Chapter 13 Organic Nitrogen Compounds

I. Choose the Correct Answer

Question 1.

Which of the following reagent can be used to convert nitrobenzene to aniline

- a) Sn/HCl
- b) ZnHg/NaOH
- c) LiAlH₄
- d) All of these

Answer:

a) Sn/HCl

Question 2.

The method by which aniline cannot be prepared is

- a) degradation of benzamide with Br₂/NaOH
- b) potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution.
- c) Hydrolysis of phenylcyanide with acidic solution.
- d) reduction of nitrobenzene by Sn/HCl

Answer:

b) potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution.

Question 3.

Which one of the following will not undergo Hofmann bromamide reaction

- a) CH₃CONHCH₃
- b) CH₃CH₂CONH₂
- c) CH₃CONH₂
- d) C₆H₅CONH₂

Answer:

a) CH₃CONHCH₃

Solution: Only primary amides undergo Hofmann bromamide reaction

Question 4.

Assertion: Acetamide on reaction with KOH and bromine gives acetic acid

Reason: Bromine catalyses hydrolysis of acetamide.

- a) if both assertion and reason are true and reason is the correct explanation of assertion
- b) if both assertion and reason are true but reason is not the correct explanation of assertion.
- c) assertion is true but reason is false

d) both assertion and reason are false

Answer:

d) both assertion and reason are false.

Question 5.

$$CH_3CH_2Br \xrightarrow{aq NaOH} A \xrightarrow{KMnO_4/H^+} B \xrightarrow{NH_3} C \xrightarrow{Br_2/NaOH} D 'D' is$$

- a) bromomethane
- b) α -Bromo sodium acetate
- c) methanamine
- d) acetamide

Answer:

c) methanamine

Solution:
$$CH_{3}CH_{2}Br \xrightarrow{aq NaOH} CH_{3}CH_{2}-OH \xrightarrow{KMnO_{4}} CH_{3}-COOH \xrightarrow{NH_{3}} CH_{3}CONH_{2}$$

$$\downarrow Br_{2}/NaOH$$

$$CH_{3}-NH_{2}$$

Question 6.

Which one of the following nitro compounds does not react with nitrous acid?

- a) CH₃-CH₂-CH₂-NO₂
- b) (CH₃)₂ CH-CH₂ NO₂
- c) (CH₃)₃CNO₂

Answer:

c) (CH₃)₃CNO₂

Solution:

30 Nitroalkane

Question 7.

Aniline + benzoylchloride NaOH C₆H₅-NH-COC₆H₅ this reaction is known

as

- a) Friedel Crafts reaction
- b) HVZ reaction
- c) Schotten Baumann reaction
- d) None of these

Answer:

c) Schotten - Baurnann reaction

Question 8.

The product formed by the reaction of an aldehyde with a primary amine (NEET)

- a) carboxylic acid
- b) aromatic acid
- c) Schiff's base
- d) ketone

Answer:

c) Schiff's base

Question 9.

Which of the following reaction is not correct

a) $CH_3CH_2NH_2 \xrightarrow{HNO_2} CH_3CH_2OH+N_2$

b)
$$(CH_3)_2 N \longrightarrow N^{ANO_2/HC/}$$
 $(CH_3)_2 N \longrightarrow N = NC/N$

c)
$$CH_3CONH_2 \xrightarrow{Br_2/NaOH} CH_3NH_2$$

d) None of these

Answer:

b)
$$(CH_3)_2 N - \langle \rangle = \frac{NaNO_2/HCI}{NaNO_2/HCI}$$
, $(CH_3)_2 N - \langle \rangle = NCI$

Solution:

p - nitrosation takes places, the product is im7

Question 10.

When aniline reacts with acetic anhydride the product formed is

- a) o amirìoacetophenone
- b) m aminoacetophenone
- c) p aminoacetophenone
- d) acetanilide

Answer:

d) acetanilide

Solution:

Question 11.

