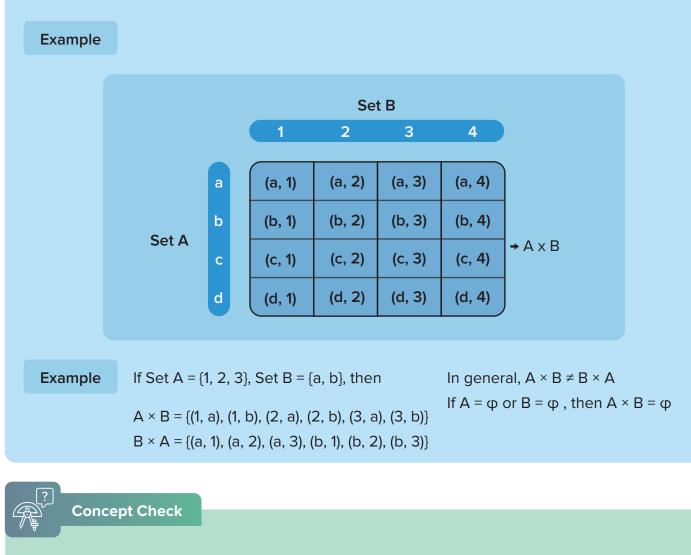
Two ordered pairs are equal if and only if their corresponding first and second elements are equal.

 $(a_1, b_1) = (a_2, b_2)$ $\Leftrightarrow a_1 = a_2 \text{ and } b_1 = b_2$

- I. Ordered pair is not termed as a set. Therefore (1, 2) is different from (2, 1).
- II. In a set $\{2, 2\}$ means the existence of one element but (2, 2) means two elements.
- III. Order of elements is important and elements need not be distinct.

Cartesian Product Let A and B be two non-empty sets. The set of all ordered pairs (a, b), where $a \in A$ and $b \in B$, is known as the cartesian product of sets A and B. It is denoted by $A \times B$. Mathematically

 $A \times B = \{(a, b) : a \in A and b \in B\}$



- **1.** Let A be a non-empty set such that $A \times A$ has 9 elements among which two elements are found to be (-1, 0) and (0, 1). Find set A.
 - (a) $\{-1, 0\}$ (b) $\{0, 1\}$ (c) $\{-1, 0, 1\}$ (d) $\{-1, 1\}$

Number of elements in the cartesian product $\mathbf{A} \times \mathbf{B}$

If A and B are finite sets, then $n(A \times B) = n(A) \times n(B)$ If either A or B is infinite, then $A \times B$ is an infinite set.

Concept Check

- **2.**Let A have the first 10 odd natural numbers and B have the first 10 prime natural numbers. Find the number of elements common to $A \times B$ and $B \times A$.
 - (a) 2^8 (b) 8^2 (c) 7^2 (d) 2^7
- **3.** Let A be the set of all divisors of 8 and B be the set of all the divisors of 10. Find the number of elements in $A \times B$.
- 4. If A = {1, 2}, B = {3, 4, 5}, C = {a, b}. Find number of elements in $A \times B \times C$.

If A and B are any two non-empty sets, then

 $A \times B = B \times A \Leftrightarrow A = B$

Let A and B be two non-empty sets having m elements in common, then A \times B and B \times A have m² elements in common.

Relation

A relation from A to B is a subset of the cartesian product $A \times B$.

Mathematically

R is a relation from A to $B \Leftrightarrow R \subseteq A \times B$

Notations

Example: A = $\{1, 2, 3, 4, 5\}$ and B = $\{1, 5, 7\}$ Define a relation R from A to B. aRb if a - b is even. R = $\{(1, 1), (1, 5), (1, 7), (3, 1), (3, 5), (3, 7), (5, 1), (5, 5), (5, 7)\}$

R: A → B In the above example, (1, 5) \in R or 1R5. (a, b) \in R means a is related to b.

Quick Query

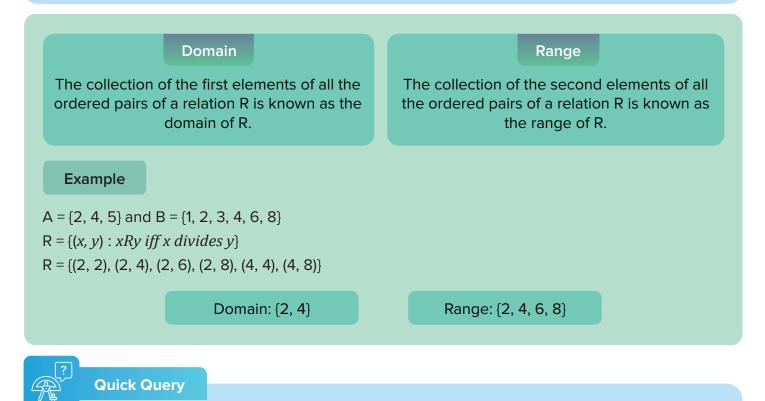
2. Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$. Find which of the following are relations from A to B.

- $R_1 = \{(1, 4), (1, 5), (1, 6)\}$
- $R_2 = \{(1, 5), (2, 4), (3, 6)\}$
- $R_3 = \{(1, 4), (1, 5), (1, 6), (3, 6), (2, 6), (3, 4)\}$
- $R_{4} = \{(4, 2), (2, 6), (5, 1), (2, 4)\}$

Total number of relations from A to B

If n (A) = p and n (B) = q,

Total number of relations from A to B = Total number of subsets of $A \times B = 2^{pq}$



3. Find the domain and range of relation R = {(1, 8), (1, 3), (2, 7), (2, 9), (5, 7), (5, 9)}.

Inverse of a Relation

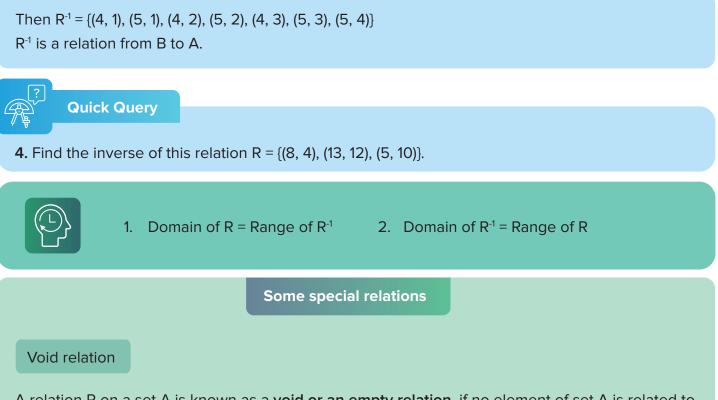
Let A, B be two sets and R be a relation from A to B. The inverse of R, denoted by R⁻¹, is a relation from B to A and is defined as the following:

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

Thus, if (a, b) ∈ R ⇔ (b, a) ∈ R^{-1}

Example

A = {1, 2, 3, 4, 5} and B = {1, 4, 5} Let R be a relation from A to B. R = { $(x, y) \in A \times B : xRy \ iff \ x < y$ } R = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}



A relation R on a set A is known as a **void or an empty relation**, if no element of set A is related to any element of A.

Here, $R = \emptyset \subseteq A \times A$

For example: R is a relation on A = $\{1, 2, 3\}$ such that R = $\{(a, b) : a + b = 12\}$

Universal relation

If each element of set A is related to every element of set A, then the relation is known as a **universal relation**.

For example:

R is a relation on A = {1, 2, 3, 4, 5} such that R = {(a, b) : a < b or $a \ge b$ }

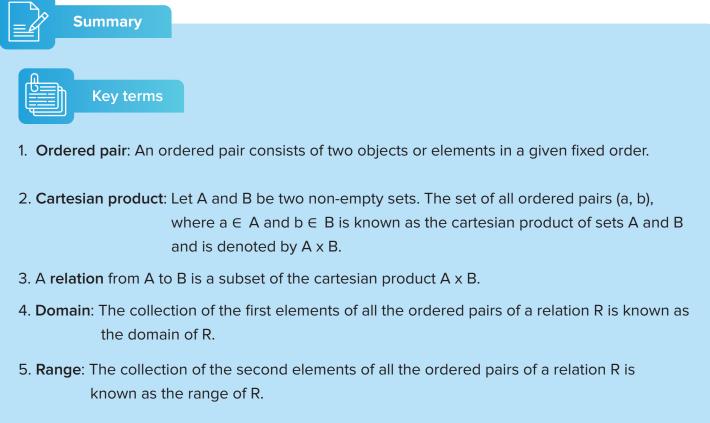
Identity relation

Given a set A, an identity relation on A is defined as the set of all ordered pairs (a, a) where a belongs to A.

