	MOLE CONCEPT & G	ASE(DUS STATE
1.	Which of the following contain largest number of carbon atoms ? (1) 15 gm ethane, C_2H_6 (2) 40.2 gm sodium oxalate, $Na_2C_2O_4$ (3) 72 gm glucose, $C_6H_{12}O_6$ (4) 35 gm pentene, C_5H_{10}	10.	In the reaction $4A + 2B + 3C$ will be the number of moles of starting from 1 mol of A, (0.72 mol of C :- (1) 2.32 (2) 0.24 (3) C Two isotopes of an element
2. 3. 4.	The percentage by mole of NO ₂ in a mixture of NO ₂ (g) and NO(g) having average molecular mass 34 is : (1) 25% (2) 20% (3) 40% (4) 75% Volume of O ₂ obtained at 2 atm & 546K, by the complete decomposition of 8.5 g NaNO ₃ is $2NaNO_3 \rightarrow 2NaNO_2 + O_2$ (1) 2.24 lit (2) 1.12 lit (3) 0.84 lit (4) 0.56 lit A metal carbonate decomposes according to following reaction	11.	abundance) and Q^{94} (76.6% a 8.082 times heavier than C^{12} times heavier than C^{12} . What is weight of the element Q? (1) 94.702 (2) 78.913 (3) 9 12 g of Mg was burnt in a close 32 g oxygen. Remaining unrea of O_2 will be :- (1) 0.5 (2) 0.75 (3) 1
	$M_2CO_3(s) \longrightarrow M_2O(s) + CO_2(g)$ Percentage loss in mass on complete decomposition of $M_2CO_3(s)$ (Atomic mass of M = 102) (1) $100_{-0} (0)_{-0} 50_{-0} (0)_{-0} 25_{-0} (0)_{-0} 150(c)_{-0}$	13. 14.	The total number of electrons water (density of water is 1 gm (1) 3.01×10^{23} (2) 3 (3) 3.01×10^{24} (4) 3 From 200 mg of CO ₂ , 10^{21} mode
5.	(1) $\frac{1}{3}$ % (2) $\frac{1}{3}$ % (3) $\frac{1}{3}$ % (4) 15% 25.4 gm of iodine and 14.2 gm of chlorine are made to react completely to yield a mixture of ICl and ICl ₃ . Ratio of moles of ICl & ICl ₃ formed is (Atomic mass : I = 127, Cl = 35.5) (1) 1 : 1 (2) 1 : 2 (3) 1 : 3 (4) 2 : 3	15.	How many moles of CO_2 are let (1) 126.9×10^{-1} (2) 2 (3) 7.31×10^{-3} (4) 4 On heating 10 g of $CaCO_3$, 5. Moles of CO_2 obtained in this ref (1) 2.2 (2) 4.4 (3) 0
6.	100 ml of PH_3 decomposes according to given reaction. $PH_3(g) \longrightarrow P(s) + 3/2 H_2(g)$ The change in volume of the gas is :- (1) 50 ml increase (2) 500 ml decrease (3) 900 ml decrease (4) 150 ml increase	16.	40 gm of a carbonate of an alkaline earth metal cont impurities was made to reac solution. The liberated CO_2 occ 1 atm & 300 K. The correct op
7. 8.	44 g of a sample of organic compound on complete combustion gives 88 g CO_2 and 36 g of H_2O . The molecular formula of the compound may be :- (1) C_4H_6 (2) C_2H_6O (3) C_2H_4O (4) C_3H_6O A metal oxide has the fomula X O_2 . It can be		 (1) Mass of impurity is 1 gm and (2) Mass of impurity is 3 gm and (3) Mass of impurity is 5 gm and (4) Mass of impurity is 2 gm and
9.	reduced by hydrogen to give free metal and water. 0.156 gm of metal oxide requires 6 mg of hydrogen for complete reduction. The atomic mass of metal in amu is :- (1) 15.6 (2) 156 (3) 108 (4) 54 Two oxides of a metal contain 22.22% and 30% oxygen by mass respectively. If the formula of the	17.	1 mole of H_2SO_4 will not exact (1) 2 mole of ammonia (2) 1 (3) 0.5 mole of $Ca(OH)_2$ (4) 2 12 g of Mg was burnt in a close 32 g oxygen. Which of the fol (1) 2 gm of Mg will be left und
	first oxide is MO, then the formula of the second oxide is:-		(2) 0.75 gm-molecule of O_2 will (3) 20 gm of MgO will be form

(4) The mixture at the end will weight 44 g.