The order of basic strength for methyl substituted amines in aqueous solution is

a) $N(CH_3)_3 > N(CH_3)_2 H > N(CH_3)H_2 > NH_3$

b) $N(CH_3)H_2 > N(CH_3)_2H > N(CH_3)_3 > NH_3$

c) $NH_3 > N(CH_3)H_2 > N(CH_3)_2H > N(CH_3)_3$

d) $N(CH_3)_2 H > N(CH_3)H_2 > N(CH_3)_3 > NH_3$

Answer:

d) $N(CH_3)_2 H > N(CH_3)H_2 > N(CH_3)_3 > NH_3$

Question 12.

- a) H₃PO₂ and H₂O
- b) $H^{+}/H_{2}O$
- c) HgSO₄ / H₂SO₄
- d) Cu₂Cl₂

Answer:

a) H₃PO₂ and H₂O

Question 13.

$$C_6H_5NO_2 \xrightarrow{Fe/HC/} A \xrightarrow{NaNO_2/HC/} B \xrightarrow{H_2O} C'C'$$
 is

- a) C₆H₅-OH
- b) C₆H₅-CH₂OH
- c) C₆H₅-CHO
- d) C₆H₅NH₂

Answer:

a) C₆H₅-OH

Solution:

$$C_6H_5NO_2 \xrightarrow{Fe/HCl} C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} C_6H_5N_2Cl \xrightarrow{HO} C_6H_5-OH+N_2+HCl$$

Question 14.

Nitrobenzene on reaction with Con HNO_3 / H_2SO_4 at 80- $100^{\circ}C$ forms which one of the following products?

- a) 1, 4 dinitrobenzene
- b) 2, 4, 6 tirnitrobenzene
- c) 1, 2 dinitrobenzene
- d) 1, 3 dinitrobenzene

d) 1, 3 -dinitrobenzene

Solution:

Question 15.

C₅H₁₃N reacts with HNO₂ to give an optically active compound – The compound is

- a) pentan-1 -amine
- b) pentan-2-amine
- c) N, N dimethyipropan -2-amine
- d) N-methylbutan-2-amine

Answer:

d) N-methylbutan-2-amine

Question 16.

Secondary nitro alkanes react with nitrous acid to form

- a) red solution
- b) blue solution
- c) green solution
- d) yellow solution

Answer:

b) blue solution

Question 17.

Which of the following amines does not undergo acetylation?

- a) t-butylamine
- b) ethylamine
- c) diethylamine
- d) triethylamine

Answer:

d) triethylamine (3°amine)

Question 18.

Which one of the following is most basic?

- a) 2, 4 dichloroaniline
- b) 2, 4 dimethylaniline
- c) 2, 4 dinitroaniline
- d) 2, 4 dibromoaniline

Answer:

b) 2,4-dimethylaniline

Solution: CH₃ is a+I group, all other – I group +T group increase the electron density on NH₂ and hence increase the basis nature.

Question 19.

When N is reduced with

Sn/HCI the pair of compounds formed are

- a) Ethanol, hydroxylamine hydrochloride
- b) Ethanol, ammonium hydroxide
- c) Ethanol, NH₂OH
- d) C₃H₅NH₂, H₂O

Answer:

a) Ethanol, hydroxylamine hydrochloride

Question 20.

UPAC name for the amine

$$\begin{array}{c|c} & CH_{3} \\ \hline CH_{3} - N - C - CH_{2} - CH_{3} \text{ is} \\ \hline CH_{3} - C_{2}H_{5} \end{array}$$

- a) 3 Bimethy lamino 3 methyl pentane
- b) 3(N,N Triethyl) 3 amino pentane
- c) 3-N,N trimethyl pentanamine
- d) 3 (N,N Dimethyl amino) 3- methyl pentane

Answer:

d) 3 – (N,N – Dimethyl amino) -3- methyl pentane

Question 21.