For example:

R is a relation on A such that A = $\{1, 2, 3, 4, 5\}$ such that R = $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\}$

 $R = \{(a, b) : a = b\}$

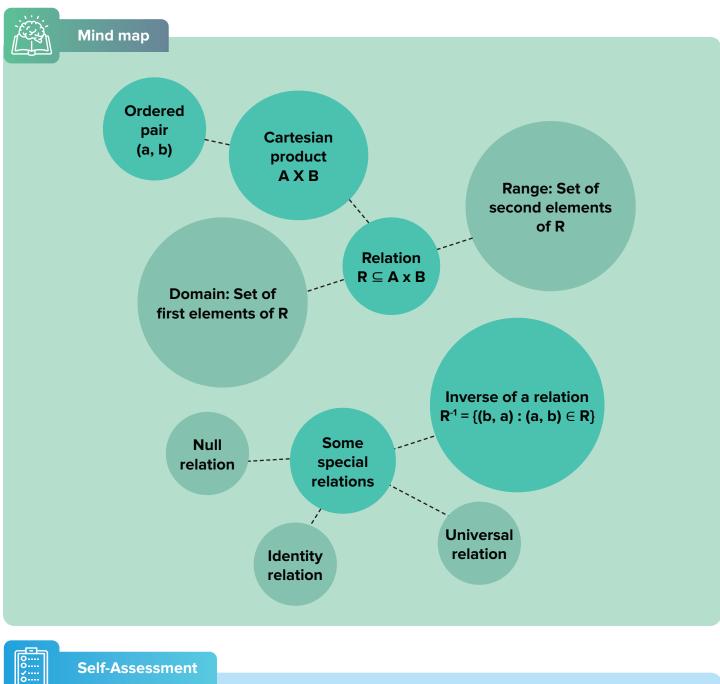


- 6. Inverse of a relation R: $R^{-1} = \{(b, a) : (a, b) \in R\}$
- 7. Void relation: An empty relation, that is, one having no elements is a void relation.
- 8. Universal relation: If each element of set A is related to every element of set A, then the relation is known as a universal relation.
- 9. Identity relation: Given a set A, an identity relation on A is defined as the set of all ordered pairs (a, a) where a belongs to A.

- 1. Two ordered pairs are equal if and only if their corresponding first and second elements are equal.
- 2. Cartesian product: $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$.

Key results

- 1. If A and B are finite sets, then $n(A \times B) = n(A) \times n(B)$
- 2. If n(A) = p and n(B) = q, Total number of relations from A to $B = 2^{pq}$
- 3. If A and B are any two non-empty sets, then $A \times B = B \times A \Leftrightarrow A = B$



- Self-Assessment
- 1. Let R be a relation on the set of natural numbers N defined by $R = \{(x, y) : 2x + y = 8\}$. Find its domain and range.
- 2. The cartesian product of two sets is given as $A \times B = \{(2, 3), (9, 3), (8, 3)\}$. Find A and B.
- 3. How many relations can be made on A?

A = {*x* : 1 < *x* < 30 and 3 divides *x*}

- 4. If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}. Find (A B) x (B C).
- (a) $\{(1, 2), (1, 5), (2, 5)\}$ (b) $\{(1, 4)\}$ (c) $\{2, 4\}$ (d) $\{(1, 2), (2, 4)\}$

Answers

Quick Query

3. Domain: {1, 2, 5} Range: {3, 7, 8, 9}

Concept Check

- 1. Solution : We have, $A \neq \emptyset$ and $n(A \times A) = 9$ Now, $n(A \times A) = n(A) \times n(A)$ $\Rightarrow n(A) \times n(A) = 9$ $\Rightarrow (n(A))^2 = 9 \Rightarrow n(A) = 3$ Also, (-1, 0), (0, 1) $\in A \times A$ $\Rightarrow A = \{-1, 0, 1\}$
- **3.** A is the set of all divisors of 8 $A = \{1, 2, 4, 8\}$ B is the set of all divisors of 10. $B = \{1, 2, 5, 10\}$ $n(A \times B) = n(A) \times n(B)$ $= 4 \times 4 = 16$

- R₁, R₂, R₃ are all relations from A to B. All their ordered pairs have the first element belonging to A and the second element belonging to B. It is sufficient to say that (4, 2) is an element of R₄ but 4 does not belong to A. Hence, R₄ is not a relation from A to B.
- **4.** Inverse R⁻¹ = {(4, 8), (12, 13), (10, 5)}

- Solution: We have,
 A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
 B = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
 ∴ n(A ∩ B) = 7
 ⇒ n((A × B) ∩ (B × A)) = (n(A ∩ B))² = 7²
 - \Rightarrow Number of elements common to A x B and B x A = 49

4. Number of elements in $A \times B \times C = n(A) \times n(B) \times n(C)$ $\Rightarrow 2 \times 3 \times 2 = 12$

Self-Assessment

- R = {(x, y) : 2x + y = 8} R = {(1, 6), (2, 4), (3, 2)} Domain = {1, 2, 3} Range = {2, 4, 6}
- **2.** A × B = {(2, 3), (9, 3), (8, 3)} A = {2, 9, 8} B = {3}

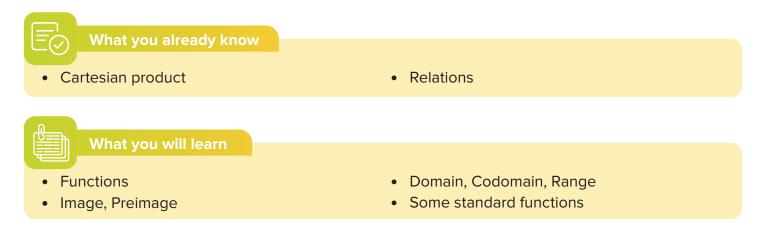
3. A = {3, 6, 9, 12, 15, 18, 21, 24, 27} Number of elements in A = 9 Total number of relations from A to A = $2^{n(A) \times n(A)}$ = 2^{81} 4. (A - B) = {1}

(B - C) = {4} Therefore, (A - B) X (B - C) = {(1, 4)}

MATHEMATICS

RELATIONS AND FUNCTIONS

MORE ON RELATIONS AND INTRODUCTION TO FUNCTIONS



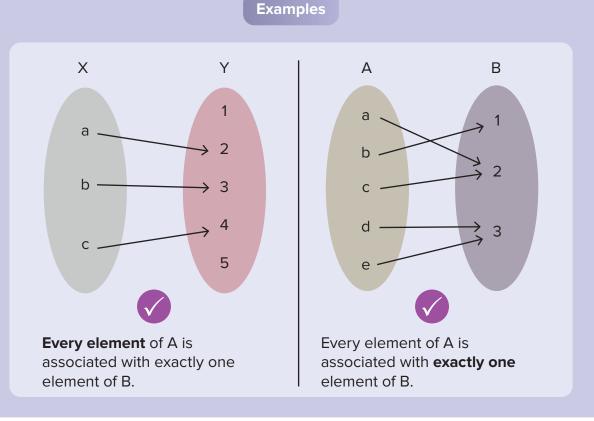
Function

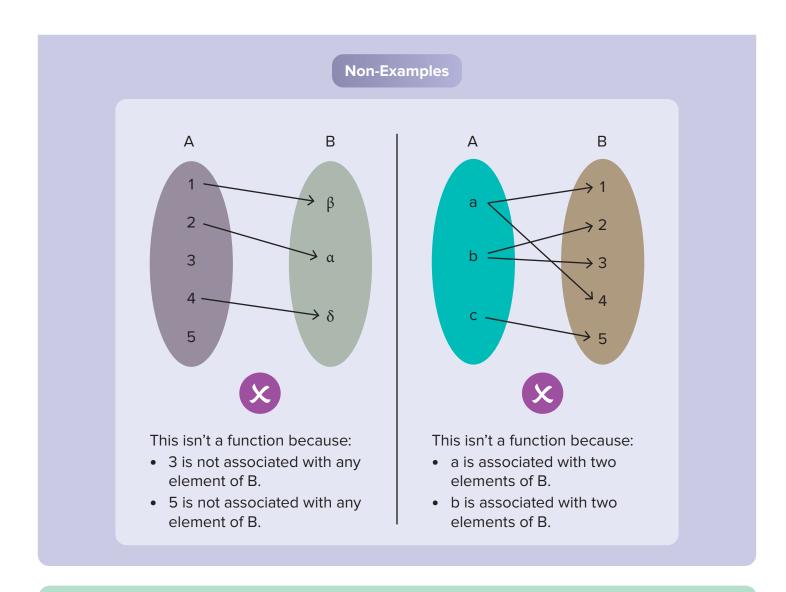
A function 'f' from a non-empty set A to a non-empty set B is a rule or a correspondence under which:

Every element of A is associated with exactly one element of B.

Notation: f is a function from A to B

 $f:A\to B$

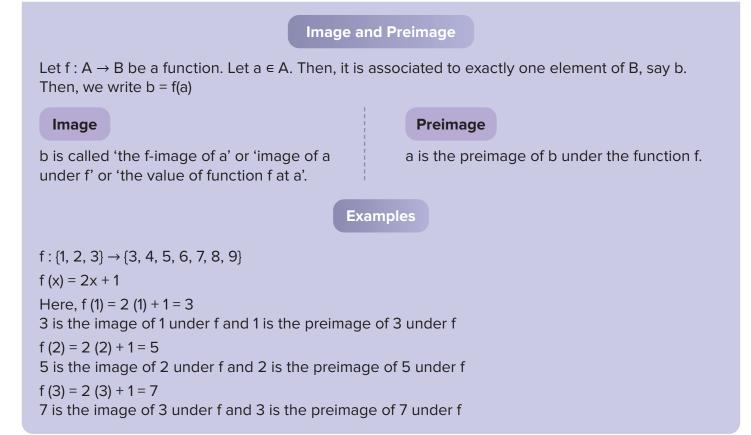




- A function is a special relation from A to B such that : Every element of A is related to exactly one element of B.
- Number of functions for the mapping $f: A \to B$ will be $n(B)^{n(A)}$

Quick Query

- 1. Let R be a relation from A to B. Determine whether it is a function:
 - A = {1, 2, 3, 4}
 - B = {5, 10, 15}
 - $\mathsf{R} = \{(1, 5), (1, 10), (2, 10), (3, 15), (4, 15)\}$
- 2. Let R be a relation from A to B. Determine whether it is a function: A = $\{1, 2, 3, 4\}$ B = $\{5, 10, 15\}$
 - $R = \{(1, 5), (2, 10), (3, 15)\}$
- 3. Let ${\sf R}$ be a relation from A to B. Determine whether it is a function:
 - A = {1, 2, 3, 4}
 - B = {5, 10, 15}
 - $\mathsf{R} = \{(1, 5), (2, 10), (3, 10), (4, 10)\}$



Concept Check

1. Let f be a function from A to B $A = \{1, 2, 3\}$ $B = \{5, 10, 15\}$ f (1) = 5; f (2) = 10; f (a) = 15. Find the preimage of 15.

