

SYLLABUS : Ionic Equilibrium

1. Which of the following has the maximum degree of ionisation ?

(A) 1 M NH₃ (B) 0.001 M NH₃ (C) 0.1 M NH₃ (D) 0.0001 M NH₃.

2. The K_a for formic acid and acetic acid are 2 × 10⁻⁴ and 2 × 10⁻⁵ respectively. Calculate the relative strength of acids with same molar concentration.

(A) $\sqrt{10}$ (B) $\sqrt{7}$ (C) $\sqrt{8}$ (D) $\sqrt{5}$

3. At 25°C, K_b for BOH = 1.0 × 10⁻¹². A 0.01 M solution of BOH has what value of [OH⁻]?

(A) 1.0×10^{-6} M (B) $\sqrt{2} \times 10^{-7}$ M (C) 1.0×10^{-5} M (D) 2.0×10^{-6} M

- The dissociation constant of weak acid HA is 4.9×10⁻⁸. After making the necessary approximations. Calculate pH in 0.1 M acid –
 (A) 1.155
 (B) 2.155
 (C) 3.155
 (D) 4.155
- 5. K_a for formic acid and acetic acid are 1.8 × 10⁻⁴ and 1.8 × 10⁻⁵ respectively. The relative strength of acids is :

(A) 10 : 1 (B) 1 : 10 (C) 1 : $\sqrt{10}$ (D) $\sqrt{10}$: 1

- 6. K_a for a monobasic acid, whose 0.1 M solution has pH of 4.5, is :
 - (A) 10^{-10} (B) 10^{-8} (C) $\sqrt{10} \times 10^{-4}$ (D) $\sqrt{10} \times 10^{-6}$
- 7.Aqueous solution of NH_4CI is _____ in nature due to behaviour of _____ ion in solution :(A) acidic ; NH_4^+ (B) alkalline ; NH_4^+ (C) acidic ; CI^- (D) alkalline ; CI^-
- 8. What is the pH of 0.10 M CH₃COONa solution. Hydrolysis constant of sodium acetate is 5.6×10^{-10} : (A) 8.874 (B) 88.74 (C) 887.4 (D) 0.88
- **9.** The chloride salt of a certain weak monoacidic organic base is hydrolysed to an extent of 3% in its 0.1M solution at 25°C. Given that the ionic product of water is 10⁻¹⁴ at this temperature, what

is the dissociation constant of the base?

(A) $\approx 1 \times 10^{-10}$ (B) $\approx 1 \times 10^{-9}$ (C) 3.33 x 10⁻⁹ (D) 3.33 x 10⁻¹⁰

The pH of 0.1 M solution of the following salts increases in the order :
 (A) NaCI < NH₄CI < NaCN < HCI
 (B) HCI < NH₄CI < NaCI < NaCN
 (C) NaCN < NH₄CI < NaCI < HCI
 (D) HCI < NaCI < NaCN < NH₄CI

PAGE NO. #1

- **11.** The pH of 0.1 M NH₄Cl solution is 5.13. What will be the dissociation constant of NH₄OH (A) 1.8×10^{-7} (B) 1.8×10^{-9} (C) 1.8×10^{-5} (D) None
- 12. The degree of hydrolysis of a salt of weak monobasic acid and weak monoacidic base in its 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be :

(A) 100 % (B) 50 % (C) 25 % (D) None of these

13. Which of the following ions or compounds in a solution tend to produce an acidic, a basic or a neutral solution ?

(a) $C_2H_5O^-$ (b) Cu^{+2} (c) SO_3^{2-} (d) F^- (e) NH_4^+ (f) CH_3COONa (g) KNO_3 (h) NaOCI(i) Na_2CO_3 (j) $ZnCI_2$

14. On adding 100 mL of 10^{-2} M NaOH solution to 100 mL of 0.01 M Triethyl amine solution (K_b = 6.4×10^{-5}), change in pH of solution will be :