EXERCISE-I

(4) M₂O₅ $(1) MO_{2}$ $(2) M_2 O_3$ (3) M₂O

 $\rightarrow A_4 B_2 C_3$, what of product formed, 0.6 mol of B and

0.3 (4) 0.25

Q are Q^{97} (23.4%) abundance). Q⁹⁷ is and Q^{94} is 7.833 the average atomic

6.298 (4) 94.695

ed vessel containing acted gm-molecules

(4) 0.25

present in 9 mL of nL⁻¹) :-

(1)
$$3.01 \times 10^{23}$$
(2) 3.01×10^{22} (3) 3.01×10^{24} (4) 3.01×10^{25}

- lecules are removed, eft ?
 - 2.88×10^{-3} 4.4×10^{-3}
- 6 g CaO is formed. eaction will be :-(4) 0.2).1
- n **alkali metal** or taining some inert t with excess HCl cupied 12.315 lit. at ption is
 - nd metal is Be
 - nd metal is Li
 - nd metal is Be
 - nd metal is Mg
- ctly neutralise :

1 mole of Ba(OH)₂

2 mole of KOH

- ed vessel containing llowing is incorrect.
 - burnt.
 - ill be left unreacted.
 - med.

- **19.** 50 gm of CaCO₃ is allowed to react with 68.6 gm of H_3PO_4 then select the incorrect option-3CaCO₃ + 2 $H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2$ (1) 51.67 gm salt is formed
 - (2) Amount of unreacted reagent = 35.93 gm
 - (3) $n_{CO_2} = 0.5$ moles
 - (4) 0.7 mole CO_2 is evolved
- **20.** Select the correct statement(s) for $(NH_4)_3PO_4$.
 - (1) Ratio of number of oxygen atoms to number of hydrogen atoms is 1 : 3
 - (2) Ratio of number of cations to number of anions is 3 : 2
 - (3) Ratio of number of gm-atoms of nitrogen to gm-atoms of oxygen is 3 : 2
 - (4) Total number of atoms in one mole of $(NH_4)_3PO_4$ is 20.
- **21.** At STP, the order of root mean square speed of molecules H_2 , N_2 , O_2 and HBr is : (1) $H_2 > N_2 > O_2 > HBr$ (2) $HBr > O_2 > N_2 > H_2$ (3) $HBr > H_2 > O_2 > N_2$ (4) $N_2 > O_2 > H_2 > HBr$
- 22. Most probable speed, average speed and RMS speed are related as :
 (1) 1 : 1.128 : 1.224
 (2) 1 : 1.128 : 1.424
 - (3) 1 : 2.128 : 1.224 (4) 1 : 1.428 : 1.442
- **23.** If the average velocity of N_2 molecules is 0.3 m/sec. at 27°C, then the velocity of 0.6 m/sec will take place at:

(1) 273 K (2) 927 K (3) 1000 K (4) 1200 K

- **24.** The total KE of an ideal monoatomic gas at 27°C is (1) 900 cal (2) 1800 cal (3) 300 cal (4) None
- **25.** The correct expression for the van der Waals' equation of state is :

(1)
$$\left(P + \frac{a}{n^2 V^2}\right) (V - nb) = nRT$$

(2) $\left(P + \frac{an^2}{V^2}\right) (V - nb) = \Delta nRT$
(3) $\left(P + \frac{an^2}{V^2}\right) (V - b) = nRT$
(4) $\left(P + \frac{an^2}{V^2}\right) (V - nb) = nRT$

26. At relatively high pressure, van der Waals' equation reduces to :

(1)
$$PV_m = RT$$
 (2) $PV_m = RT + \frac{a}{V_m}$

(3)
$$PV_m = RT + Pb$$
 (4) $PV_m = RT - \frac{a}{V_m^2}$

27. Observe the following Z vs P graph.

The missing gas in the above graph can be :

- (3) $C_5 H_{12}$ (4) All are correct
- 28. The values of van der Waals' constant 'a' for the gases O₂, N₂, NH₃ and CH₄ are 1.360, 1.390, 4.170 and 2.253 L atm mol⁻² respectively. The gas which can most easily be liquefied is :

(1)
$$O_2$$
 (2) N_2 (3) NH_3 (4) CH_4

- **29.** A gas can be liquefied by :
 - (1) Cooling (2) Compressing
 - (3) Both (1) and (2) (4) None
- **30.** Which set of conditions represents easiest way to liquefy a gas :
 - (1) Low temperature and high pressure
 - (2) High temperature and low pressure
 - (3) Low temperature and low pressure
 - (4) High temperature and high pressure

