Chapter 4

Chemical Bonding and Molecular Structure

Solutions

			SECTIO	N - A	A		
	C	Dbjec	tive Type Questions	(One	option is correct)		
1.	Shape of the compounds X	eF ₃ +	and XeF ₅ ⁺ are respec	tively			
	(1) T-shape, square pyram	id	$\langle \cdot, \cdot \rangle$	(2)	Sea-saw, square pyran	nidal	5
	(3) Bent T-shaped, square	pyra	midal	(4)	T-shaped in both	.0	U.
Sol.	Answer (3)					Q,	
	Hybridisation compound/ior	n sha	ape			. He	91
	(i) sp^3d XeF ₃ ⁺	Т				Ju.	
	(ii) <i>sp</i> ³ <i>d</i> ² XeF ₅ ⁺ Squa	re py	ramid		Contraction of the second		
2.	In which of the following co	mpou	unds, back bonding is	possib	ole?		
	(1) PF ₃	(2)	PH ₃	(3)	NH ₃	(4)	NF ₃
Sol.	Answer (1)			$\langle \cdot \rangle$	Equi		
	In PF ₃ due to presence of	vaca	nt <i>d</i> orbital.		4355		
3.	The hybridisation of P in so	olid P	Br ₅ is/are	A'S	0		
	(1) <i>sp</i> ³ <i>d</i>	(2)	sp ³	(3)	sp ³ d ²	(4)	Both (2) & (3)
Sol.	Answer (2)		Ne Divis				
	PBr ₅ exist on PBr ₄ ⁺ Br ⁻ in s	solid					
4.	The compound in which sp	mixi	ng is present				
	(1) N ₂	(2)	0 ₂	(3)	C ₂ H ₂	(4)	Both (1) & (3)
Sol.	Answer (4)						
	Fact						
5.	The correct sequence rega	rding	bond angle				
	(1) $NH_3 > PH_3 > AsH_3$	(2)	$NH_3 = PH_3 = AsH_3$	(3)	$AsH_3 > PH_3 > NH_3$	(4)	$PH_3 > NH_3 > AsH_3$
Sol.	Answer (1)						

In hydride down the group bond angle decreases.

- Correct regarding hydrogen bond strength and boiling point respectively 6. (1) $HF > H_2O, H_2O > HF$ (2) $HF > H_2O, HF > H_2O$ (3) $H_2O > HF$, $H_2O > HF$ (4) $HF > H_2O, HF = H_2O$ Sol. Answer (1) Due to network structure in water. 7. The correct order of pair regarding nodal surface (2) $\sigma 2s < \sigma^* 2p_z$ (3) $\sigma^* 2s > \sigma^* 2p_z$ (4) $\sigma^* 2p_z < \pi 2p_x$ (1) $\sigma 2s > \sigma^* 2s$ Sol. Answer (2) Fact 8. Which of the following representation represent π^* molecular orbital, (z is considered as internuclear axis)? p, (3)(4)2p, 2p, Sol. Answer (2) Opposite sign of wave function gives antibonding. Choose the correct pair regarding dipole moment. 9. HF > HCI (3)(1) $CH_3CI > CH_3F$ (2) $NH_3 > NF_3$ All of these (4)Sol. Answer (4) Due to formation of pseudo dipole. 10. During oxidation, in which of the following bond order increase? Division (2) CO (1) N_2 (3) O₂⁻ Both (2) & (3) **Sol.** Answer (4) Based on M.O. theory. 11. Choose the correct statement regarding PCI₅ (1) All P-Cl bond lenghts are equal (2) P—Cl_{axial} bond lengths is more than P—Cl_{equatorial} (3) P-Cl_{equatorial} bond lengths are more than P-Cl_{axial} (4) P-Cl_{equatorial} bond length may be equal or larger than P-Cl_{axial}
- Sol. Answer (2)
 - In PCI₅, P-CI_{axial} bond length are large.