(A) - 0.8 (B) + 0.8 (C) + 1.1 (D) - 1.1

15. In above question, concentration of Triethyl ammonium ion ([C₆NH₁₆⁺]) in resulting solution will be :

(A) 100 K_b (B) 200 K_b (C) 10 K_b (D) K_b **16.** For a BH_2CI_2 solution (chloride salt of a diacidic base B) : (Dissociation constants of base are $K_{b_1} \& K_{b_2}$)

(A)
$$K_{h_1} << K_{h_2}$$
 (B) $K_{h_1} = \frac{K_w}{K_{b_1}}$ (C) $K_{h_1} = \frac{K_w}{K_{b_2}}$ (D) $K_{h_2} = \frac{K_{b_1}}{K_w}$

17. Select the correct statement regarding above solution :

(A) Anion will undergo hydrolysis producing OH⁻ & solution is expected to be basic.

(B) Anion will not undergo hydrolysis & solution is expected to be basic.

(C) Cation will undergo hydrolysis producing H₃O⁺ & solution is expected to be acidic.

(D) Cation will undergo hydrolysis producing OH⁻ & solution is expected to be acidic.

18. pH of 0.1 M Na₂HPO₄ and 0.2 M NaH₂PO₄ are respectively : (pK_a for H₃PO₄ are 2.2, 7.2 and 12)

(A) 4.7, 9.6 (B) 9.6, 4.7 (C) 9.3, 4.4 (D) 4.4, 9.3

- **19.** The pH of which salt solution is independent of its concentration ?1. $(CH_3COO)C_5H_5NH$ 2. NaH_2PO_4 3. Na_2HPO_4 4. NH_4CN (A) 1, 2, 3, 4(B) 1, 4(C) 2, 3(D) 1, 2, 3
- **20.** A solution is 0.1 M in CH_3COOH and 0.1 M in CH_3COONa . Which of the following will change its pH significantly?

(A) Addition of small amount of water

(C) Addition of small amount of NaOH

(B) Addition of small amount of HCI

(D) None will change the pH significantly.

PAGE NO. # 2

- 21. What will be the pH of the buffer solution containing 0.15 moles of NH₄OH and 0.25 moles of NH_4CI . K_b for NH_4OH is 1.8 x 10⁻⁵ –
 - (A) 4.96 (B) 10.03 (C) 9.04 (D) 7.0
- 22. Which of the following may be added to one litre of water to act a buffer ?

(A) One mole of CH₃COOH and one mole of HCI

(B) One mole of NH₄OH and one mole of NaOH

(C) One mole of NH₄Cl and one mole of HCl

(D) One mole of CH₃COOH and 0.5 mole of NaOH

- Calculate the pH of a buffer prepared by mixing 300 cc of 0.3 M NH₃ and 500 cc of 0.5 M NH₄Cl. 23. K_{b} for NH₃ = 1.8 x 10⁻⁵-(A) 8.11 (B) 9.81 (C) 8.82 (D) None of these
- The total number of different kind of buffers obtained during the titration of H₃PO₄ with NaOH 24. are:

(A) 3

(C) 2

(D) Zero

(B) 1 A salt $M_2 X_3$ dissolves in water such that its solubility is x mole/litre. Its K_{SP} is : 25. (B) 6x² (C) 108 x⁵ (D) 6x⁵ (A) x⁵

ANSWER KEY

(A) (B) 6. (D) 2. 3. (D) 5. (D) (B) 4. 1.

7.	(A)	8.	(A)	9.	(A)	10.	(B)	11.	(C)	12.	(B)	
13.	(a) Basic			(b) acidic			(c) basic			(d) basic		(e) acidic
	(f) basic			(g) neutral			(h) basic			(i) basic		(j) acidic
14.	(B)	15.	(D)	16.	(C)	17.	(C)	18.	(B)	19.	(A)	
20.	(D)	21.	(C)	22.	(D)	23.	(C)	24.	(A)	25.	(C)	

PAGE NO. # 3