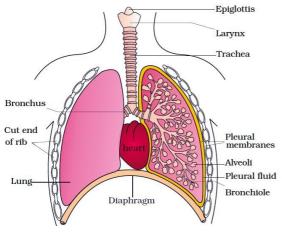
BREATHING AND EXCHANGE OF GASES

Respiration is the oxidation of nutrients in the living cells to release energy for biological work.

Breathing is the exchange of O_2 from the atmosphere with CO_2 produced by the cells.

RESPIRATORY ORGANS


• General body surface: E.g. lower invertebrates (sponges,

coelenterates, flatworms etc).

- Skin or moist cuticle (cutaneous respiration): E.g. earthworms, leech, amphibians etc.
- Tracheal tubes: E.g. insects, centipede, millipede, spider.
- Gills (Branchial respiration): E.g. fishes, tadpoles, prawn.
- Lungs (Pulmonary respiration): E.g. most vertebrates.

HUMAN RESPIRATORY SYSTEM

It consists of a pair of air passages (air tract) and lungs.

1. Air passages

- *Conducting part* which transports the atmospheric air into the alveoli, clears it from foreign particles, humidifies and brings the air to body temperature.

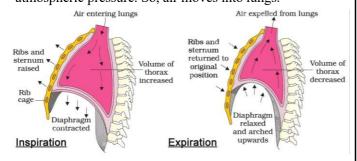
External nostrils \rightarrow nasal passage \rightarrow nasal chamber (cavity) \rightarrow pharynx \rightarrow glottis \rightarrow larynx \rightarrow trachea \rightarrow primary bronchi \rightarrow secondary bronchi \rightarrow tertiary bronchi \rightarrow bronchioles \rightarrow terminal bronchioles \rightarrow respiratory bronchiole \rightarrow alveolar duct.

- Each terminal bronchiole gives rise to many very thin and vascularised *alveoli* (in lungs).

- A cartilaginous *Larynx* (sound box or voice box) helps in sound production.
- During swallowing, *epiglottis* (a thin elastic cartilaginous flap) closes *glottis* to prevent entry of food into larynx.
- Trachea, all bronchi and initial bronchioles are supported by incomplete cartilaginous half rings.

2. Lungs

- Lungs situate in *thoracic chamber* and rest on *diaphragm*.
- Right lung has 3 lobes and left lung has 2 lobes.
- Lungs are covered by double-layered *pleura* (outer parietal pleura and inner visceral pleura).
- The *pleural fluid* present in between these 2 layers lubricates the surface of the lungs and prevents friction between the membranes.
- Lungs= Bronchi + bronchioles + alveoli.
- Alveoli and their ducts form the *respiratory* or *exchange part* of the respiratory system.
- Alveoli are the structural and functional units of lungs.


Steps of respiration

- 1. Pulmonary ventilation (breathing).
- 2. Gas exchange between lung alveoli & blood.
- 3. Gas transport (O2 transport & CO2 transport).
- 4. Gas exchange between blood & tissues.
- 5. Cellular or tissue respiration.

MECHANISM OF BREATHING (INSPIRATION & EXPIRATION)

a. Inspiration

- Active intake of air from atmosphere into lungs.
- During this, the **diaphragm contracts** (flattens) causing an increase in vertical thoracic volume (*antero-posterior axis*).
- Contraction of **external intercostal muscles** (muscles found between ribs) lifts up the ribs and sternum causing an increase in thoracic volume in the *dorso-ventral axis*.
- Increase in thoracic volume reduces thoracic pressure. So, lungs expand. Thus, pulmonary volume increases resulting in decrease of *intra-pulmonary pressure* to less than the atmospheric pressure. So, air moves into lungs.

b. Expiration

- Passive expelling of air from the lungs.
- During this, *intercostal muscles & diaphragm* relax causing a decrease in thoracic volume and thereby pulmonary volume. So, air moves out.
- During forceful expiration, abdominal muscles and internal inter-costal muscles contract.

Respiratory volumes and capacities

- Tidal volume (TV): Volume of air inspired or expired during a normal respiration. It is about 500 ml. i.e., 6000-8000 ml per minute.
- Inspiratory reserve volume (IRV) or complemental air: Additional volume of air that can inspire by forceful inspiration. It is 2500-3000 ml.
- Expiratory reserve volume (ERV) or supplemental air: Additional volume of air that can expire by a forceful expiration. It is 1000-1100 ml.
- Residual volume (RV): Volume of air remaining in lungs after a forcible expiration. It is 1100-1200 ml.