12.	Which of the forces are con	sider	red as weakest?					
	(1) Ionic bond			(2)	Ion-dipole interactio	n		
	(3) Covalent bond			(4)	London forces			
Sol.	Answer (4)							
	Fact							
13.	How many orbitals on one p	phosp	phorus atom in P ₄ , have	e 25%	% s character?			
	(1) 0	(2)	2	(3)	4	(4)	3	
Sol.	Answer (3)							
	Fact							
14.	The hybridisation of S in ort	horor	mbic sulphur is					
	(1) <i>sp</i>	(2)	sp ³	(3)	sp ²	(4)	Unhybridised	
Sol.	Answer (2)							
	Hybridization of S in orthor	homb	bic S ₈ .					
15.	Among the following which	is inc	correct statement?					
	(1) CIO_2 and NO are parar	nagn	etic in nature				12	
	(2) Hybrid state of P in so	lid PC	Cl_5 is sp^3d^2 and sp^3				all's	
	(3) Bond angle is less for N	VH ₄ +(ł	H-N-H) than NO ₃ ⁻ (O-N	-0)		K	10	
	(4) $N(SiMe_3)_3$ is pyramidal	like I	NMe ₃			20	16sex.	
Sol.	Answer (4)					J.S	an and a second s	
16.	Select the incorrect stateme	ent al	bout (NO_2^-) .		40 still	000		
	(1) All the N – O bonds are equivalent							
	(2) It has two resonating s	tructu	ure		N wall			
	(3) Both resonating structu	res h	nave equal contribution	towa	ards resonance hybrid	d.		
	(4) Formal charge on nitro	gen a	atom in both resonating	g stru	ucture is +1			
Sol.	Answer (4)			S.P				
	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $		The division					
	Formal charge of nitrogen	is zer	ro in both the resonatin	g str	uctures.			
17.	Consider the following state	emen	its:					
	I - The percentage ionic cha of X and Y are 1.4 and	aracte 3.4 r	er according to Hannay· respectively	- Sm	ith equation in X–Y b	ond is	s 46% if electronegativity	
	II - Bond angle of PF_3 is m	ore th	han PH ₃ .					
	III - In PCl ₂ F ₃ , all P-F bond	lengt	ths are equal					
	The correct statement(s) is	(are)						

(1) I only (2) II only (3) I and II only (4) I, II and III

Sol. Answer (3)

% ionic character = 16 $(X_A - X_B) + 3.5 (X_A - X_B)^2$

18. Which of the following combination as per VBT does not result into formation of sigma bond? (Assume z-axis as internuclear axis)

(1)
$$s + s$$
 (2) $s + d_{z^2}$ (3) $s + p_v$ (4) $p_z + d_{z^2}$

Sol. Answer (3)

SECTION - B

Objective Type Questions (More than one options are correct)

Given below is a triangle illustrating the transition between ionic, metallic and covalent bonding 1.

Where (A), (B) and (C) respectively are compounds which have more ionic, covalent and metallic character respectively. Which combination go well for (A), (B) and (C)?

(4) OF₂, CIF, NF₃ (2) IF7, CIF, Na3N Lational Services (1) MgF₂, I_2 , Na₃Bi BeF₂, S₈, Na₃Sb (3)

Sol. Answer (1, 3)

MgF ₂	l ₂	Na ₃ Bi
Ionic	Covalent	Metallic
BeF ₂	S ₈	Na ₃ Sb
lonic	Covalent	Metallic

2. Amongst the given structures, which are permissible resonance forms?

(1)
$$\overset{\oplus}{\operatorname{CH}}_2 - \overset{\boxtimes}{\operatorname{N}} - \overset{\boxtimes}{\operatorname{O}}^{\ominus}_{:}$$
 (2) $\operatorname{CH}_2 = \overset{\boxtimes}{\operatorname{N}} = \overset{\boxtimes}{\operatorname{O}}_{:}$ (3) $\operatorname{CH}_2 = \overset{\bigoplus}{\operatorname{N}} - \overset{\boxtimes}{\operatorname{O}}_{:}$ (4) $\overset{\frown}{\operatorname{CH}}_2 - \overset{\bigoplus}{\operatorname{N}} = O$
 $\overset{I}{\underset{\operatorname{CH}_3}}$ (3) $\operatorname{CH}_2 = \overset{\bigoplus}{\operatorname{N}} - \overset{\boxtimes}{\operatorname{O}}_{:}$ (4) $\overset{\frown}{\operatorname{CH}}_2 - \overset{\bigoplus}{\operatorname{N}} = O$

Sol. Answer (1, 3, 4)

In option 2, N-atom has 5 bonds.

3. In solid PCI₅ exist as [PCI₄]⁺[PCI₆]⁻. The hybridisation of P is/are

(1)
$$sp^3$$
 (2) sp^3d (3) sp^3d^2 (4) sp^3d^3

Sol. Answer (1, 3)

Hybridization of P in PCI_4^+ is sp^3 while in PCI_6^- is sp^3d^2 .