Domain, Codomain and Range of a function

Domain

Let $f : A \rightarrow B$, then the set A is known as the domain of f. Notation: D(f) = A

Codomain

Let $f : A \rightarrow B$, then the set B is known as the co-domain of f.

Notation: C(f) = B

Range

Let $f : A \rightarrow B$, then the set of all the images of elements of A under f in B is known as the range of f. Notation: $R(f) = \{f(x) : x \in A\}$

	Examples	
f : {1, 2, 3} → {3, 4, f(x) = 2x + 1	, 5, 6, 7, 8, 9}	
Domain	Codomain	Range
{1, 2, 3}	{3, 4, 5, 6, 7, 8, 9}	{3, 5, 7}

- Functions having domain and co-domain both as subsets of R are known as real functions or real valued functions of a real variable.
- A real function is generally described by some general formula.
- For example, f: $R \rightarrow R$ given by $f(x) = x^2 + x + 1$.
- The domain of the real function f is the set of all those real numbers x for which the expression for f(x) assumes real values only i.e., D(f) is set of all those real numbers x for which f(x) is meaningful.

Quick Query

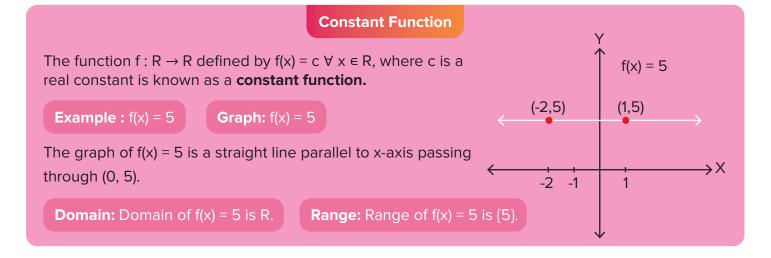
4. Find the domain, codomain, and range of the following function:

 $f: Z \to Z$

f(x) = 2x.

- Some Standard Functions
- Constant function
- Identity function
- Polynomial function
- Rational function
- Greatest integer function

- Signum function
- Fractional part function
- Exponential function
- Logarithmic function
- Absolute value function



Identity Function

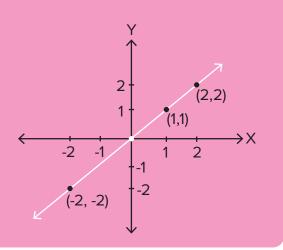
The function f: $R \rightarrow R$ defined by $f(x) = x \forall x \in R$ is known as **identity function**.

Graph: f(x) = x

The graph of f(x) = x is a straight line passing through the origin inclined at an angle of 45° with the positive direction of x-axis.

Domain: Domain of f(x) = x is R.

Range: Range of f(x) = x is R.



Polynomial Function

A polynomial function is a function that can be written in the form

$$(x) = a_0 + a_1 x + a_2 x^2 \dots a_n x^n \text{ and } n \in W$$

where each a_0 , a_1 , etc. represents a real number, and where n is a whole number (including 0).

Example: Linear polynomial: ax + b; $a \neq 0$

Graph: f(x) = x - 2

The graph of any linear polynomial function f(x) = ax + b; $a \neq 0$ is a straight line in the cartesian plane.

Domain: Domain of f(x) = x - 2 is R.

Range: Range of f(x) = x - 2 is R.

Quadratic function: $f(x) = ax^2 + bx + c$; $a \neq 0$

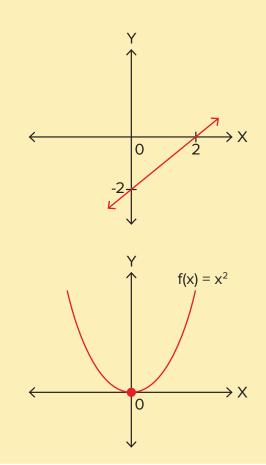
Graph: $f(x) = x^2$

The graph of any quadratic polynomial function $f(x) = ax^2 + bx + c$; $a \neq 0$ is a parabola.

Domain: Domain of $f(x) = x^2$ is R.

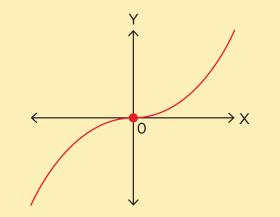
Range: Range of $f(x) = x^2$ is $[0, \infty)$.

Cubic function: $f(x) = ax^3 + bx^2 + cx + d$; $a \neq 0$



Domain: Domain of $f(x) = x^3$ is R.

Range: Range of $f(x) = x^3$ is R.



Rational Function

A real function defined as $f(x) = \frac{g(x)}{h(x)}$, where g(x) and h(x) are polynomial functions and $h(x) \neq 0$ is known as a rational function.

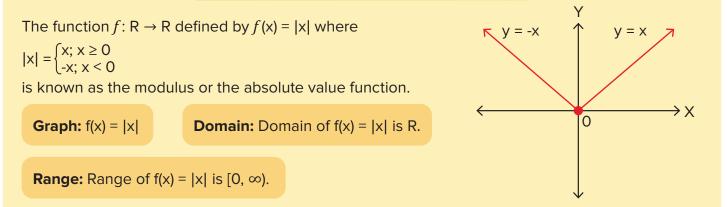
Example: 1.
$$f(x) = \frac{7}{x}$$
 2. $f(x) = \frac{x^2 + 2}{x}$ 3. $f(x) = \frac{1}{x}$
Graph: $f(x) = \frac{1}{x}$ Domain: Domain of $f(x) = \frac{1}{x}$ is $\mathbb{R} - \{0\}$
Range: Range of $f(x) = \frac{1}{x}$ is $\mathbb{R} - \{0\}$

Quick Query

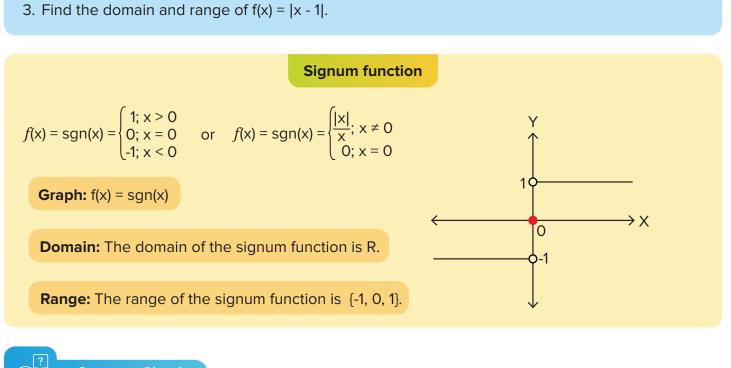
5. Find the domain of the rational function. $f(x) = \frac{5}{(x - 2)(x + 3)}$ Concept Check

2. Find the domain of the rational function. $f(x) = \frac{5x}{x (x + 8)}$

Modulus Function (Absolute Value Function)



Concept Check

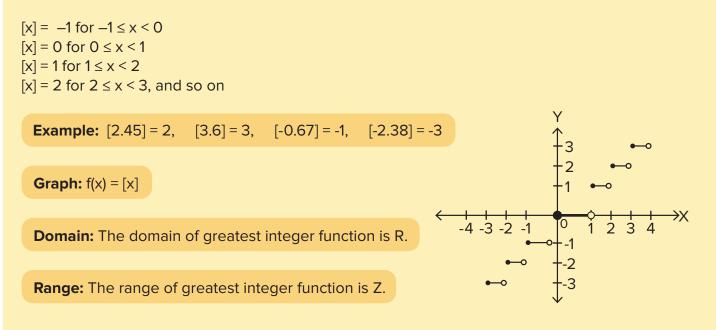


Concept Check

- 4. Draw graph of $f(x) = sgn(x^2 1)$.
- 5. The equation $x^2 5x \operatorname{sgn}(x^2 4) + 6 = 0$ has _____ number of solutions.

Greatest Integer Function

The real function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = [x], x \in \mathbb{R}$ assumes the value of the greatest integer less than or equal to x and is known as the greatest integer function.



Properties

1. $[x] \le x < [x] + 1$ 2. $x - 1 < [x] \le x$ 3. $[x + m] = [x] + m; m \in Z$ 4. $[-x] = \begin{cases} -[x] & x \in Z \\ -[x] - 1 & x \notin Z \end{cases}$ that is $[x] + [-x] = \begin{cases} 0 & x \in Z \\ -1 & x \notin Z \end{cases}$ 5. If $[x] \ge n$ then $x \ge n, n \in Z$ 6. If $[x] \ge n$ then $x \ge n, n \in Z$ 7. If $[x] \le n$ then $x < n + 1, n \in Z$ 8. If [x] < n then $x < n + 1, n \in Z$ 9. If $[x] + [x + \frac{1}{n}] + [x + \frac{2}{n}] + [x + \frac{3}{n}] + ... + [x + \frac{n - 1}{n}] = [nx], n \in Z$ 10. If $[x] = [\frac{x}{2}] + [\frac{x + 1}{2}]$

 $\begin{bmatrix} \frac{1}{4} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} + \frac{1}{200} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} + \frac{2}{200} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} + \frac{3}{200} \end{bmatrix} + \begin{bmatrix} \frac{1}{4} + \frac{4}{200} \end{bmatrix} + \dots + \begin{bmatrix} \frac{1}{4} + \frac{199}{200} \end{bmatrix} = \dots$ Solution: By Property 9; n = 200, x = $\frac{1}{4}$ then [nx] = $\begin{bmatrix} 200, \frac{1}{4} \end{bmatrix} = 50$

Fractional Part Function

It is denoted by $\{x\}$. It is defined as $\{x\} = x - [x]$.