- Inspiratory capacity (IC): Total volume of air inspired after a normal expiration (TV + IRV). It is 3000-3500 ml.
- Expiratory capacity (EC): Total volume of air expired after a normal inspiration (TV + ERV). It is 1500-1600 ml.
- Functional residual capacity (FRC): Volume of air remaining in the lungs after a normal expiration (ERV + RV). It is 2100-2300 ml.
- Vital capacity (VC): Volume of air that can breathe in after a forced expiration or Volume of air that can breathe out after a forced inspiration (ERV + TV + IRV).

- It is **3500-4500 ml.**
- Total lung capacity (TLC): Total volume of air in the lungs after a maximum inspiration. (RV + ERV + TV + IRV or VC + RV). It is 5000-6000 ml.
- Part of respiratory tract (from nostrils to terminal bronchi) not involved in gaseous exchange is called *dead space*.
 Dead air volume is about 150 ml.
- **Respiratory cycle=** an inspiration + an expiration
- Normal respiratory (breathing) rate: 12-16 times/min
- Spirometer (respirometer): To measure respiratory rate.

GAS EXCHANGE

Gas exchange occurs between

1. Alveoli and blood

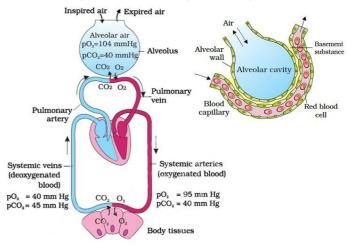
2. Blood and tissues

Alveoli are the primary sites of gas exchange.

O₂ & CO₂ are exchanged by simple diffusion. It depends upon the following factors:

• Pressure/ concentration gradient: The *Partial pressures* (individual pressure of a gas in a gas mixture) of O₂ and CO₂ (pO₂ and pCO₂) are given below.

Respiratory gas	pO ₂ (in mm Hg)	pCO ₂ (in mm Hg)
Atmospheric air	159	0.3
Alveoli	104	40
Deoxygenated blood	40	45
Oxygenated blood	95	40
Tissues	40	45


pO₂ in **alveoli** is more (104 mm Hg) than that in **blood** capillaries (40 mm Hg). So O₂ diffuses into capillary blood. **pCO**₂ in **deoxygenated blood** is more (45 mm Hg) than that in alveoli (40 mm Hg). So, CO₂ diffuses to alveoli.

• Solubility of gases: Solubility of CO₂ is 20-25 times higher than that of O₂. So, the amount of CO₂ that can diffuse through the diffusion membrane per unit difference in partial pressure is higher than that of O₂.

- **Thickness of membranes:** The diffusion membrane is made up of 3 layers:
 - a) **Squamous epithelium** of alveoli.
 - b) Endothelium of alveolar capillaries.
 - c) Basement substance between them.

Its total thickness is only 0.5 µm. It enables easy gas exchange.

• Surface area: Presence of alveoli increases the surface area of lungs. It increases the gas exchange.

GAS TRANSPORT (O2 TRANSPORT & CO2 TRANSPORT)

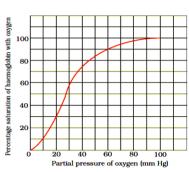
It is the transport of respiratory gases ($O_2 \& CO_2$) from alveoli to the systemic tissues and vice versa.

1. O₂ TRANSPORT

It is the transport of O_2 from lungs to various tissues. It occurs in 2 ways:

- a. In physical solution (blood plasma): About 3% of O_2 is carried in a dissolved state through plasma.
- b. As oxyhaemoglobin: About 97% of O₂ is transported by haemoglobin (red coloured iron containing pigment) on RBC. O₂ binds with haemoglobin (Hb) to form oxyhaemoglobin. This is called oxygenation. Hb has 4 haem units. So, each Hb molecule can carry 4 oxygen molecules. Binding of O₂ depends upon pO₂, pCO₂, H⁺ ion concentration (pH) and temperature.

$$Hb_4 + 4O_2 \xrightarrow{High pO_2/Low pCO_2 (lungs)} Hb_4O_8$$


$$Low pO_2/High pCO_2 (Tissues)$$

- In the alveoli, high pO_2 , low pCO_2 , lesser H^+ ion concentration and lower temperature exist. These factors are favourable for the formation of oxyhaemoglobin.

- In tissues, low pO₂, high pCO₂, high H⁺ ions and high temperature exist. So Hb₄O₈ dissociates to releaseO₂.
- Every 100 ml of oxygenated blood can deliver around 5 ml of O₂ to the tissues under normal physiological conditions.

