

JEE (MAIN + ADVANCED) 2023 NURTURE COURSE

RACE # 08 MATHEMATICS

TIME: 30 Min. M.M.: 24

READ THE FOLLOWING THEOREMS:

MENSURATION

• For a goemetrical figure, plane or solid:

Perimeter is the length of its boundary and its unit is the same as that of length. **Area** is the measure of the surface enclosed by its boundary. Its unit is square units.

Volume of a solid is the measure of the part of space occupied by it. Its unit is cubic units.

- (i) Triangles:
- Considering the base as 'b'

Corresponding altitude as 'h'

Area =
$$\frac{1}{2} \times b \times h$$

Longest Altitude =
$$\frac{2 \times \text{Area}}{\text{Shortest Base}}$$
 Shortest Altitude = $\frac{2 \times \text{Area}}{\text{Longest Base}}$

• Heron's Formula :

If a, b, c are the sides of a triangle

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$
 where $S = \frac{a+b+c}{2}$

• If 'a' is a side of an equilateral triangle,

Area =
$$\frac{\sqrt{3}a^2}{4}$$
 Altitude = $\frac{\sqrt{3}a}{2}$

• If 'a' is the measure of the equal sides and 'b' the third side of an isosceles triangle,

Area =
$$\frac{1}{4}b\sqrt{4a^2 - b^2}$$
 Altitude = $\frac{\sqrt{4a^2 - b^2}}{2}$

Perimeter in all cases is the sum of the three sides

(ii) Quadrilaterals:

Rectangle:

If ' ℓ ', 'b', 'd' are the length, breadth and diagonal, then

Area =
$$\ell \times b$$
 Perimeter = $2(\ell + b)$ $d = \sqrt{\ell^2 + b^2}$

• Square:

If each side is 'a'

Area =
$$a^2$$
 Perimeter = $4a$ Diagonal (d) = $\sqrt{2}a$ Area = $\frac{d^2}{2}$

• General Quadrilateral:

MATHS /R # 08 E-1 /4

In any general quadrilateral ABCD if diagonal AC = d perpendiculars from B and D to AC are h_1 and h_2 , then

Area =
$$\frac{1}{2}$$
d $(h_1 + h_2)$

• Rhombus:

If the diagonals are d₁, d₂ and each side 'a', then

Area =
$$\frac{1}{2} d_1 \times d_2$$
 $a^2 = \left(\frac{d_1}{2}\right)^2 + \left(\frac{d_2}{2}\right)^2$

• Note:

For any quadrilateral whose diagonals d₁ and d₂ are perpendicular to each other,

Area =
$$\frac{1}{2}$$
d₁ × d₂

• Parallelogram:

If 'b' any side and 'h' the corresponding altitude

Area =
$$b \times h$$

• Trapezium:

If the parallel sides are a and b and the distance between them h,

Area =
$$\frac{1}{2}$$
(a + b)h

10 CIRCLE, SECTOR AND SEGMENT:

(i) Let in a circle of centre O

radius = r AB a chord

 $\angle AOB = \theta$ (the angle subtended by arc ACB at the centre)

OACBO the minor sector,

ACB the minor segment,

BDAB the major segment.

- Circumference of the circle = $2\pi r$
- Area of the circle = πr^2
- Perimeter of semi-circle = $\pi r + 2r$
- Length of arc $ACB(\widehat{ABC}) = \ell = r\theta$ where θ is in radian
- Area of sector OACBO = $\frac{1}{2}$ r² θ

• Perimeter of sector OACBO = OA = OB + Arc ACB = $r + r + r\theta = 2r + r\theta$

Area of the minor segment ACBA = Area of sector OACBO – Area of \triangle OAB

$$= \left[\frac{1}{2} r^2 \theta - \frac{1}{2} r^2 \sin \theta \right]$$

Area of the major segment ABDA = Area of the circle – Area of minor segment ACBA.

(ii) Ring:

Part of the plane between two concentric circles of different radii $(r_1 \text{ and } r_2 \text{ where } r_1 > r_2),$

Area of Ring =
$$\pi r_1^2 - \pi r_2^2 = \pi (r_1 + r_2)(r_1 - r_2)$$

- Externally, the distance between their centres = $(r_1 + r_2)$
- Internally, the distance betweeen their centres = $(r_1 r_2)$

In the case of rotating wheels (iv)

Distance moved by a wheel is one rotation is the circumference of the wheel,

• Number of rotation =
$$\frac{\text{Distance Travelled}}{\text{Circumference of the wheel}}$$

Rotation of the hands of a clock: **(v)**

- Angle described by the minute hand of a clock in 1 hour (60 minute) i.e. one rotation = 360°.
- Angle described by the hour hand of a clock in 12 hours (i.e. one rotation) = 360° .

ANSWER THE FOLLOWING QUESTIONS:

1. The area of a rhombus is 2016 sq cm and its side is 65 cm. The lengths of the diagonals (in cm) are

2. A square and an equilateral triangle have the same perimeter. If the diagonal of the square is $12\sqrt{2}$ cm, then the area of the triangle is

(A)
$$24\sqrt{3}$$
 cm²

(B)
$$24\sqrt{2}$$
 cm²

(C)
$$64\sqrt{3}$$
 cm²(D) $32\sqrt{3}$ cm²

In the figure, when the outer circles all have radii 'r', then the radius of the inner circle will be 3.

$$(A) \sqrt{2} r$$

(A)
$$\sqrt{2} r$$
 (B) $(\sqrt{2} - 1)r$

(C)
$$\frac{1}{\sqrt{2}r}$$

(D)
$$\frac{2}{(\sqrt{2}+1)r}$$

MATHS /R # 08 E-3 /4

- 4. A wire is in the form of a circle of radius 35 cm. If it is bent into the shape of a rhombus, what is the side of the rhombus?
 - (A) 32 cm
- (B) 70 cm
- (C) 55 cm
- (D) 17 cm
- 5. There are two concentric circles whose areas are in the ratio of 9: 16 and the difference between their diameters is 4 cm. What is the area of the outer circle?
 - (A) $32\pi \text{ cm}^2$
- (B) $64\pi \text{ cm}^2$
- (C) $36\pi \text{ cm}^2$
- (D) $48\pi \text{ cm}^2$
- **6.** ABCD is a square, four equal circles are just touching each other whose centres are the vertices A, B, C, D of the square. What is the ratio of the shaded to the unshaded area within square?

- (A) $\frac{8}{11}$
- (B) $\frac{3}{11}$
- (C) $\frac{5}{11}$
- (D) $\frac{6}{11}$

RACE # 07 MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6
	A.	С	В	В	В	В	Α

E-4/4 MATHS /R # 08