+ CH₃MgBr
$$\xrightarrow{H_3O^+}$$
 P product
OCH₃ 'P' in the above reaction is

Question 22.

Ammonium salt of benzoic acid is heated strongly with P_2O_5 and the product so formed is reduced and then treated with $NaNO_2$ / HCl at low temperature. The final compound formed is

- a) Benzene diazonium chloride
- b) BenzYl alcohol
- c) Phenol
- d) Nitrosobenzene

Answer:

b) Benzyl alcohol

Solution:

$$C_6H_5COONH_4 \xrightarrow{P_2O_5} C_6H_5 - C \equiv N \xrightarrow{LiAIH_4} C_6H_5CH_2NH_2 \xrightarrow{HNO_2} C_6H_5CH_2OH$$

Question 23.

Identify X in the sequence given below.

Question 24.

Among the following, the reaction that proceeds through an electrophilic substitution, is:

Answer:

b)
$$Cl_2 \xrightarrow{AlCl_3} Cl+HCl$$

Explanation:

- a) Nucleophilic substitution
- b) Electrophilic substitution
- c) Addition Reaction
- d) Nucleophilic substitution

Question 25.

The major product of the following reaction

$$d) \quad \boxed{ \\ NH_2 }$$

II. Short Answer Questions

Question 1. Write down the possible isomers of the $C_4H_9NO_2$ and give their IUPAC names Answer:

S.No	Isomer	IUPAC Name
1.	CH ₃ -CH ₂ -CH ₂ -CH ₂ -NO ₂	1-nitro butane-
2.	CH ₃ -CH ₂ - CH -CH ₃ NO ₂	2- nitro butane
3.	CH ₃ CH ₃ - CH - CH ₂ - NO ₂	2-methyl-1-nitropropane
4.	$CH_3 - CH_2 - CH_2 - CH_2 - O - N = O$	Butylnitrite (or) 1-nitroso oxybutane
5.	CH ₃ CH ₃ - CH - CH ₂ -O-N=O	2- methyl propylnitrite
6.	NH ₂ CH ₃ -CH ₂ -CH-COOH	2- aminobutanoic acid
7.	NH ₂ CH ₃ - CH - CH ₂ - COOH	3- aminobutanoic acid
8.	H ₂ N - CH ₂ - CH ₂ - CH ₂ - COOH	4- aminobutanoic acid
9.	$\begin{array}{c} \text{NH}_2 \\ \text{CH}_3 - \text{C} - \text{COOH} \\ \text{CH}_3 \end{array}$	2 - amino-2-methyl propanoic acid
10.	CH ₃ H ₂ N — CH ₂ — CH — COOH	3 - amino-2-methyl propanoic acid
11.	СН ₃ — N — СН ₂ — СООН СН ₃	2 - (dimethylamino) ethanoic acid

Question 2.

There are two isomers with the formula CH₃ NO₂. How will you distinguish between them? **Answer**:

- Primary and secondary nitroalkanes with a-H atom exhibit tautomerism.
- Tertiary amines do not exhibit tautomerism due to CH = N the absence of a-H atom.
- Nitromethane exists in two tautomeric forms namely \itro form Aci form nitroform and aciform.

Nitro Form	Aci – Form
1. Less Acidic	More acidic and also called pseudoacids (or) nitronic acids.
2. Dissolves in NaOH slowly	Dissolves in NaOH instantly.
3. Decoiourises FeCl ₃ Solution	With FeCl ₃ , gives reddish-brown colour
4. Electrical conductivity is low	Electrical conductivity is high

Ouestion 3.

What happens when

- i) 2 Nitropropane boiled with HCl
- ii). Nitrobenzene electrolytic reduction in strongly acidic medium.
- iii). Oxidation of tert butylamine with KMnO₄
- iv). Oxidation of acetone oxime with trifluoromethoxy acetic acid.

iii) CH₃
$$C_{1}$$
 C_{2} C_{3} C_{2} C_{3} C_{3} C_{3} C_{3} C_{4} C_{5} C

Question 4.