				AN	ISWER F	ΚEY				Exercise-I
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	1	2	2	1	1	3	4	2	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	3	2	3	2	3	1	4	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	4	1	4	3	3	3	3	1
				-						

PREVIOUS YEARS' QUESTIONS

[JEE '2002 (Scr), 1]

1. How many moles of e-weight one Kg :

(1) 6.023×10^{23}

(2)
$$\frac{1}{9.108} \times 10^{32}$$

(3)
$$\frac{6.023}{9.108} \times 10^{54}$$

(4)
$$\frac{1}{9.108 \times 6.023} \times 10^8$$

2. As the temperature is raised from 20°C to 40°C, the average kinetic energy of neon atoms changes by factor of which of the following ? [AIEEE-2004]

(1)
$$1/2$$
 (2) $\sqrt{(313/293)}$

- (3) 313/293 (4) 2
- **3.** In Van der Waals equation of state of the gas law, the constant 'b' is a measure of : [AIEEE-04]
 - (1) intermolecular repulsions
 - (2) intermolecular attractions
 - (3) volume occupied by the molecules

(4) intermolecular collisions per unit volume

- 4. Calculate the amount of Calcium oxide required when it reacts with 852 g of P_4O_{10} . [JEE 2005] $6CaO + P_4O_{10} \longrightarrow 2 Ca_3(PO_4)_2$ [Ca = 40, P= 31] (1) 2000 g (2) 3008 g
 - (3) 1008 g (4) 500 g
- Given that the abundances of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is : [JEE 2009] (1) 55.85 (2) 55.95 (3) 55.75 (4) 56.05
- A 5.2 molal aqueous solution of methyl alcohol, CH₃OH, is supplied. What is the mole fraction of methyl alcohol in the solution ? [AIEEE-2011] (1) 0.086 (2) 0.050 (3) 0.100 (4) 0.190
- 7. 'a' and 'b' are Van der Waals constants for gases. Chlorine is more easily liquefied than ethane because :- [AIEEE-2011]
 (1) a for Cl₂ < a for C₂H₆ but b for Cl₂ > b for C₂H₆
 (2) a for Cl₂ > a for C₂H₆ but b for Cl₂ < b for C₂H₆
 (3) a and b for Cl₂ > a and b for C₂H₆
 (4) a and b for Cl₂ < a and b for Cl₂ < a and b for C₂H₆

8. The compressibility factor for a real gas **at high** pressure is :- [AIEEE-2012]

(1)
$$1 - \frac{Pb}{RT}$$
 (2) $1 + \frac{RT}{Pb}$ (3) 1 (4) $1 + \frac{Pb}{RT}$

- 9. The concentrated sulphuric acid that is peddled commercially is 95% H₂SO₄ by weight. If the density of this commercial acid is 1.834 g cm⁻³, the molarity of this solution is :- [JEE-(Main)-2012]
 (1) 17.8 M (2) 15.7 M (3) 10.5 M (4) 12.0 M
- 10. The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water is 1.15 g/mL. The molarity of this solution is

[JEE-(Main)-2012]

(1) 2.05 M (2) 0.50 M (3) 1.78 M (4) 1.02 M

 A transition metal M forms a volatile chloride which has a vapour density of 94.8. If it contains 74.75% of chlorine the formula of the metal chloride will be

[AIEEE 2012 (Online)]

(1) MCl₂ (2) MCl₄ (3) MCl₅ (4) MCl₃ **12.** The ratio of number of oxygen atoms (O) in 16.0 g ozone (O₃), 28.0 g carbon monoxide (CO) and 16.0 g oxygen (O₂) is :- (Atomic mass : C = 12, O = 16 and Avogadro's

(Atomic mass : C = 12, O = 16 and Avogadro's constant $N_A = 6.0 \times 10^{23} \text{ mol}^{-1}$)

[AIEEE 2012 (Online)]

(1) 3 : 1 : 1	(2) 1 : 1 : 2
(3) 3 : 1 : 2	(4) 1 : 1 : 1

 The relationship among most probable velocity, average velocity and root mean square velocity is respectively :- [JEE(Main-online)-2012]

(1)
$$\sqrt{2} : \sqrt{8/\pi} : \sqrt{3}$$
 (2) $\sqrt{2} : \sqrt{3} : \sqrt{8/\pi}$
(3) $\sqrt{3} : \sqrt{8/\pi} : \sqrt{2}$ (4) $\sqrt{8/\pi} : \sqrt{3} : \sqrt{2}$