Example:

 $\{0.23\} = 0.23 - [0.23] = 0.23 - 0 = 0.23$ $\{2.78\} = 2.78 - [2.78] = 2.78 - 2 = 0.78$ $\{-1.67\} = -1.67 - [-1.67] = -1.67 + 2 = 0.33$ $\{-3.35\} = -3.35 - [-3.35] = -3.35 + 4 = 0.65$

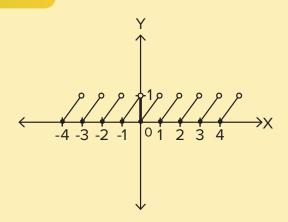
Graph: f(x) = {x}

Domain: The domain of fractional part function is R.

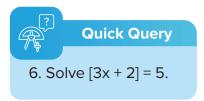
Properties

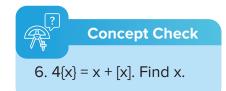
- 1. $0 \le \{x\} < 1$
- 2. ${x + m} = {x}; m \in Z$

3.
$$\{-x\} = \begin{cases} 1 - \{x\}, & x \notin \mathbb{Z} \\ 0, & x \in \mathbb{Z} \end{cases}$$



Range: The range of fractional part function is [0, 1).





Exponential Function

Exponential functions are the functions of the form $f(x) = b^x$, where b is the base and x is the exponent. Here, b > 0 and $b \neq 1$.

Graph: $f(x) = 2^x$

Domain: The domain of $f(x) = 2^x$ is R.

Range: The range of $f(x) = 2^x$ is $(0, \infty)$

Logarithmic Function

Given an exponential function $y = b^x$, x is the input and y is the output. If we reverse the input and the output, we get its inverse, that is, the logarithmic function. Log function is written as $f(x) = \log_b x$, where b is the base of the logarithm, b > 0, $b \neq 1$ and x > 0

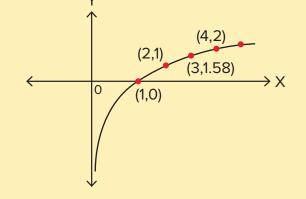
Example:

If $y = \log_2 x$ then $x = 2^y$ $\log_2 2 = 1$ as $2^1 = 2$

 $log_2 4 = 2 as 2^2 = 4$ $log_2 8 = 3 as 2^3 = 8$ $log_2 16 = 4 as 2^4 = 16$

Graph: $f(x) = \log_2 x$

Domain: The domain of $f(x) = \log_2 x$ is $(0, \infty)$.



(0,1) (1,2)

0

 $\frac{1}{4}$ (-1, $\frac{1}{2}$) 1

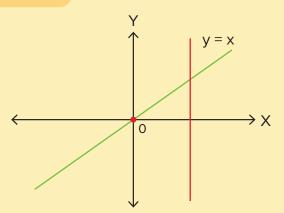
Range: The range of $f(x) = \log_2 x$ is R.

7. Find the value of $\log_a a^3$. (a > 0; a \neq 1).

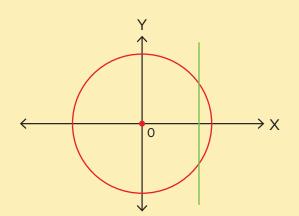
Line Test

Given the graph of a curve, how do we tell whether it represents a function? If we draw a line parallel to the y-axis and it intersects the given curve/diagram at only one point then, the given curve/diagram represents a function.

Example:



This is the graph of a function. Draw a vertical line anywhere. It intersects the graph at one point only.



This is not a function. The vertical line is intersecting the graph at two points.

Summary Sheet

- 1. A function 'f' from a non-empty set A to a non-empty set B is a rule or a correspondence under which every element of A is associated with exactly one element of B.
- 2. A function is a special relation from A to B such that every element of A is related to exactly one element of B.
- 3. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = c \forall x \in \mathbb{R}$, where c is a real constant is known as a constant function.
- 4. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x \forall x \in \mathbb{R}$ is called **identity function**.
- 5. A function defined as f(x) = polynomial is known as a **polynomial function**.
- 6. A real function defined as $f(x) = \frac{g(x)}{h(x)}$, where g(x) and h(x) are polynomial functions and $h(x) \neq 0$ is known as a **rational function**.
- 7. The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| where $|x| = \begin{cases} x; x \ge 0 \\ -x; x < 0 \end{cases}$ is known as the **modulus function**.
- 8. The signum function gives the sign of a real number. It is defined as:

$$f(x) = \operatorname{sgn}(x) = \begin{cases} 1; \ x > 0 \\ 0; \ x = 0 \\ -1; \ x < 0 \end{cases} \text{ or } f(x) = \operatorname{sgn}(x) = \begin{cases} \frac{|x|}{x}; \ x \neq 0 \\ 0; \ x = 0 \end{cases}$$

- 9. The real function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = [x], x \in \mathbb{R}$ assumes the value of the greatest integer less than or equal to x and is known as the **greatest integer function**.
- 10. Fractional Part function is denoted by $\{x\}$. It is defined as $\{x\} = x [x]$.
- 11. **Exponential functions** are the functions of the form: $f(x) = b^x$ where b is the base and x is the exponent. Here, b > 0 and $b \neq 1$
- 12. Logarithmic function is the inverse of exponential function.
- 13. Line test: Given the graph of a curve, how do we tell whether it represents a function? If we draw a line parallel to the y-axis and it intersects the given curve/diagram at only one point then, the given curve/diagram represents a function.

Key Terms

1. $f: A \rightarrow B$ b = f(a)

b is known as '**the f-image of** a' or '**image of a under** f' or '**the value of function** f **at** a' a is the **preimage** of b under the function f

- 2. Let $f: A \rightarrow B$, then the set A is known as the **domain** of f.
- 3. Let $f: A \rightarrow B$, then the set B is known as the **co-domain** of f.
- 4. Let $f: A \rightarrow B$, then the set of all the images of elements of A in B under f is known as the range of f.

Key Results

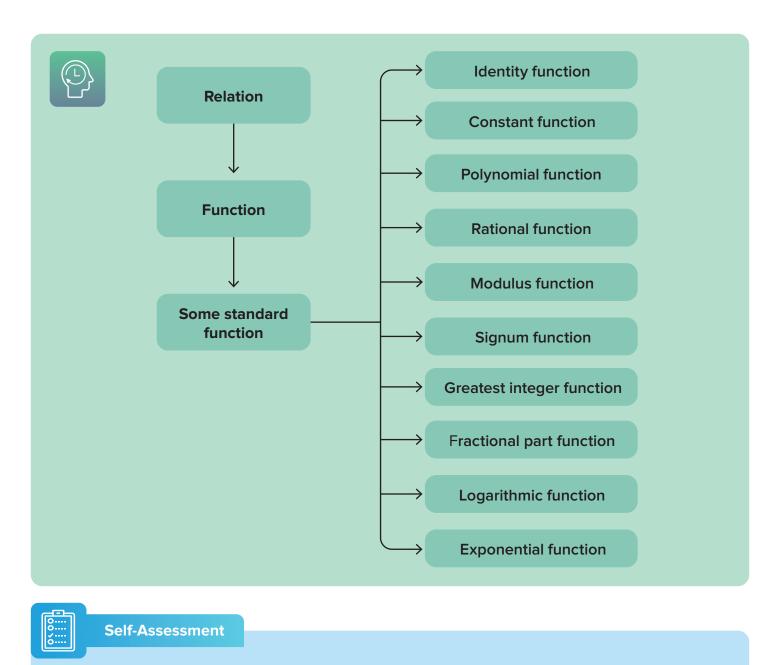
- 1. Range \subseteq codomain.
- 2. $[x] \le x \le [x] + 1$
- 3. $x 1 \le [x] \le x$
- 4. $[x + m] = [x] + m; m \in Z$.
- 5. $\begin{bmatrix} -x \end{bmatrix} = \begin{cases} 0 & x \in \mathbb{Z} \\ -x \end{bmatrix} = \begin{cases} 0 & x \in \mathbb{Z} \\ -1 & x \notin \mathbb{Z} \end{cases}$
- 6. $[x] + [x + \frac{1}{n}] + [x + \frac{2}{n}] + [x + \frac{3}{n}] + ... + [x + \frac{n-1}{n}] = [nx], n \in \mathbb{Z}$

7.
$$[x] = [\frac{x}{2}] + [\frac{x+1}{2}]$$

- 8. $0 \le \{x\} \le 1$
- 9. $\{x + m\} = \{x\}; m \in Z$
- 10. $\{-x\} = \begin{cases} 1 \{x\}, & x \notin Z \\ 0, & x \in Z \end{cases}$
- 11. Any real value can be expressed as a sum of its greatest integer function and fractional part function.

$$\mathbf{x} = [\mathbf{x}] + \{\mathbf{x}\}$$

12. If $y = \log_a x$, then $a^y = x$.



- 1. If y = 2[x] + 3, y = 3[x 2] + 5 then find [x + y]. 3. What is the domain of $f(x) = \log_2 \{x\}$?
- 2. Find the domain of $g(x) = \sqrt{1 x}$.
- 4. Draw the graph of f(x) = |x + 2|, g(x) = |x| + 2.