- 4. In which of the following case/s central atom is using same hybridised orbital to make bond with surrounding atom?
 - (2) XeO_2F_2 CO_3^{2-} (1) SF₄ (3) XeO₂ (4)

Sol	Sol. Answer (1, 2)								
	SF_4 and XeO_2F_2 both have 5 VSEP, 4 bond pair and 1 lone pair.								
5.	Which of the following can show variable valency?								
	(1) F	(2)	Cl	(3)	Br	(4)	I		
Sol	. Answer (2, 3, 4)								
	F do not have <i>d</i> orbital hence it is always monovalent but Cl, Br, I have d orbital hence can show variable valency.								
6.	Molecular axis is Z axis, th orbitals?	en w	hich of the following cor	nbina	tion of orbitals will re	sult in	formation of s molecular		
	(1) $p_x - p_x$	(2)	s – s	(3)	$p_z - p_z$	(4)	$p_y - p_y$		
Sol	. Answer (2, 3)								
	If z is intermolecular axis	then	$p_{\rm x} - p_{\rm x}$ and $p_{\rm y} - p_{\rm y}$ will	l ove	rlap sidewise.				
7.	Isostructural group of mole	cule	sare						
	(1) NH ₃ , NF ₃ , BF ₃	(2)	NO_3 , NO_2 , SF_4	(3)	XeO_4 , NH_4^+ , CH_4	(4)	CH_3^- , NH_3^- , NF_3^-		
Sol	. Answer (3, 4)						1		
	(XeO_4, NH_4^+, CH_4) and (CH_3^-, NH_3, NF_3) are isostructural.								
8.	CO_{2} has same geometry	as				Ř	10		
	(1) Hg_2Cl_2	(2)	NO ₂	(3)	C ₂ H ₂	(4)	C ₃ H ₆		
Sol	Sol. Answer (1, 3)								
	CO_2 , Hg_2CI_2 and C_2H_2 all	have	linear geometry.		40	1000			
9.	Which of the following is a	corr	ect statement?		100 ASS				
	(1) All molecules with pol	ar bo	nds have dipole mome	nt	K sijon				
	(2) SnCl ₂ is non-linear mo	olecu	le	2	Fgno				
	(3) Dipole moment of CH	₃ Cl is	greater than CH ₃ F		Has .				
	(4) I_3^- has linear shape		. 31	2P	.o.				
Sol	. Answer (2, 3, 4)		di sio	3					
	SnCl ₂ has lone pair on ce	entral	atom hence it is not lin	near.					
	Dipole moment of CH ₃ Cl	is mo	ore than CH ₃ F because	bon	d length of C–F is le	ess (ch	harge in both is same).		
	$\mu = q \times d$								
	I_3^- has a linear shape.								
10.	Which of the following is a	corr	ect statement?						
	(1) CO ₂ is a monomer while SiO ₂ is a three dimensional giant molecule								

- (2) Graphite is a nonconductor of electricity
- (3) In $(CH_3)_3N$, C-N-C bond angle is approximately 107° whereas in $(SiH_3)_3N$, Si-N-Si bond angle is approximately 120°
- (4) In CO_3^{2-} ion all C—O bonds are equal, while in H_2CO_3 all C—O bonds are not equal

Sol. Answer (1, 3, 4)

In (SiH₃)₃N lone pair is delocalized hence lone pair-bond pair repulsion decreases, hence, bond angle increases.

11. Molecules with see-saw shape are

(1) SF₄ (2) $XeOF_4$ (3) XeO₂F₂ (4) $HgCl_2$

Sol. Answer (1, 3)

 SF_4 BP = 4, LP = 1 \Rightarrow VSEP = 5, (5, 4, 1) seesaw

O ||
F–Xe–F BP = 4, LP = 1
$$\Rightarrow$$
 VSEP = 5 , (5, 4, 1) seesaw ||
O

12. Bond order increases in which of the given transitions?

(1)
$$CO \longrightarrow CO^+$$
 (2) $N_2 \longrightarrow N_2^+$ (3) $O_2 \longrightarrow O_2^+$ (4) $O_2 \longrightarrow O_2^2$

Sol. Answer (1, 3)

When CO \longrightarrow CO⁺, bond order increases from 3 to 3.5 and when O₂ \longrightarrow O⁺₂ bond order increases from 2 to 2.5 because in both case electron is removed from antibonding molecular orbital. of Aakash Educational Services Limited

