Check your Intelligence

Chapter 43

CHECK YOUR INTELLIGENCE IN MATHEMATICS

1. Here I have proved the wrong statement that

$$\lim_{x \to 0} \cos \frac{1}{x} = 0$$

find the mistake in the following proof.

Proof: Let
$$f(x) = \begin{cases} x^2 \sin 1/x \text{ for } x \neq 0 \\ 0 \text{ for } x = 0 \end{cases}$$

Now let us apply Lagrange's theorem on this function in the interval [0, x]

Clearly is differentiable for any x by Lagrange's theorem

$$x^2 \sin \frac{1}{x} = 2\xi \sin \frac{1}{\xi} - \cos \frac{1}{\xi}$$

Hence $\cos \frac{1}{\xi} = 2\xi \sin \frac{1}{\xi} - x^2 \sin \frac{1}{x}$ where

As x tends to zero, ξ $(\because \xi \in (0, x))$ will also tend to zero therefore passing to the limit, we obtain $\lim_{\xi \to 0} \cos \frac{1}{\xi} = 0$.

2. Here I have proved the wrong statement that $\pi = 2\sqrt{2}$. Find the mistake in the following proof.

Proof : Consider the integral $I = \int_0^{\pi} xf(\sin x) dx$, where $f(\sin x)$ is any function of $\sin x$. In accordance with a standard treatment, make the substitution $x = \pi - x'$, and then drop dashes.

Thus
$$I = \int_{\pi}^{0} (\pi - x) f \left\{ \sin(\pi - x) \right\} d(-x) = \int_{0}^{\pi} (\pi - x) f(\sin x) dx.$$

Hence
$$2\int_0^{\pi} xf(\sin x) dx = \pi \int_0^{\pi} f(\sin x) dx$$
.

Take, in particular,

$$f(u) = u \sin^{-1}(u)$$
, so that $f(\sin x) = \sin x \cdot x = x \sin x$.

Then the relation is

$$2\int_0^\pi x^2 \sin x dx = \pi \int_0^\pi x \sin x dx.$$

But
$$\int_0^{\pi} x^2 \sin x dx = \pi^2 - 4$$
, $\int_0^{\pi} x \sin x dx = \pi$.

Hence
$$2(\pi^2 - 4) = \pi^2$$
, or $\pi^2 = 8$.

so that
$$\pi = 2\sqrt{2}$$
.

3. Here I have proved the wrong statement that every angle is multiple of two right angles. Find the mistake in following proof.

Proof: Let θ be an angle (complex) satisfying the relation $\tan \theta = i$.

Then, if A is any angle,

$$\tan(A+\theta) = \frac{\tan A + \tan \theta}{1 - \tan A \tan \theta} = \frac{\tan A + i}{1 - i \tan A} = i = \tan \theta.$$

Thus, $\tan(A+\theta) = \tan\theta$, so that $A+\theta = n\pi + \theta$, or $A = n\pi$ for any angle A.

4. Here I have proved the wrong statement that 0 = 1. Find the mistake in the following proof.

Proof: Consider the integral $I = \int \frac{dx}{x}$. Integrate by parts:

$$I = \int 1.(1/x) dx = x(1/x) - \int x(-1/x^2) dx = 1 + \int \frac{dx}{x} = 1 + I$$
 Hence $0 = 1$.

5. Here I have proved the wrong statement that 2 = 1. Find the mistake in the following proof.

Proof: Let f(x) be any given function.

Then
$$\int_{1}^{2} f(x) dx = \int_{0}^{2} f(x) dx - \int_{0}^{1} f(x) dx$$
.

If we write x = 2y in the first integral on the right, then

$$\int_{0}^{2} f(x) dx = 2 \int_{0}^{1} f(2y) dy = 2 \int_{0}^{1} f(2x) dx,$$

on renaming the variable. Suppose, in particular, that the function f(x) is such that

$$f(2x) = \frac{1}{2}f(x)$$

for all values of x. Then

$$\int_{1}^{2} f(x) dx = 2 \int_{0}^{1} \frac{1}{2} f(x) dx - \int_{0}^{1} f(x) dx = 0.$$

Now the relation $f(2x) = \frac{1}{2}f(x)$ is satisfied by the function $f(x) = \frac{1}{x}$

Hence $\int_{1}^{2} \frac{dx}{x} = 0$, so that $\log 2 = 0$ or 2 = 1.

6. Here I have proved the wrong statement that, if $f(\theta)$ is any function of θ , then $\int_0^{\pi} f(\theta) \cos \theta d\theta = 0$. Find the mistake in the following proof.

Proof: Substitute $\sin \theta = t$ so that $\cos \theta d\theta = dt$, and write $f\{\sin^{-1} t\} = g(t)$

The limits of integration are 0, 0 $\sin ce \sin 0 = 0$ and $\sin \pi = 0$. Hence the integral is $\int_0^0 g(t)dt = 0$.

Corollary: The special case when $f(\theta) = \cos \theta$ is of interest. Then the integral is

$$\int_0^{\pi} \cos^2 \theta d\theta = \frac{1}{2} \int_0^{\pi} \left(1 + \cos 2\theta \right) d\theta = \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_0^{\pi} = \frac{1}{2} \pi, \text{ hence } \frac{1}{2} \pi = 0.$$

7. Here I have proved the wrong statement that, 1 = 0. Find the mistake in the following proof.

Proof:
$$S = 1 - 1 + 1 - 1 + 1 - 1 + \dots$$

Then, grouping in pairs,

$$S = (1-1)+(1-1)+(1-1)+... = 0+0+0+... = 0.$$

Also, grouping alternatively in pairs,

$$S = 1 - (1 - 1) - (1 - 1) - (1 - 1) - \dots = 1 - 0 - 0 - 0 \dots = 1.$$

Hence 1 = 0.

8. Here I have proved the wrong statement that, -1 is positive. Find the mistake in the following proof.

Proof: Let S = 1 + 2 + 4 + 8 + 16 + 32 + ...

Then S is positive. Also, multiplying each side by 2,

$$2S = 2 + 4 + 8 + 16 + 32 + ... = S - 1$$

Hence S = -1, so that -1 is positive.

9. Here I have proved the wrong statement that, 0 is positive (*i.e.*, greater than zero). Find the mistake in the following proof.

Proof: Write $u = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$ and $v = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$

Then $2v = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = u + v$ so that u - v = 0.

But, on subtracting corresponding terms,

 $u-v = \left(1-\frac{1}{2}\right) + \left(\frac{1}{3}-\frac{1}{4}\right) + \left(\frac{1}{5}-\frac{1}{6}\right) + \left(\frac{1}{7}-\frac{1}{8}\right) + \dots$

where each bracketed terms is greater than zero.

Thus u-v is greater that zero or 0 is greater that zero.

10. Here I have proved the wrong statement that $-2\pi = 0$. Find the mistake in the following proof.

Proof: As we know that $e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$ it follows that for any x

$$e^{ix} = e^{ix}.e^{2xi} = e^{i(x+2x)} \implies (e^{ix})^i = (e^{i(x+2\pi)})^i \implies e^{-x} = e^{-(x+2x)}$$

 $\implies e^{-x} = e^{-x}.e^{-2x} \implies e^{-2x} = 1 \implies -2\pi = 0$