How will you convert nitrobenzene into **Answer**:

- 1, 3, 5 trinitrobenzene
- o and p nitrophenol
- m nitro aniline
- azoxvbenzcne
- hvdrazohenzene
- N phenvl hyd roxylamine
- aniline

Question 5.

Identify compounds A, B, and C in the following sequence of reactions. **Answer**:

i)
$$C_6H_5NO_2 \xrightarrow{Fe/HCI} A \xrightarrow{HNO_2} B \xrightarrow{C_6H_5OH} C$$

ii)
$$C_6H_5N_2Cl \xrightarrow{CuCN} A \xrightarrow{H_2O/H^*} B \xrightarrow{NH_3} C$$

iii)
$$CH_3CH_2I \xrightarrow{NaCN} A \xrightarrow{OH^-} B \xrightarrow{NaOH+Br_2} C$$

iv)
$$CH_3NH_2 \xrightarrow{CH_3Br} A \xrightarrow{CH_3COCl} B \xrightarrow{B_2H_6} C$$

v)
$$C_6H_5NH_2 \xrightarrow{(CH_3CO)_2O} A \xrightarrow{HNO_3} B \xrightarrow{H_2O/H^+} C$$

vi)
$$CH_3 \longrightarrow OH$$

$$pH (9-10)$$

$$CH_3 \longrightarrow OH$$

$$pH (4-5)$$

$$C vii) CH_3CH_2NC \longrightarrow HgO \rightarrow A \longrightarrow H_2O \rightarrow B \xrightarrow{i)NaNO_2/HCl}$$

$$ii)H_2O \rightarrow OH$$

$$(i) C_6H_5NO_2 \xrightarrow{Fe/HCl} C_6H_5NH_2 \xrightarrow{HNO_2 \atop 273K} C_6H_5 - N = N - Cl$$

$$(A)$$

$$Annume$$

$$(B) Benzenediazonium Chloride C_6H_5OH \rightarrow N=N \longrightarrow OH$$

$$Chloride C_6H_5OH \rightarrow OH$$

$$C_6H_5OH \rightarrow OH$$

(ii)
$$C_6H_5N_2C1 \xrightarrow{CuCN} C_6H_5CN \xrightarrow{H_2O/H^+} C_6H_5COOH \xrightarrow{NH_3} C_6H_5COONH_4$$

(A) (B) (C)

Phenylcyanide Benzoic acid Ammonium benzoate

(iii) $CH_3CH_2I \xrightarrow{NaCN} CH_3CH_2CN \xrightarrow{OH^-} CH_3CH_2CONH_2 \xrightarrow{OH^-} CH_3CH_2CONH_2 \xrightarrow{Hoffmann's} (C)$

(A) (B) Hoffmann's (C)

Ethylcyanide Propanamide Ethylamine

(vii)
$$\begin{array}{c} \text{CH}_3 - \text{CH}_2 - \text{NC} \xrightarrow{\text{HgO}} \text{CH}_3 - \text{CH}_2 - \text{N} = \text{C} = \text{O} \xrightarrow{\text{H}_2\text{O}} \text{CH}_3 - \text{CH}_2 - \text{NH}_2 \xrightarrow{\text{(i) NaNO}_2/\text{HCI}} \\ \text{(A)} & \text{Ethylamine} \end{array}$$

$$\begin{array}{c} \text{Ethylamine} \\ \text{CH}_3 - \text{CH}_2 - \text{OH} \\ \text{(C)} \\ \text{Ethylalcohol} \end{array}$$

Question 6.