- 13. Which of the following is correct order as per the property mentioned with it?
 - (1) $\sigma_{2p_z} < \sigma^*_{2p_z} = \pi_{2p_y} < \pi^*_{2p_y}$ (Energy order for O₂ molecule)
 - (2) $NH_3 > PH_3 > AsH_3$ (Bond angle)

(3)
$$(3)$$
 (3)

(4)
$$(H_3 + CH_2 = CH - CH_3 + CH_3 - CH_2 - CH = CH_2$$
 (C–C Bond length)

Sol. Answer (2, 4)

$$\sigma 2p_{z} < (\pi 2p_{x} = \pi 2p_{y}) < (\pi * 2p_{x} = \pi * 2p_{y}) < \sigma * 2p_{z}$$

$$H \xrightarrow{H} H \qquad H \xrightarrow{H} H \qquad H \xrightarrow{H} H \qquad H \xrightarrow{As} H$$

Size N < P < As

N > P > AsEN

Bond angle increases with increasing electronegativity.

 CH_3 is electron donating and CN is electron attracting, hence, order of dipole moment will be o < m < p

 CH_3 , CH₃ is donor hence bond length decreases.

 $CH_2=CH-CH_3$, Here CH_3 can show hyper conjugation hence bond length will be between single and double bond.

CH₃-CH₂-CH=CH₂.

14. In which of the following pairs first partner is more soluble in water than second partner ?

Sol. Answer (2, 4)

NaCl is more soluble and p-hydroxy benzoic acid is more soluble.

15. Which of the following are correctly matched with name of bond present between them?

Joining Entities

- (1) 2 ice cubes pressed together
- (2) Hydrated sodium ions with hydrated chloride ion
- (3) H₂ gas molecules
- (4) HCI gas molecules

Sol. Answer (1, 2)

H₂ gas molecule can not form H-bonding.

HCl gas molecules have dipole interaction.

Bond

Hydrogen bonding

Dipole-dipole interaction

Hydrogen bonding

London's dispersive force

SECTION - C

Linked Comprehension Type Questions

Comprehension-I

In molecular orbital theory (MOT), the atoms in a molecule are supposed to loose their individual control over the electrons. The nuclei of the bonded atoms are considered to be present at equilibrium in inter-nuclear positions. The orbitals where the probability of finding electrons is maximum are multicentred orbitals called molecular orbitals extending over 2 or more nuclei when a pair of atomic orbitals combine and give rise to a pair of molecular orbitals – bonding and antibonding molecular orbital. Electron density is increased for bonding MO's in internuclear region

but decreased for antibonding MO's. Shielding of the nuclei by increased electron density in bonding MO's reduces inter nuclear repulsion & thus stabilizes the molecule whereas lower electron density in antibonding MO's increases the repulsion and destabilises the system.

Distance between 2 atoms

1. Which of the following is the correct order of bond strength of given species?

(1) $N_2 > N_2^+ > N_2^-$ (2) $N_2 > N_2^- > N_2^+$ (3) $N_2^+ > N_2 > N_2^-$ (4) $N_2^- > N_2 > N_2^+$ Sol. Answer (1) N_{2}^{-} 2.5 N_{2}^{+} 2.5 N₂ 3.0 N₂ & N₂ both have same bond order but N₂ has higher number of antibonding electron. Hence correct order is $N_2^- < N_2^+ < N_2$. Which of the following hetero-diatomic molecular ion is paramagnetic? 2. (1) NO⁺ (2) CO (3)CN-Sol. Answer (4) NO^{Θ} is paramagnetic. N_2^+ and O_2^+ 3 Which of the following species have identical value of bond order? (1) F_2 and Ne_2 (2) C₂ and N₂ All of these (4)Sol. Answer (3) F_2 1 Ne₂ 0 C_2 2 N_2 3 2.5 N_2^+ O_2^+ 2.5 Both N₂⁺ & O₂⁺ have bond order 2.5

Comprehension-II

Properties of most ionic solids deviate from ideal ionic character because lattice may undergo some distortion. Cations are usually smaller than anions and have higher effective nuclear charge than the latter. The outer electron cloud in a cation is more firmly held than in an anion. Loose electron cloud of anion when attracted by electron cloud of cation gets distorted. This phenomenon is known as polarisation. Due to this polarisation, electron cloud of anion shifts towards cation which decreases magnitude of '+ve' charge on cation & '-ve' charge on anion. In other words, covalent character develops in ionic bond.