Α Answer

Quick Query

- 1. It is not a function because 1 is related to 5 and 10 both.
- 2. It is not a function because 4 is not related to any element of B.
- 3. Yes, it is a function.
- 4. Domain: Z Codomain: Z Range: All even integers.
- 5. The domain will contain those values where the function is defined. So, we will remove those values from R that make the denominator 0. The domain of this function is $R - \{2, -3\}$

6. $5 \le 3x + 2 < 6$ $3 \le 3x < 4$ $1 \le x < \frac{4}{3}$ $x \in [1, \frac{4}{3}]$ 7. $y = \log_a a^3$ $a^y = a^3$ y = 3

Concept Check

- 1. Since f is a function a has to be 3, the preimage of 15.
- The domain of this function is R {0, 8}. A word of caution: Do not cancel the x from numerator and denominator before finding the domain.
- 3. Any real value can be put as input. So, Domain : R. The modulus function will give only non-negative values. So Range ⊆ [0, ∞). Will it take all of these values? Let us check. Let y ∈ [0, ∞). y = |x - 1| then y + 1 is a real number that when we input, we get y as the output. f(y + 1) = |y + 1 - 1| = |y| = y as y ≥ 0. So, Range : [0, ∞)

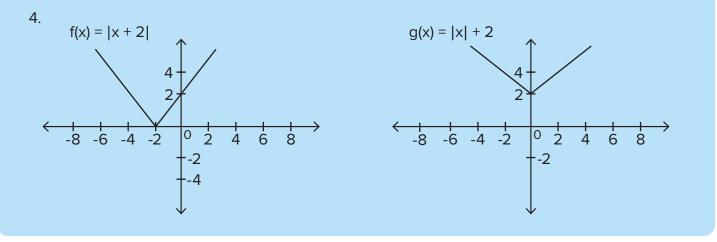
4.

$$f(x) = \begin{cases} -1 \ x^{2} - 1 < 0 \\ 0 \ x^{2} - 1 = 0 \\ 1 \ x^{2} - 1 > 0 \end{cases}$$

$$f(x) = \begin{cases} -1 \ , -1 < x < 1 \\ 0 \ , x = 1, -1 \\ 1 \ x > 1, x < -1 \end{cases}$$
5. Case I: $x^{2} - 4 < 0 \\ -2 < x < 2 \\ x^{2} - 5 x (-1) + 6 = 0 \\ x = -2, -3 \Rightarrow \text{ No solution} \end{cases}$
6. $4[x] = [x] + [x] + [x] \\ \Rightarrow 3[x] = 2[x] \\ \text{But } 0 \le [x] < 1 \\ \Rightarrow 0 \le 3[x] < 3 \\ 0 \le 2[x] < 3 \\ \Rightarrow 0 \le [x] < 3 \\ \Rightarrow 0 \le$

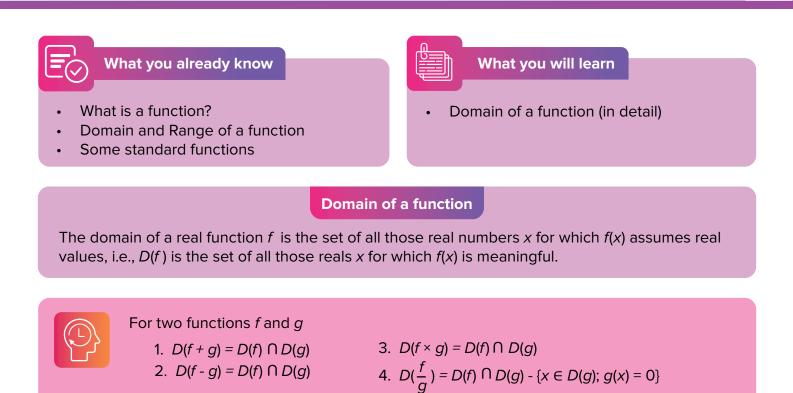
Self-Assessment

1. 2[x] + 3 = 3[x - 2] + 5 2[x] + 3 = 3[x] - 6 + 5 4 = [x] y = 2(4) + 3 = 11 [x + y] = [11 + x] = 11 + [x] = 11 + 4 = 152. $1 - x \ge 0$ $x \le 1$ $x \in (-\infty, 1]$ So, domain is $(-\infty, 1]$. 3. The domain of $\log_2 is (0, \infty)$ The range of {x} is [0, 1) So, x can take all real values except those for which {x} is 0. That is, R - Z is the required domain.



RELATIONS AND FUNCTIONS

DOMAIN OF FUNCTIONS

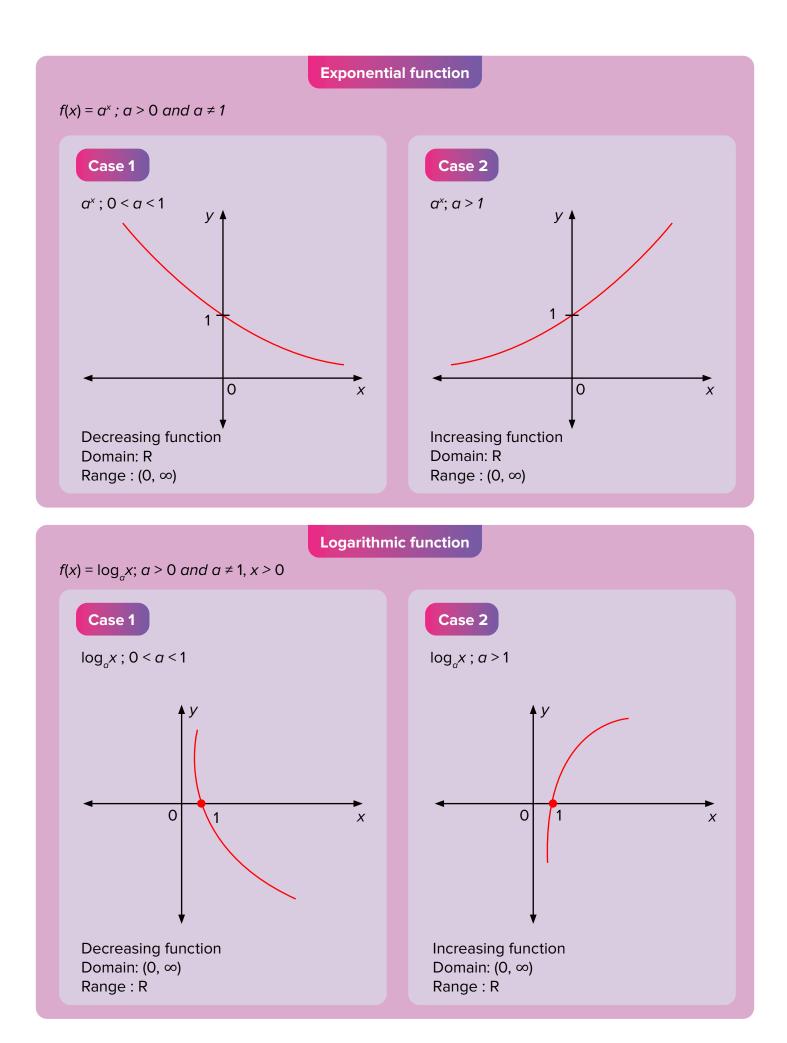


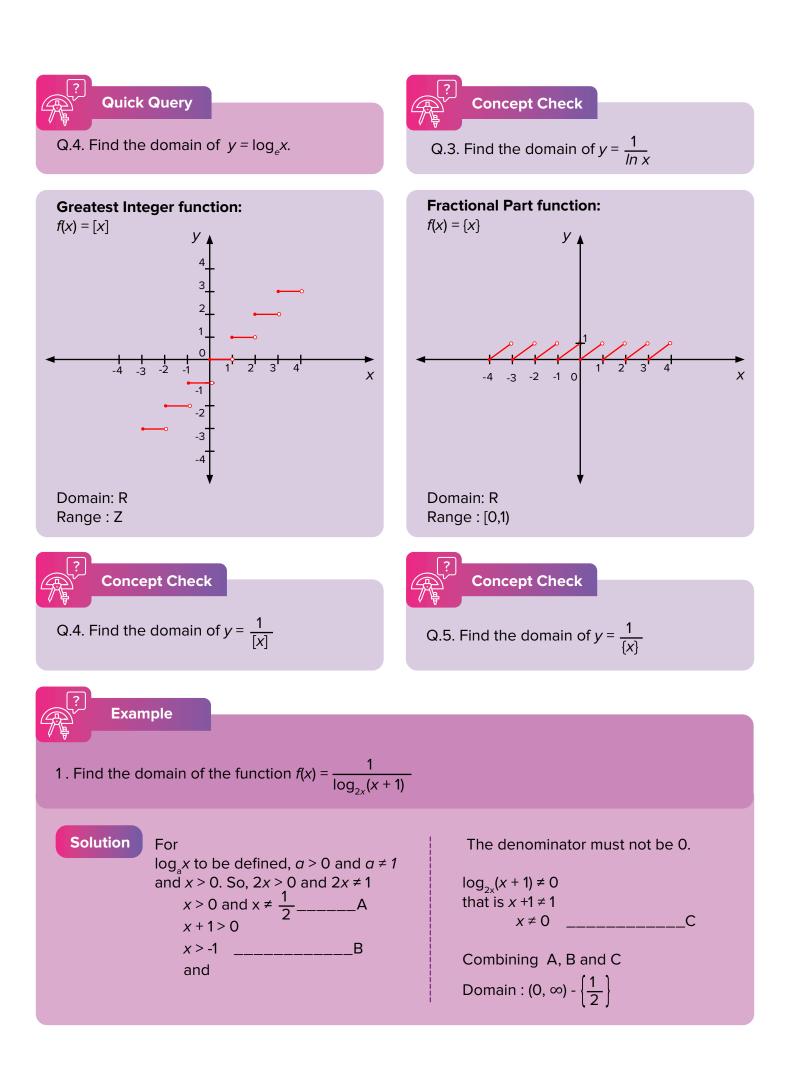
Some of the standard formats to find the domain
a)
$$\sqrt{f(x)} \Rightarrow f(x) \ge 0$$