Write short notes on the following Answer:

- Hofmann's bromide reaction
- Ammonolysis
- Gabriel phthalimide synthesis
- Schotten Baurnann reaction
- Carhylamine reaction
- Mustard oil reaction
- Coupling reaction
- Diazotisation
- Gorenberg reaction

I Hofmann's bromamide reaction:

$$CH_3 - C - NH_2 \xrightarrow{Br_2/KOH} CH_3 - NH_2 + K_2CO_3 + KBr + H_2O$$

In Hofnianns degradation acid amide is converted into an amine with one carbon less by Br₂/ KOH.

ii. Ammonolysis:

In Hoffmann's ammonolysis alkyl halides are heated with alcoholic ammonia in a sealed tube, mixtures of 1°, 2° and 3° amines and quarternary ammonium salts are obtained.

iii. Gabriel phthalimide synthesis

Phthalimide on treatment with alcoholic KOH forms potassium phthalimide which on heating with alkyl halide followed by alkaline hydrolysis gives primary amine. Aniline can not be prepared by this method.

iv. Schotten - Baumann reaction:

$$C_6H_5NH_2 + C_6H_5 - C - Cl \xrightarrow{Pyridin} C_6H_5 - C - NHC_6H_5 + HCl$$
Aniline Benzoyl chloride N - phenylbenzamide

Benzoylation of amines to give N-alkyl benzamide in presence of NaOH is known as Schotten Baumann reaction.

v. Carbylamine reaction

$$C_2H_5NH_2 + CHCl_3 + 3KOH \longrightarrow C_2H_5NC + 3KCl + 3H_2O$$

Primary' amines react with chloroform and alcoholic KOH to form isocyanides called carbylamines with unpleasant smell. This is used to identify primary amines.

vi. Mustard oil reaction

$$CH_{3}-N-H+C=S \longrightarrow CH_{3}-NH-C-SH \xrightarrow{HgCl_{2}} CH_{3}-N=C=S+HgS+2HC1$$

$$N-Methyldithio carbamic acid Methyl isothiocyanate (Mustard oil smell)$$

When primary amines are treated with carbon disulphide, N-alkyl dithiocarbamic acid is formed which on treatment with HgCl₂ gives an alkyl isothiocyanate.

vii. Coupling reaction:

$$N=N-Cl+H$$
 OH $OH^{-(pH9-10)}$ $N=N$ OH $OH^{-(pH9-10)}$ $OH^{-(pH9-10)}$

Benzenediazonium chloride reacts with electron-rich aromatic compounds like phenol,

undergoing

electrophilic substitution at para position.

viii. Diazotisation:

$$NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} N = N - Cl + NaCl + 2H_2O$$

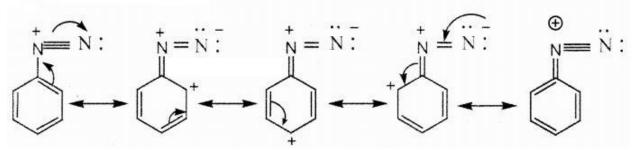
Aniline reacts with nitrous acid at 273-278K to form benzene diazonium chloride.

ix. Gomberg reaction:

Benienediazonium chloride reacts with benzene in presence of NaOH to give biphenyl.

Question 7.

How will you distinguish between Primary, Secondary, and tertiary aliphatic amines **Answer**:


S.No	Reaction with	Primary amine	Secondary amine	Tertiary amine
1	HNO ₂	forms alcohol	forms N-nitroso amine	forms salt
2	CHCl ₃ /KOH	forms carbylamine	no reaction	no reaction
3	acetylchloride	forms N - alkyl acetamide	forms N,N - dialkyl acetamide	no reaction
4	CS ₂ /HgCl ₂	forms alkyl isothiocyanate	no reaction	no reaction

5	Alkyl halide	ammonium salt	ammonium salt	forms quarternary ammonium salt with one mole of alkyl halide
6	Diethyloxalate	forms solid dialkyloxamide	forms liquid N,N - dialkyl oxamic ester	no reaction

Question 8.