Oxygen-haemoglobin dissociation curve

It is a sigmoid curve obtained when percentage saturation of Hb with O₂ is plotted against the pO₂. It is used to study the effect of factors like pCO₂, H⁺ concentration etc., on binding of O₂ with Hb.

2. CO₂ TRANSPORT

It is the transport of CO₂ from tissues to lungs.

In tissues, pCO₂ is high due to catabolism and pO₂ is low. In lungs, pCO₂ is low and pO₂ is high. This favours CO₂ transport from tissues to lungs. It occurs in 3 ways:

- **a.** As carbonic acid: In tissues, 7% of CO₂ is dissolved in plasma water to form carbonic acid and carried to lungs.
- **b. As carbamino-haemoglobin:** In tissues, **20-25%** of CO₂ binds to Hb to form **carbamino-haemoglobin**. In alveoli, CO₂ dissociates from carbamino-haemoglobin.
- **c. As bicarbonates:** 70% of CO₂ transported by this method. RBCs contain an enzyme, *carbonic anhydrase*. (It is slightly present in plasma too).

At tissue site, it facilitates the following reactions:

$$\text{CO}_2 + \text{H}_2 \text{O} \xleftarrow{\text{Carbonic} \\ \text{anhydrase}} \text{H}_2 \text{CO}_3 \xleftarrow{\text{Carbonic} \\ \text{anhydrase}} \text{HCO}_3^- + \text{H}^+$$

In alveoli, the above reaction proceeds in opposite direction leading to the formation of CO₂ and H₂O.

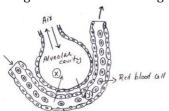
Every 100 ml of deoxygenated blood delivers about 4 ml of CO₂ to the alveoli.

REGULATION OF RESPIRATION

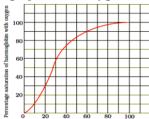
In brain, there are the following Respiratory centres:

- Respiratory rhythm centre (Inspiratory & Expiratory centres): In medulla oblongata. It regulates respiratory rhythms.
- **Pneumotaxic centre:** In **Pons**. It moderates functions of respiratory rhythm centre. Impulse from this centre reduces the duration of inspiration and thereby alter respiratory rate.
- Chemosensitive area: Seen adjacent to the rhythm centre. Increase in the concentration of CO₂ and H⁺ activates this centre, which in turn signals rhythm centre. **Receptors** in aortic arch & carotid artery also recognize changes in CO₂ & H⁺ concentration and send signals to rhythm centre. Role of oxygen in the regulation of respiratory rhythm is quite insignificant.

DISORDERS OF RESPIRATORY SYSTEM


- 1. Asthma: Difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles.
- 2. Emphysema: Damage of alveolar walls. It decreases respiratory surface. Major cause is cigarette smoking.
- **3. Occupational respiratory disorders:** Certain industries produce so much dust. So, the defense mechanism of the body cannot cope with the situation. Long exposure causes inflammation leading to **fibrosis** (proliferation of fibrous tissues). It results in lung damage. Workers in such industries should wear protective masks.

MODEL QUESTIONS


- 1. Draw a flowchart showing the different parts of the air tract.
- 2. Match the following

A	В	С
IC	TV + ERV	3500-4500 ml
EC	ERV + TV + IRV	2100-2300 ml
FRC	TV + IRV	3000-3500 ml
VC	ERV + RV	1500-1600 ml

- 3. Note the relationship between first two words and fill up the fourth place.
 - a. TV: 500 ml IRV:.....
- b. Atmospheric air: 159 mm Hg
- Alveoli:
- 4. The given diagram shows the exchange of gases between alveolus and alveolar capillary.

- a. Identify X and Y.
- b. Name the Physical Process involved in gas exchange.
- c. Mention the factors that favour this process.
- 5. The given graph shows oxygen-haemoglobin dissociation curve.

- a. What is the nature of curve?
- b. Find out the pressure at which Haemoglobin is 50% saturated with O_2 ?
- c. What are the factors which influence it?
- 6. Identify the two true statements from the statements given below and rewrite the two false statements correctly.
 - a. Pneumonia is a chronic disorder due to cigarette smoking.
 - b. Carbon dioxide combines with haemoglobin to form carbamino haemoglobin.
 - c. Respiratory rhythm is maintained by the respiratory centre in the heart.
 - d. Alveoli are the primary sites of exchange of gases.