

Table of Contents

Continuity Differentiability & Differentiation

\clubsuit	Theory	2
€>	Solved examples	12
\mathcal{C}	Exercise - 1 : Basic Objective Questions	33
\mathcal{C}	Exercise - 2 : Previous Year JEE Mains Questions	43
Ŕ	Exercise - 3 : Advanced Objective Questions	47
Ŕ	Exercise - 4 : Previous Year JEE Advanced Questions	59
ৢ	Answer Key	67

CONTINUITY

Note ..!

1. DEFINITION

A function f(x) is said to be continuous at x = a; where $a \in \text{domain of } f(x)$, if

$$\lim_{\mathbf{x}\to\mathbf{a}^{-}}f(\mathbf{x}) = \lim_{\mathbf{x}\to\mathbf{a}^{+}}f(\mathbf{x}) = f(\mathbf{a})$$

i.e., LHL = RHL = value of a function at x = a

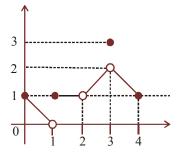
or
$$\lim_{x \to a} f(x) = f(a)$$

12.1 Reasons of discontinuity

If f(x) is not continuous at x = a, we say that f(x) is discontinuous at x = a.

There are following possibilities of discontinuity :

- 1. $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exist but they are not equal.
- 2. $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exists and are equal but not equal to f(a).
- 3. f(a) is not defined.
- 4. At least one of the limits does not exist. Geometrically, the graph of the function will exhibit a break at the point of discontinuity.



The graph as shown is discontinuous at x = 1, 2 and 3.

2. PROPERTIES OF CONTINUOUS FUNCTIONS

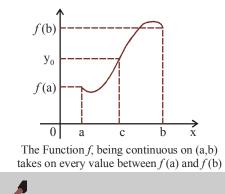
Let f(x) and g(x) be continuous functions at x = a. Then,

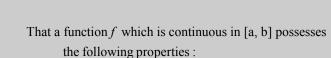
- 1. cf(x) is continuous at x = a, where c is any constant.
- 2. $f(x) \pm g(x)$ is continuous at x = a.
- 3. $f(x) \cdot g(x)$ is continuous at x = a.
- 4. f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.-

5. If f(x) is continuous on [a, b] such that f(a) and f(b) are of opposite signs, then there exists at least one solution of equation f(x) = 0 in the open interval (a, b).

3. THE INTERMEDIATE VALUE THEOREM

Suppose f(x) is continuous on an interval I, and a and b are any two points of I. Then if y_0 is a number between f(a) and f(b), their exits a number c between a and b such that $f(c) = y_0$.





- (i) If f (a) and f (b) possess opposite signs, then there exists at least one solution of the equation f(x) = 0 in the open interval (a, b).
- (ii) If K is any real number between f(a) and f(b), then there exists at least one solution of the equation f (x) = K in the open interval (a, b).

4. CONTINUITY IN AN INTERVAL

- (a) A function f is said to be continuous in (a, b) if f is continuous at each and every point \in (a, b).
- (b) A function f is said to be continuous in a closed interval [a, b] if:
- (1) f is continuous in the open interval (a, b) and
- (2) f is right continuous at 'a' i.e. Limit f(x)=f(a)=a finite quantity.
- (3) f is left continuous at 'b'; i.e. Limit $x \rightarrow b^$ f(x) = f(b) = a finite quantity.

5. A LIST OF CONTINUOUS FUNCTIONS

	Function f (x)	Interval in which
		f (x) is continuous
1.	constant c	$(-\infty,\infty)$
2.	x^n , n is an integer ≥ 0	$(-\infty,\infty)$
3.	x ⁻ⁿ , n is a positive integer	$(-\infty,\infty)-\{0\}$
4.	xa	$(-\infty,\infty)$
5.	$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$	$(-\infty,\infty)$
6.	$\frac{p(x)}{q(x)}$, where $p(x)$ and	$(-\infty, \infty) - \{x; q(x)=0\}$
	q (x) are polynomial in x	
7.	sin x	$(-\infty,\infty)$
8.	cos x	$(-\infty,\infty)$
9.	tan x	$(-\infty,\infty) - \left\{ (2n+1) \frac{\pi}{2} : n \in I \right\}$
10.	cot x	$(-\infty,\infty)-\{n\pi:n\in I\}$
11.	sec x	$(-\infty,\infty) - \{(2n+1)\}$
		$\pi/2: n \in I$
12.	cosec x	$(-\infty,\infty) - \{n\pi : n \in I\}$
13.	e ^x	$(-\infty,\infty)$
14.	log _e x	$(0,\infty)$
_		