Account for the following

- Aniline does not undergo Friedel Crafts reaction
- Diazonium salts of aromatic amines are more stable than those of aliphatic amines.
- pK_b of aniline is more than that of methylamine
- Gabriel phthalimide synthesis is preferred for synthesising_primary amines
- Ethvlamine is soluble in water whereas aniline is not
- Amines are more basic than amides
- Although amino group is o and p directing in aromatic electrophilic substitution reactions, aniline on nitration gives a substantial amount of m nitroaniline.
- i) Aniline does not undergo Friedel crafts reaction, because Aniline is basic in nature Aniline donates its lone pair to the lewis acid Alcl₃ to form an adduct which inhibits further electrophilic substitution reaction
- ii) The stability of diazonium salts of aromatic amines is due to the dispersal of the positive charge over the benzene ring.

iii) In aniline the NH

group is directly attached to the benzene ring.

The lone pair of electron on nitrogen atom in aniline gets delocalised over the benzene ring. Hence it is less available for protonation.

So aniline is less basic than methylamine and pK_b of aniline is more than that of methylamine.

iv) Gabriel phthalimide synthesis results in the formation of primary amines only. Secondary and tertiary amines are not formed in this synthesis. Thus a pure primary amine can be obtained.

Therefore, Gabriel phthalimide synthesis is preferred for synthesizing primary amines.

v) Ethvlamine forms intermolecular hydrogen bonds with water. Hence it is soluble in water.

But aniline does not form hydrogen bond with water to a very large extent due to the presence of a large hydrophobic C_6H_5 – group. Hence aniline is insoluble in water

vi) In amides the carbonyl group (C=0) is highly electronegative and draws the electrons towards it.

This makes the lone pair of amide nitrogen less available to accept a proton. Hence amides are less basic than amines.

But in amines the alkyl groups being electron releasing groups. the electron pair on amine nitrogen is readily available to accept a proton.

vii) Hence amines are more basic than amides.

In strong acid medium aniline is protonated to form anilinium ion which is rn-directing. Hence a substantial amount of rn-nitroaniline is formed during nitration of aniline.

Question 9.

Arrange the following

Answer:

- i) In increasing order of solubility in water C₆H₅NH₂,(C₂H₅)₂NH,C₂H₅NH₂
- ii) In increasing order of basic strength
- a) aniline, p toludine and p nitroaniline
- b) C₆H₅NH₂ C₆H₅NHCH₃, C₆H₅NH₂, p-Cl-C₆H₄-NH₂
- iii) In decreasing order of basic strength in gas phase
- (C₂H₅)NH₂, (C₂H₅)NH, (C₂H₅)₃N and NH₃
- iv) In increasing order of boiling point C₆H₅OH, (CH₃)₂NH,C₂H₅NH₂
- v) In decreasing order of the pK_b values C₂H₅NH₂, C₆H₅NHCH₃, (C₂H₅)₂NH and CH₃NH₂
- vi) Increasing order of basic strength C₆H₅NH₂, C₆H₅N(CH₃) H₅3)₂, (C₂H₅)₂ NH and CH₃ NH₂
- vii) In decreasing order of basic strength

i) Increasing order of solubility in water $C_6H_5NH_2 < (C_2H_5)$ NH $< C_2H_5$ NH₂ Hint Aromatic amine aliphatic amine Solubility $\alpha \frac{1}{Molarmass}$

- ii) Increasing order of basic strength
- a) p-nitro aniline

aniline

p-toludine

b) $p - Cl - C_6H_4 - NH_2 < C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$

Hint > p-nitrogroup (-I) electron with drawing, hence decreases the basic strength.

Hint > p-methyl group (+I) electron releasing, hence increases the basic strength.

iii) Decreasing order of basic strength in gas phase

 $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$

Hint > In the gas-phase there is no solvation effect. As a result the basic strength mainly depends on the + I effect. Higher the number of alkyl groups higher will be the +1 effect, stronger is the base.

iv) Increasing order of boiling point.

$(CH_3)_2NH < C_2H_5NH_2 < C_6H_5OH$

Hint > Amines generally have lower boiling point than alcohols of comparable molar mass. Since amines have weaker H-bonds.