					0 (/		
Which of the following is an ionic compound?							
(2)	AICI ₃	(3)	AlBr ₃	(4)	All ₃		
same, hence, sma	ller the size of anion, le	sser	is polarization and g	greate	r will be ionic character.		
Which of the following alkali metal carbonate decompose on heating?							
(2)	Na ₂ CO ₃	(3)	K ₂ CO ₃	(4)	Rb ₂ CO ₃		
Li ₂ CO ₃ has smaller cation hence more covalent character hence decompose on heating.							
I, RbCI, BeCl ₂ and	MgCl ₂ the compounds	with g	greatest and least ior	nic cha	aracter respectively are		
pCI (2)	RbCl & MgCl ₂	(3)	RbCl & BeCl ₂	(4)	MgCl ₂ & BeCl ₂		
	following alkali met (2) smaller cation henc I, RbCl, BeCl ₂ and bCl (2)	following alkali metal carbonate decompose (2) Na ₂ CO ₃ smaller cation hence more covalent charact cl, RbCl, BeCl ₂ and MgCl ₂ the compounds of bCl (2) RbCl & MgCl ₂	following alkali metal carbonate decompose on (2) Na ₂ CO ₃ (3) smaller cation hence more covalent character h cl, RbCl, BeCl ₂ and MgCl ₂ the compounds with g bCl (2) RbCl & MgCl ₂ (3)	following alkali metal carbonate decompose on heating? (2) Na ₂ CO ₃ (3) K ₂ CO ₃ smaller cation hence more covalent character hence decompose or CI, RbCI, BeCI ₂ and MgCI ₂ the compounds with greatest and least ior bCI (2) RbCI & MgCI ₂ (3) RbCI & BeCI ₂	following alkali metal carbonate decompose on heating? (2) Na_2CO_3 (3) K_2CO_3 (4) smaller cation hence more covalent character hence decompose on heat CI, RbCI, BeCI ₂ and MgCI ₂ the compounds with greatest and least ionic character bCI (2) RbCI & MgCI ₂ (3) RbCI & BeCI ₂ (4)		

LiCI BeCl₂

RbCl MgCl₂

Anions are same hence greatest ionic character is possessed by species having largest cation and least ionic character will be possessed by species containing smallest cation.

Comprehension-III

Electric dipole moment is a vector quantity. If a compound contain more than one polar bond then, the net electric dipole moment is equal to vector sum of individual dipole moment.

e.g., In H₂O

μ = 1.84D

- Which of the following compounds have zero dipole moment? 1.
 - H₂S (1) SF₄ (2) ICI_{4}^{-} (3) SnCl₂ (4)

104.5° H

Sol. Answer (2)

ICI₄ is square planar molecule having zero dipole moment.

2. Out of following which has the highest dipole moment?

Sol. Answer (2)

 CH_3 — is e⁻ donor and —CN is e⁻ acceptor groups.

3. Which of the following compounds have zero dipole moment?

Sol. Answer (2)

In OH, H atoms are not in same plane. In p-xylene both moments are cancelled.

4. A compound has molecular formula XeO_n where 'n' is number of oxygen atoms, dipole moment of the compound is minimum when n is

(1) 4 (2) 1 (3) 3 (4) 2

Sol. Answer (1)

 XeO_4 has no lone pair and its dipole moment is zero.

Comprehension-IV

Lattice energy : Lattice energy is the amount of energy released when one mole of ionic compound is formed from its gaseous ions"

 $\underset{(g)}{Na^{+}}+\underset{(g)}{Cl^{-}}\longrightarrow NaCl(s)+\Delta x \ kJ$

Lattice energy also depend on the 3-D arrangement of ion.

- 1. Which of the following has the highest Lattice energy?
 - (1) MgO (2) NaCl (3) CaO
- Sol. Answer (1)

Lattice energy $\propto \frac{q_1 q_2}{r^2}$

2. In the given compounds least Lattice energy is present in

(1) AgF (2) AgBr (3) AgCl (4) NaCl

Sol. Answer (2)

- 3. LiF is insoluble in water due to
 - (1) Low hydration energy (2) High hydration energy
 - (3) Low Lattice energy (4) High Lattice energy

Sol. Answer (4)

LiF have very high lattice energy.