- **14.** A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g of CO₂. The empirical formula of the hydrocarbon is **[JEE(Main)-2013]** (1) C₂H₄ (2) C₃H₄ (3) C₆H₅ (4) C₇H₈
- **15.** For gaseous state, if most probable speed is denoted by C, average speed by \overline{C} and mean square speed by C, then for a large number of molecules the ratios of these speeds are :-

[JEE(Main-offline)-2013]

(1) C : \overline{C} : C = 1.225 : 1.128 : 1 (2) C : \overline{C} : C = 1.128 : 1.225 : 1 (3) C : \overline{C} : C = 1 : 1.128 : 1.225 (4) C : \overline{C} : C = 1 : 1.225 : 1.128

EXERCISE-II

- 10 mL of 2(M) NaOH solution is added to 200 mL of 0.5 (M) of NaOH solution. What is the final concentration ? [JEE(Main-online)-2013] (1) 0.57 M (2) 5.7 M (3) 11.4 M (4) 1.14 M
- **17.** The density of 3M solution of sodium chloride is 1.252 g mL^{-1} . The molality of the solution will be (molar mass, NaCl = 58.5 g mol⁻¹)

[JEE(Main-online)-2013]				
(2) 3.00 m				
(4) 2.79 m				

- 18. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecule is : [JEE(Main)-2014]
 (1) 1:8
 (2) 3:16
 (3) 1:4
 (4) 7:32
- **19.** If Z is the compressibility factor, Van der Waals equation **at low** pressure can be written as :

[JEE-MAINS-2014]

$(1) Z = 1 - \frac{Pb}{RT}$	$(2) Z = 1 + \frac{Pb}{RT}$
$(3) Z = 1 + \frac{RT}{Pb}$	$(4) Z = 1 - \frac{a}{V_{m}RT}$

- **20.** The amount of $BaSO_4$ formed upon mixing 100 mL of 20.8% $BaCl_2$ solution with 50 mL of 9.8% H_2SO_4 solution will be : [JEE(Main-online)-2014] (Ba = 137, Cl = 35.5, S=32, H = l and O = 16) (1) 33.2 g (2) 11.65 g (3) 23.3 g (4) 30.6 g
- 21. For the estimation of nitrogen, 1.4 g of an organic compound was digested by Kjeldahl method and the evolved ammonia was absorbed in 60 mL of $\frac{M}{10}$
 - sulphuric acid. The unreacted acid required 20 mL of $\frac{M}{10}$ sodium hydroxide for complete neutralizaton. The percentage of nitrogen in the compound is : [JEE(Main-online)-2014] (1) 3% (2) 5%

(4) 10%

(3) 6%

22. The temperature at which oxygen molecules have the same root mean square speed as helium atoms have at 300 K is : [JEE(Main-online)-2014]

(Atomic masses : He = 4 u, O = 16 u)

- (1) 1200 K (2) 600 K
- (3) 300 K (4) 2400 K
- **23.** In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg of AgBr. The percentage of bromine in the compound is :

(Atomic mass Ag = 108; Br = 80)

[JEE(Main)-2015]

(1) 48	(2) 60
(3) 24	(4) 36

- 24. When does a gas deviate the most from it's ideal behaviour ? [JEE-MAINS(ONLINE)-2015]
 - (1) At high pressure and low temperature
 - (2) At high pressure and high temperature
 - (3) At low pressure and low temperature
 - (4) At low pressure and high temperature
- **25.** The most abundant elements by mass in the body of a healthy human adult are :

Oxygen (61.4%) ; Carbon (22.9%), Hydrogen (10.0%) ; and Nitrogen (2.6%). The weight which a 75 kg person would gain if all 1 H atoms are replaced by 2 H atoms is [JEE(Main)-2017]

(1) 15 kg	(2) 37.5 kg
(3) 7.5 kg	(4) 10 kg

26. 1 gram of a carbonate (M_2CO_3) on treatment with excess HCl produces 0.01186 mole of CO_2 . the molar mass of M_2CO_3 in g mol⁻¹ is :-

[JEE(Main)-2017]

(1) 1186	(2) 84.3
(3)118.6	(4) 11.86

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-			Exercise-II
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	3	3	2	1	2	4	1	1
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	1	4	3	1	4	4	4	2
Que.	21	22	23	24	25	26			•	•
Ans.	4	4	3	1	3	2				