Hint

Secondary amines primary amines

v) Decreasing order of pK values

 $C_6H_5NHCH_3 > C_2H_5NH_2 > CH_3NH_2 > (C_2H_5)_2NH$

Hint > Basic character increases. pKb value decreases. Higher the basic nature, lower will be the pkb' value.

vi) Increasing order of basic strength

 $C_6H_5NH_2 < C_6H_5-N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$

vii) Decreasing order of basic strength

$$CH_3CH_2NH_2 > CH_3NH_2 >$$
 $NH_2 > O_2N - NH_2 > O_2N - O_2N -$

Question 10.

How will you prepare propan – 1 – amine from

Answer:

- i) butane nitrile
- ii) propanamide
- iii) 1-nitropropane

(i)
$$CH_3-CH_2-CH_2-CN \xrightarrow{H_2O_2/OH^2} CH_3-CH_2-CH_2 \xrightarrow{C-NH_2} CH_3 \xrightarrow{Br_2/KOH} CH_3-CH_2-CH_2-NH_2$$
Butane nitrile

O

Butanemide

(ii)
$$CH_3$$
- CH_2 - $CONH_2$ $\xrightarrow{\text{(ii)} \text{LiAlH}_4}$ CH_3 - CH_2 - CH_2 - NH_2 Propan – 1 - amine

(iii)
$$CH_3 - CH_2 - CH_2 - NO_2 \xrightarrow{Sn/HCl} CH_3 - CH_2 - CH_2 - NH_2 + 2H_2O$$

1-nitropropane Propan - 1 - amine

Question 11.

Identify A,B,C and D
$$CH_3$$
-NO₂ $\xrightarrow{\text{Li A/H}_4}$ A $\xrightarrow{\text{2CH}_3\text{CH}_2\text{Br}}$ B $\xrightarrow{\text{H}_2\text{SO}_4}$ C

$$\begin{array}{c} \text{CH}_3\text{-NO}_2 \xrightarrow{\text{Li A/H}_4} \text{CH}_3\text{-NH}_2 \xrightarrow{\text{2CH}_3\text{CH}_2\text{Br}} \text{(CH}_3\text{-CH}_2)_2\text{-N-CH}_3 \xrightarrow{\text{H}_2\text{SO}_4} \text{(CH}_3\text{-CH}_2)_2 \xrightarrow{\text{N}} \begin{array}{c} \text{H} \\ \downarrow_4 \\ \text{CH}_3 \end{array} \\ \text{CH}_3 \end{array}$$

	Compound	Name
Α		Methanamirie
В		N – ethyl N – methyL ethanamine
С		Diethyl methyl ammonium hydrogen sulphate

Question 12.

How will you convert diethylamine into

Answer:

- i) N,N dimethylacetamide
- ii) N nitrosódiethylamine

i)
$$CH_3COCl + (C_2H_5)_2 NH \longrightarrow CH_3 CON (C_2H_5)_2 + HCl + H_2O$$

Acetylchloride N,N -diethylacetamide.

ii)
$$(C_2H_5)_2$$
 NH + HON = O NaNO₂ $(C_2H_5)_2$ N - N = O + H₂O
Nitrousacid N-nitrosodiethylamine

Question 13.

Identify A, B and C

Question 14.

Identify A,B,C and D

Answer:

$$\begin{array}{c} \text{aniline + benzaldehyde} & \rightarrow \text{A} \xrightarrow{\quad \text{Con HNO}_3 \quad } \text{C + D.} \\ \text{C}_6\text{H}_5\text{CHO} + \text{C}_6\text{H}_5\text{NH}_2 \rightarrow \text{C}_6\text{H}_5 - \text{CH} = \text{N-C}_6\text{H}_5 \xrightarrow{\text{Con HNO}_3 \quad } \text{C}_6\text{H}_5 - \text{CH} = \text{N-C}_6\text{H}_5 - \text{NO}_2 + \text{Schiff's base} \\ \text{(A)} & \text{(B)} & \text{(C)} \\ \end{array}$$

Question 15.