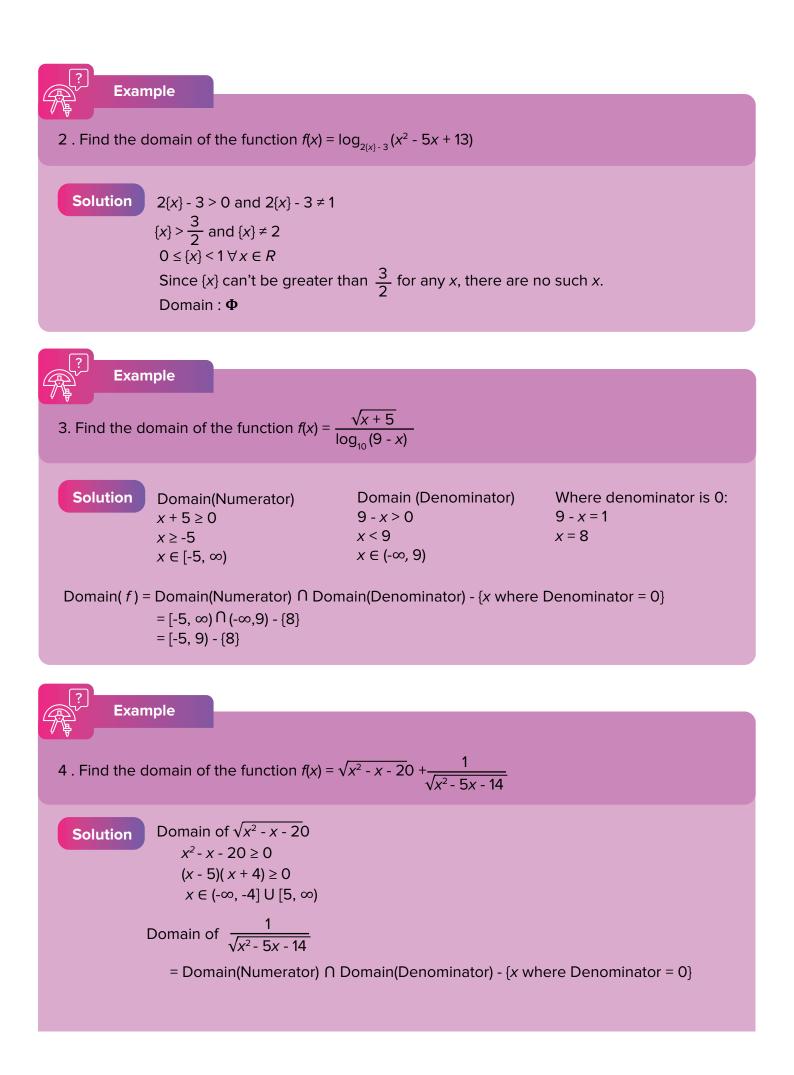
(b) $\frac{1}{\sqrt{f(x)}} \Rightarrow f(x) > 0$
(c) $\frac{k}{f(x)} \Rightarrow f(x) \ne 0$, K is a constant
(e) $\frac{1}{\log_{b}a}$, $a > 0$, $b > 0$, $a \ne 1$, $b \ne 1$
Quick Query
Q.1. Find the domain of $y = \frac{1}{x}$
Q.2. Find the domain of $y = \sqrt{x}$
Q.3. Find the domain of $y = \sqrt{2x - x^2}$
Q.2. Find the domain of $y = \sqrt{2x - x^2}$
Q.3. Find the domain of $y = \sqrt{2x - x^2}$

 $y = \frac{\sqrt{x}}{\sqrt{x}}$

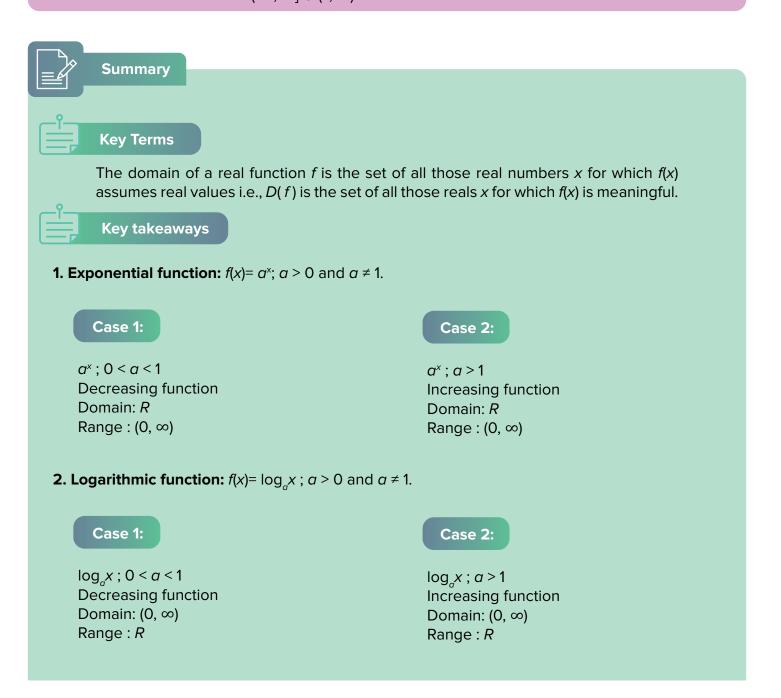
 $y = \frac{\sqrt{x}}{\sqrt{x}}$ is not the same as y = 1.







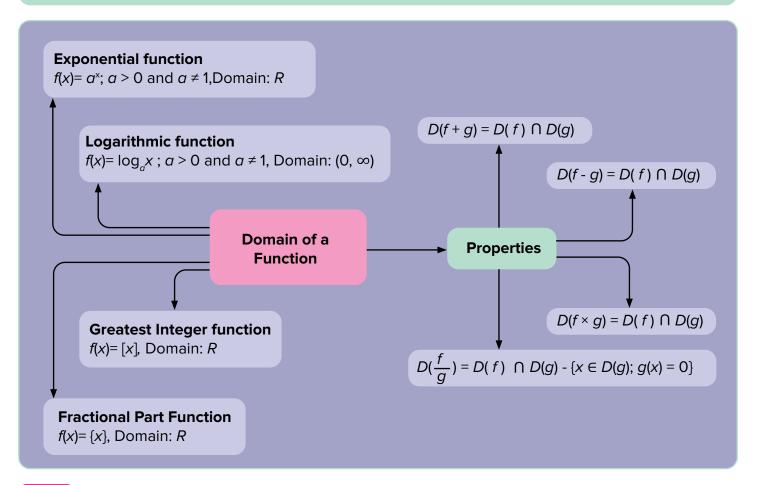
Domain (Denominator) x^{2} - 5x -14 ≥ 0 $(x - 7)(x + 2) \ge 0$ $x \in (-\infty, -2] \cup [7, \infty)$ Where denominator is 0 (x-7)(x+2) = 0 x = -2, 7Domain = $(-\infty, -2] \cup [7, \infty) - \{-2, 7\}$ $= (-\infty, -2) \cup (7, \infty)$ Domain (f) = Domain of $\sqrt{x^{2} - x - 200}$ Domain of $\frac{1}{\sqrt{x^{2} - 5x - 14}}$ $= (-\infty, -4] \cup (7, \infty)$



4. Fractional Part Function: f(x)= {x} Domain: R Range : [0, 1)

Key results

1. $D(f + g) = D(f) \cap D(g)$ 2. $D(f - g) = D(f) \cap D(g)$ 3. $D(f \times g) = D(f) \cap D(g)$ 4. $D(\frac{f}{g}) = D(f) \cap D(g) - \{x \in D(g); g(x) = 0\}$



Self-Assessment 1. Find the domain of $f(x) = \frac{20}{\sqrt{x - |x|}}$ 2. Find the domain of $f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$ 3. Find the domain of $f(x) = \frac{2}{\sqrt{9 - x^2}} \log(x^3 - x)$ 4. Find the domain of y = f(x) satisfying $4^x + 4^y = 4$

Quick Query

1. Domain:
$$R - \{0\}$$

2. Domain: $[0, \infty)$
3. $2x - x^2 \ge 0$
 $x(x - 2) \le 0$
 $x \in [0, 2]$
Domain: $[0, 2]$
4. $\log_e x = \ln x$
 $e \sim 2.718$
Domain: $(0, \infty)$
Concept Check
1. $f(x) = \sqrt{x - 1}$
 $D(f) = [1, \infty)$
 $y = \frac{1}{\ln x}$

D(f) = [1, 30] $g(x) = \sqrt{6 - x}$ $D(g) = (-\infty, 6]$ $D(f + g) = D(f) \cap D(g)$ Domain: [1, 6]