Comprehension-V

Shape of the compound depend on type and number of electron pair around central atom. These electron pair repel each other and stay as far as possible. The repulsion sequence is as

L.P.— L.P. > B.P. — L.P. > B.P. — B.P.

1. Choose the incorrect match

Co	mpound	Structure		
(1)	SnCl ₂	Linear		
(2)	CO ₂	Linear		
(3)	l ₃ ⁻	Linear		
(4)	N_3^-	Linear		

34	Chemical Bonding and Molecular Structure					Solutions of Assignment (Level-II)		
Sol.	Answer (1)							
	SnCl ₂ is bent shape molec	cule.						
2.	Which of the given compou	ind is	planar?					
	(1) XeF ₅ ⁻	(2)	XeF ₄	(3)	ICl ₄ ⁻	(4)	All of these	
Sol.	Answer (4)							
3.	d_{z^2} orbital take part in hybridisation							
	(1) <i>dsp</i> ³	(2)	sp ³ d ²	(3)	d ² sp ³	(4)	All of these	

Sol. Answer (4)

 d_{z^2} have largest lobes and can easily takes part in all three hybridization.

In $NSi(CH_3)_3$, Si uses its vacant d-orbital for back bonding with lone pair electrons of central N atom, hence, has less tendency to release its electrons, hence, less basic.

Ortho nitro phenol shows intramolecular hydrogen bonding while para nitro phenol shows intermolecular hydrogen bonding hence ortho isomer is more volatile.

 Na^+ is smaller than Ca^{+2} , hence, Na_2CO_3 has more lattice energy than $CaCO_3$. Hence, Na_2CO_3 is more thermally stable.

Water has high density than ice because ice forms cage like structure and large vacancies are created in ice.

XeF₄

$$VSEP = \frac{1}{2} (8 + 4 - 0 + 0)$$

= $\frac{12}{2} = 6 \Rightarrow sp^{3}d^{2}$

 $ICIF_2$

CI is centre atom.

VSEP =
$$\frac{1}{2}$$
 (7 + 3 - 0 + 0)
= $\frac{10}{2}$ = 5 \Rightarrow sp³d

Central atom is C.

If C attached with one double bond then sp^2 .

4. Match the following

Column I

- (A) NF_3
- (B) NH₃
- (C) NO₂
- (D) N₂O
- Sol. Answer A(p), B(s), C(r), D(q)

Column II

- (p) Lowest bond angle among column I
- (q) Lowest dipole moment among column II
- (r) Incomplete octet
- (s) 103° < Bond angle < 109°28'

SECTION - E

Assertion-Reason Type Questions

1. STATEMENT-1 : Polarisation is the distortion of the shape of an anion by an adjacently placed cation.

and

STATEMENT-2 : Maximum polarisation is brought about by a cation of high charge.

Sol. Answer (2)

Factual.

2. STATEMENT-1 : PH_3 and PF_3 are pyramidal in shape with one lone pair on P but PF_3 has greater bond angle than PH_3 .

and

STATEMENT-2 : Back bonding is present in PF₃ but absent in PH₃.

Sol. Answer (1)

More E_N atom shall repel each other strongly, increasing the bond angle. But back-bonding is possible in PF_3 due to vacand d-orbitals in P and availability of Ip on F.

STATEMENT-1 : AIF₃ is a high melting point solid whereas SiF₄ is a gas. 3.

and

STATEMENT-2 : Both AIF₃ and SiF₄ are covalent molecules.

Sol. Answer (3)

AIF₃ is ionic, hence, a solid. SiF₄ is covalent, hence, a gas.

STATEMENT-1 : CS₂ behave as a non-polar solvent. 4.

and

STATEMENT-2 : The shape of CS₂ is linear.

Sol. Answer (2)

S=C=S

C, S have almost same electronegativity, hence, CS₂ is non polar.

 CS_2 is linear (BP = 2, LP = 0, VSEP = 2)

5. STATEMENT-1 : PCl₅ has trigonal bipyramidal shape.

and

STATEMENT-2 : Length of all P-Cl bonds in PCl₅ is equal.

Sol. Answer (3)

In PCI₅ all bond angles and bond lengths are not equal.

- Educational Service STATEMENT-1: The compounds which have polar bonds have non-zero dipole moment 6.

and

STATEMENT-2 : Dipole moment is a vector quantity.

Sol. Answer (4)

O=C=0

CO₂ has two polar bonds although it is non polar.