Complete the following reaction

$$CH_2$$
-NH₂

Trace H⁺

Answer:

Question 16.

Predict A,B, C and D for the following reaction

$$\begin{array}{c}
 & \xrightarrow{C} & \xrightarrow{NH_3/\Delta} & A \xrightarrow{i)KOH} & (C) \xrightarrow{H_2O/H^+} & D + H_2N - CH - CH_3 \\
 & & & & CH_3
\end{array}$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$CH_{3}-CH-NH_{2}+COOH$$

$$COOH$$

$$CH_{2}-CH-NH_{2}+COOH$$

$$COOH$$

	Compound	Name
Α		Phthaliniide
В		Isopropyl bromide
С		N-isopropy1ththalimide
D		Phthalic acid

Question 17.

A dibromo derivative (A) on treatment with KCN followed by acid hydrolysis and heating gives a monobasic acid (B) along with liberation of CO_2 . (B) on heating with liquid ammonia followed by treating with Br_2 / KOH gives (c) which on treating with $NaNO_2$ and HC1 at low temperature followed by oxidation gives a monobasic acid (D) having molecular mass 74. Identify A to D.

Answer:

D is a monobasic and with molecular mass 74.

M.F of D is CnH_{2n+1}COOH

MolarMassis $12 \times n + 2n \times 1 + 1 \times 1 + 12 + 2 \times 16 + 1 \times 1 = 74$

14n + 46 = 74

14n = 28

n=2

$$\begin{array}{c} \text{$^{\circ}$D is C_2H}_5$ COOH ie CH_3-$CH}_2$-$COOH\\ \hline \\ CH_3$-$CH}_2$-CH-Br $\xrightarrow{\text{KCN}}$ $CH}_3$-$CH}_2$-CH-CN $\xrightarrow{\text{H}_3O^{\circ}}$ $CH}_3$-$CH}_2$-$CH}_3$-$CH}_2$-$CH}_3$-$CH}_2$-$CH}_3$-$CH}_2$-$CH}_3$-$CH}_$$

Hint: If two - COOH groups are present in the same carbon, on heating it loses CO₂ to form a monocarboxylic acid.

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-COOH} \xrightarrow{\text{NH}_3} \text{CH}_3\text{-CH}_2\text{-CONH}_2 \xrightarrow{\text{Br}_2/\text{KOH}} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-NH}_2 \\ \text{(B)} & \text{(C)} \\ \text{CH}_3\text{-CH}_2\text{-COOH} & \xrightarrow{\text{[O]}} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-OH} & \xrightarrow{\text{NaNO}_2/\text{HCI}} \\ \text{(D)} & \text{1-propanol} \end{array}$$

	Compound	Name
Α		1, 1- dibromopropane
В		Butanoic acid
С		1 – amino propane
D		Propanoic acid

Question 18.

Identify A to E in the following frequency of reactions

$$\underbrace{\begin{array}{c} \xrightarrow{\text{CH}_3\text{C}!} & \text{A} \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} \\ \text{(Majorproduct)} \end{array}} \text{(B)} \xrightarrow{\text{Sn/HC}!} \text{(C)} \xrightarrow{\begin{array}{c} \text{NaNO}_2\text{/HC}!} \\ \text{O}^{\circ}\text{C} \end{array}} \text{(D)} \xrightarrow{\text{CuCN}} \text{E}$$

$$(A) \xrightarrow{CH_3} (CH_3) \xrightarrow{NO_2} (CH_3) \xrightarrow{NH_2} (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) (CH_4) (CH$$

	Compound	Name
Α		o – nitro toluene
В		o – amino toluene
С		o – amino toluene
D		o – methyl benzene diazonium chloride
Е		o – cyano toluene