2.
$$y = \frac{\sqrt{x}}{\sqrt{x}}$$

$$f(x) = \sqrt{x}$$

$$D(f) = [0, \infty)$$

$$g(x) = \sqrt{x}$$

$$D(g) = [0, \infty)$$

$$D(\frac{f}{g}) = D(f) \cap D(g) - \{x \in D(g); g(x) = 0\}$$

Domain: $[0, \infty) - \{0\} = (0, \infty)$

Self-Assessment

1. $D(f) = D(20) \cap D(\sqrt{x - |x|}) - \{x : \sqrt{x - |x|} = 0\}$ D(20) = R $D(\sqrt{x - |x|})$ $x - |x| \ge 0$ $|x| \le x$ $x \in [0, \infty)$ When denominator becomes 0 x - |x| = 0 |x| = x $x \in [0, \infty)$ $D(f) = R \cap [0, \infty) - [0, \infty)$ $D(f) = \phi$

3.
$$y = \frac{1}{\ln x}$$

 $f(x) = 1$
 $D(f) = R$
 $g(x) = \ln x$
 $D(g) = (0, \infty)$
 $D(\frac{f}{g}) = D(f) \cap D(g) - \{x \in D(g); g(x) = 0\}$
Domain: $(0,\infty) - \{1\} = (0, 1) \cup (1, \infty)$
4. Domain: $R - [0, 1)$
5. Domain: $R - Z$

2. Domain(f) = Domain(Numerator) \cap Domain(Denominator) - {x where Denominator = 0} Domain of Numerator: R

Domain of Denominator $[x]^2 - [x] - 6 \ge 0$ $([x] - 3)([x] + 2) \ge 0$ $[x] \in (-\infty, -2] \cup [3, \infty)$ $[x] \in \{\dots, -5, -4, -3, -2, 3, 4, 5, 6, \dots\}$ $x \in (-\infty, -1) \cup [3, \infty)$

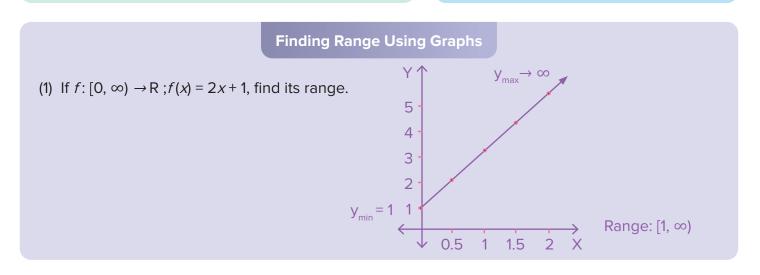
Where denominator becomes 0 [x] $\in \{-2, 3\}$ $x \in [-2, -1) \cup [3, 4)$ Domain(f) = [R $\cap (-\infty, -1) \cup [3, \infty)$] - [-2, -1) $\cup [3, 4)$ = (- ∞ , -2) $\cup [4, \infty)$

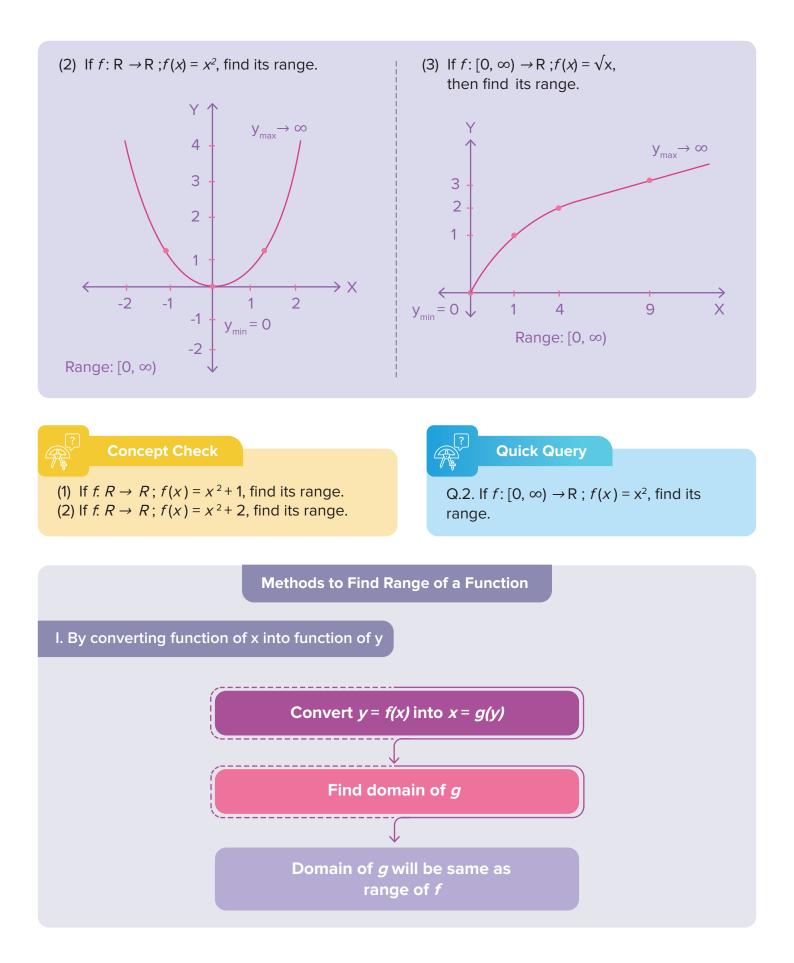
3. Domain (f) = Domain(Numerator) \cap Domain(Denominator) - {x where Denominator = 0}

```
Domain of Numerator 2\log(x^3 - x):
   x^3 - x > 0
   x(x^2 - 1) > 0
   x(x - 1)(x + 1) > 0
   x ∈ (-1, 0) U (1, ∞)
   Domain of Denominator \sqrt{9-x^2}:
   9 - x^2 > 0
   (x - 3)(x + 3) \le 0
   x ∈ [-3, 3]
   Where denominator becomes 0
   9 - x^2 = 0
   x = \pm 3
   Domain(f) = (-1, 0) U (1, ∞) ∩ [-3, 3] - {-3, 3}
                = (-1, 0) U (1, 3)
4. 4^{y} = 4 - 4^{x}
   y = \log_4(4 - 4^x)
   4 - 4^{x} > 0
   4^{x} < 4
   x \in (-\infty, 1)
```

RELATIONS AND FUNCTIONS RANGE OF FUNCTIONS What you will learn What you already know Some standard functions Domain of a function Range of functions (in detail) Range of a Function Let f be a function from A to B. $f: A \rightarrow B$ The set of all the images of elements of A under f in B is known as the range of f. $R(f) = \{ f(x) : x \in A \}$ Let f: $\{1, 2, 3\} \rightarrow R$; f(x) = x + 3. Let $W \rightarrow R$; f(x) = 2x + 1 f(O) = 2(O) + 1 = 1f(1) = 4f(1) = 2(1) + 1 = 3f(2) = 5f(2) = 2(2) + 1 = 5*f(3)* = 6 f(3) = 2(3) + 1 = 7Range: {4, 5, 6}. Range: Set of all odd natural numbers. If f: $N \rightarrow R$; f(x) = x², find its range. **Quick Query**

f(1) = 1 f(2) = 4 f(3) = 9Range: All natural numbers that are perfect squares. 1. If f: $Z \rightarrow R$; $f(x) = x^2$, then find its range.





f: R - {-2} \rightarrow R ; $f(x) = \frac{x-1}{x+2}$, then find its range.

 $y = \frac{x - 1}{x + 2}$ xy + 2y = x - 1 x(1 - y) = 1 + 2y $x = \frac{1 + 2y}{1 - y}$ x = g(y)Domain(g) = R - {1} So, Range(f) = R - {1}

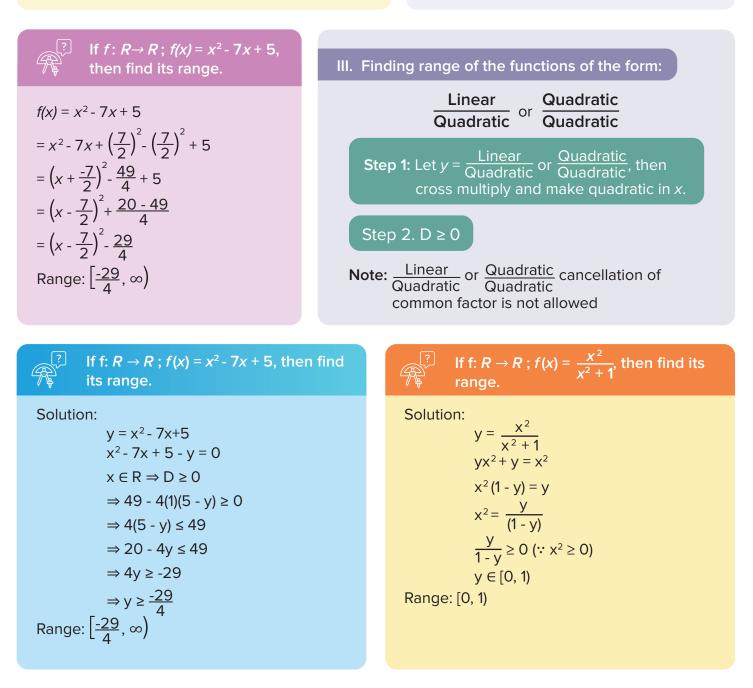
II. Finding range of quadratic functions

For
$$f(x) = ax^2 + bx + c$$
; $a \neq 0$

$$= a\left[x^2 + \frac{b}{a}x + \frac{c}{a}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right]$$

$$= a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
For $a > 0$;
Range: $\left[\frac{4ac - b^2}{4a}, \infty\right)$
For $a < 0$;
Range: $\left(-\infty, \frac{4ac - b^2}{4a}\right]$



3. If
$$f: R - \{2\} \rightarrow R$$
; $f(x) = \frac{x^2 - 4}{x - 2}$, then find $R(f)$.

IV. Finding range of modulus function

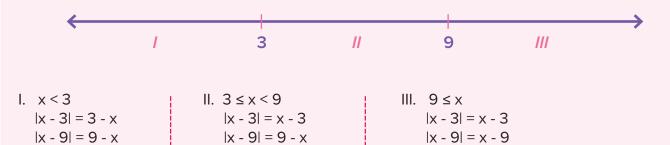
To find the range of modulus, divide the function into regions, and plot the function region wise.