STATEMENT-1 : H₂O is liquid whereas H₂S is gas. 7.

and

STATEMENT-2 : Oxygen is more electronegative than sulphur.

Sol. Answer (2)

H₂O is liquid due to Hydrogen-bonding; O is more electronegative than S but for Hydrogen-bonding one atom should be highly electronegative while S is not highly electronegative.

8. STATEMENT-1 : Boiling point of H₂O is more than HF.

and

STATEMENT-2 : Intermolecular hydrogen bonding in HF is stronger than H₂O.

Sol. Answer (2)

Boiling point of H₂O is higher because it forms four hydrogen bonds per molecule.

9. STATEMENT-1 : In LiCl, more covalent character is present than in LiF.

and

STATEMENT-2 : Polarizability of Cl⁻ is more than F⁻.

Sol. Answer (1)

Larger will be anoin more will be polarisability.

10. STATEMENT-1 : O_2^- and O_2^+ are paramagnetic.

and

STATEMENT-2 : Bond order of $\mathrm{O_2^+}$ and $\mathrm{O_2^-}$ is same.

Sol. Answer (3)

Bond order of O_2^+ and O_2^- are 2.5 and 1.5 respectively.

SECTION - F

Integer Answer Type Questions ent in H_2SO_4 ? ent in P_4O_{10} ? for bond formation in

- 1. How many no. of σ -bonds are present in H₂SO₄?
- Sol. Answer (6)

Fact.

- 2. How many P–O–P bonds are present in P₄O₁₀?
- Sol. Answer (6)

Fact.

- 3. How many hybrid orbitals are used for bond formation in SF₄?
- Sol. Answer (4)

Hybridization is sp³d.

- ... Five hybrid orbitals and one hybrid orbital is unused carrying lone pair.
- 4. How many right angle bonds are present in BrF₅?
- Sol. Answer (0)

Its shape is distorted square pyramidal.

- 5. What will be the bond order between O—O in peroxide of sodium?
- Sol. Answer (1)

 Na_2O_2 contain O_2^{-2} anion having bond order one.

- 6. Maximum valency that is possible for P with Cl is _____.
- Sol. Answer (6)

PCI₆⁻ exist.

- Number of right angle bonds in PCI₅ is _____. 7.
- Sol. Answer (6)

Due to its trigonal bipyramidal shape.

- 8. Number of $p\pi$ — $p\pi$ bond in given compound CN – CH = CH – CN is _____
- Sol. Answer (5)

 4π between C & N and one π between C—C.

9. How many of the following are planar?

 $C(CN)_3^{-}$, $\overset{\bullet}{CH}_3$, $\overset{(+)}{CH}_3$, H_2O , Polymeric Be H_2 , Polymeric Be Cl_2 , B_2H_6 , C_2H_2 , NO_2^{+} , NO_2 , NO_2^{-}

Sol. Answer (8)

 $C(CN)_3^-$ is planar because there is bonding between $C(2p) - CN^-(\pi^*)$ so this is planar

 ${}^{\bullet}_{CH_3} \rightarrow sp^2$

 $\overset{+}{\mathsf{C}}\mathsf{H}_{\!3}^{}\to \mathit{sp}^2$

 NO_2^+ , NO_2^- , $\stackrel{\bullet}{\text{NO}}_2 \rightarrow \text{planar}$,

 $H_2O \rightarrow planar$

10. Consider the statements

- (i)
- (ii)
- (iii)
- (iv)
- (v)
- Ionisation energy of N_2 is more than NO. (vi)

(vii) Dipole moment of
$$\overbrace{[i]}_{H}$$
 is more than $\overbrace{[i]}_{O}$

(viii) N₂H₄ is polar molecule with London dispersion forces, dipole-dipole forces and H-bonding How many statements are correct?

Sol. Answer (7)

- Better overlap in this position (i)
- (ii) Due to crowding, order of back bonding decrease so bond length increase
- More H-bonding (iii)

40 Chemical Bonding and Molecular Structure

- (iv) As size of halogen increases order of backbonding decreases.
- (v) Si X dipoles are not all equal
- $N_2 \longrightarrow N_2^+ + 1e^-$ (vi) B.O = 2.5 $NO \longrightarrow NO^+ + 1e^-$ B.O = 3 (\cdot) Н Due to two opposing vector dipole moment in is less than Ö Ĥ Call III - TEE Foundson Call Call Call III Call III - TEE Found Services Linited I