Example:

f(x) = -6

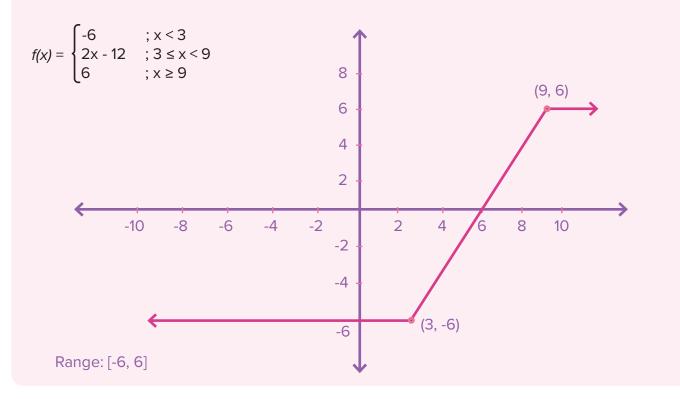
Find the range of f(x) = |x - 3| - |x - 9|.

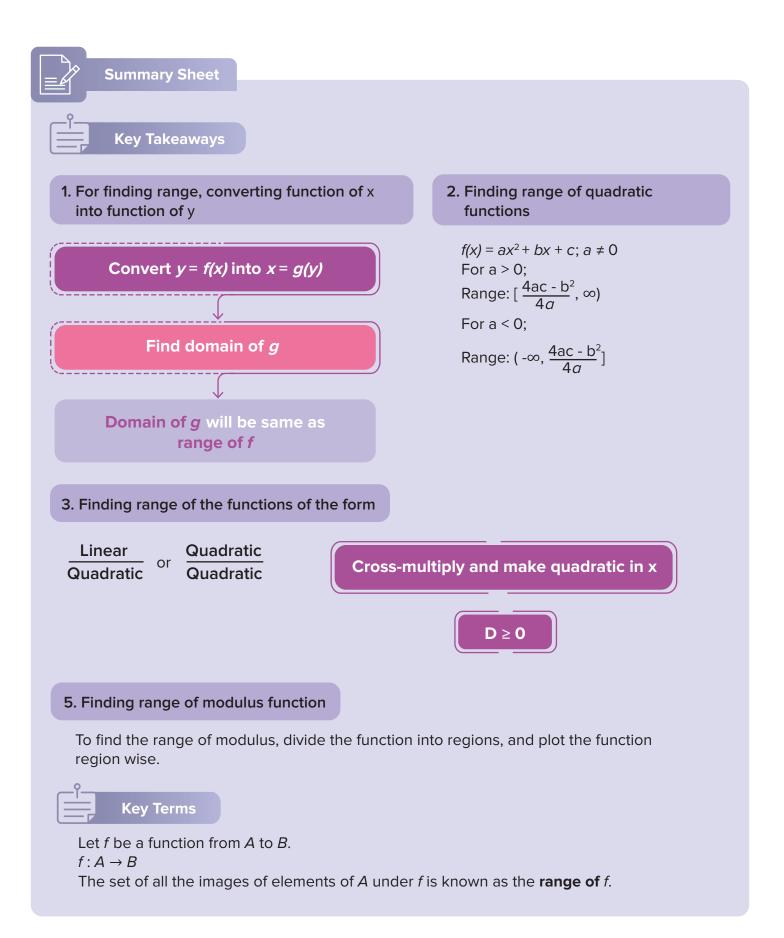
 $|x - 3| = \begin{cases} x - 3; & x \ge 3 \\ -(x - 3); & x < 3 \end{cases} \qquad |x - 9| = \begin{cases} x - 9; & x \ge 9 \\ -(x - 9); & x < 9 \end{cases}$

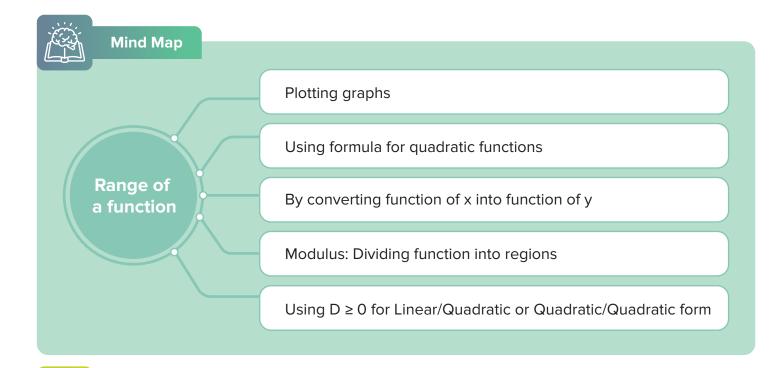


f(x) = 6

f(x) = 2x - 12







Self-Assessment

1. Find the range of $f(x) = \frac{x}{x^2 - 16}$.

2. If
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = \frac{e^x - 1}{1 + e^x}$, then find $R(f)$.

3. Find the range of |x - 1| + |x + 2| + |x - 3|

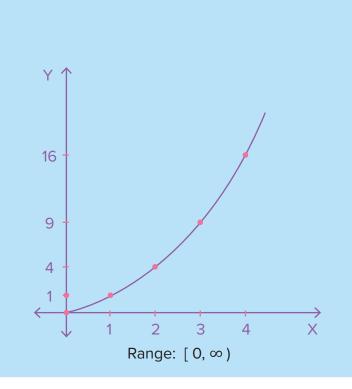
Answers

Α

Quick Query

1. f(-2) = 4 f(-1) = 1 f(0) = 0 f(1) = 1 f(2) = 4Range: All whole numbers that are perfect squares

2. f:
$$[0, \infty) \rightarrow \mathbb{R}, f(x) = x^2$$

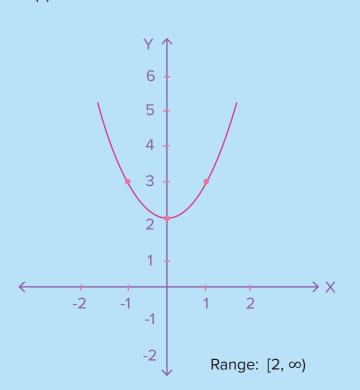


Concept Check

1. $f(x) = x^2 + 1$

 $\begin{array}{c} & & Y \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & -$

2.
$$f(x) = x^2 + 2$$



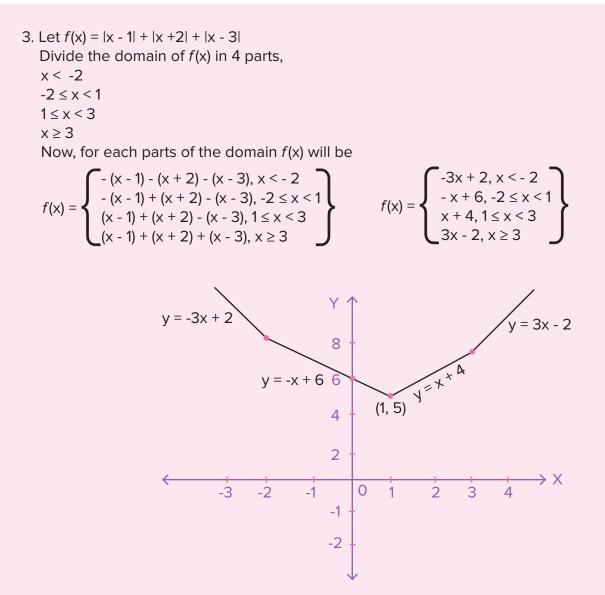
3. $y = \frac{x^2 - 4}{x - 2}$; $x \in \mathbb{R} - \{2\}$ $y = \frac{(x - 2)(x + 2)}{x - 2}$ y = x + 2Because $x \neq 2$, y can take any value except 4. $R(f) = R - \{4\}$

Self-Assessment

1. Let $y = \frac{x}{x^2 - 16}$ $\Rightarrow y(x^2 - 16) = x$ $yx^2 - x - 16y = 0$ This is a quadratic equation in *x*, and in order to have solutions, the discriminant $D \ge 0$ a = y, b = -1, c = -16y $\Delta = b^2 - 4ac = (-1)^2 - 4(y) (-16y) = 1 + 64y^2 \ge 0 \forall y \in R$ $\Rightarrow \Delta \ge 0$ Therefore, the range is $f(x) \in R$

2.
$$y = \frac{e^{x} - 1}{1 + e^{x}}$$

 $y + y e^{x} = e^{x} - 1$
 $e^{x}(1 - y) = 1 + y$
 $e^{x} = \frac{1 + y}{1 - y}$
 $x = \log_{e}\left(\frac{1 + y}{1 - y}\right) = g(y)$
 $g(y) \in R \text{ iff } \frac{1 + y}{1 - y} > 0$
 $R(f) = (-1, 1)$



From the graph it is evident that the minimum value of f(x) is 5 and maximum tends to ∞ . Therefore, the range of f(x) is $[5, \infty)$.