6. TYPES OF DISCONTINUITIES

Type-1: (Removable type of discontinuities)

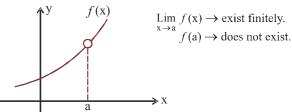
In case, $\underset{x\to c}{\text{Limit } f(x)}$ exists but is not equal to f(c) then the function is said to have a **removable discontinuity or discontinuity of the first kind.** In this case, we can redefine the function such that $\underset{x\to c}{\text{Limit}} f(x) = f(c)$ and make it continuous at x = c. Removable type of discontinuity can be further classified as :

(a) Missing Point Discontinuity :

Where $\underset{x \to a}{\text{Limit } f(x)}$ exists finitely but f(a) is not defined.

E.g. $f(x) = \frac{(1-x)(9-x^2)}{(1-x)}$ has a missing point discontinuity at x = 1, and

$$f(x) = \frac{\sin x}{x}$$
 has a missing point discontinuity at $x = 0$.



missing point discontinuity at x = a

(b) Isolated Point Discontinuity :

Where Limit f(x) exists & f(a) also exists but;

$$\underset{x \to a}{\text{Limit } \neq f(a)}.$$

E.g.
$$f(x) = \frac{x^2 - 16}{x - 4}$$
, $x \neq 4$ and $f(4) = 9$ has an isolated point

discontinuity at x = 4.

Similarly
$$f(x) = [x] + [-x] = \begin{bmatrix} 0 & \text{if } x \in I \\ -1 & \text{if } x \notin I \end{bmatrix}$$
 has an isolated point discontinuity at all $x \in I$.

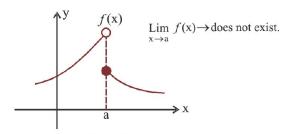
y f(x) f(x) $f(x) \rightarrow exists finitely$ $f(x) \rightarrow exists.$ But, $\lim_{x \rightarrow a} f(x) \neq f(a)$ $x \rightarrow a$

Isolated point discontinuity at x = a

Type-2: (Non-Removable type of discontinuities)

In case, $\underset{x \to a}{\text{Limit }} f(x)$ does not exist, then it is not possible to

make the function continuous by redefining it. Such discontinuities are known as **non-removable discontinuity or discontinuity of the 2nd kind.** Non-removable type of discontinuity can be further classified as :



non-removable discontinuity at x = a

4

(a) Finite Discontinuity :

E.g.,
$$f(x) = x - [x]$$
 at all integral x; $f(x) = \tan^{-1} \frac{1}{x}$ at $x = 0$ and

$$f(\mathbf{x}) = \frac{1}{1 + 2^{\frac{1}{x}}} \text{ at } \mathbf{x} = 0 \text{ (note that } f(0^+) = 0 \text{ ; } f(0^-) = 1)$$

(b) Infinite Discontiunity :

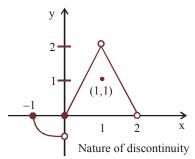
E.g.,
$$f(x) = \frac{1}{x-4}$$
 or $g(x) = \frac{1}{(x-4)^2}$ at $x = 4$; $f(x) = 2^{\tan x}$

at
$$x = \frac{\pi}{2}$$
 and $f(x) = \frac{\cos x}{x}$ at $x = 0$.

(c) Oscillatory Discontinuity :

E.g.,
$$f(x) = \sin \frac{1}{x}$$
 at $x = 0$.

In all these cases the value of f(a) of the function at x = a(point of discontinuity) may or may not exist but $\underset{x \to a}{\text{Limit}}$ does not exist.



From the adjacent graph note that

- -f is continuous at x = -1
- f has isolated discontinuity at x = 1
- -f has missing point discontinuity at x = 2
- -f has non-removable (finite type) discontinity at the origin.

- (a) In case of dis-continuity of the second kind the nonnegative difference between the value of the RHL at x = a and LHL at x = a is called the jump of discontinuity. A function having a finite number of jumps in a given interval I is called a piece wise continuous or sectionally continuous function in this interval.
- (b) All Polynomials, Trigonometrical functions, exponential and Logarithmic functions are continuous in their domains.
- (c) If f(x) is continuous and g(x) is discontinuous at x = athen the product function $\phi(x) = f(x) \cdot g(x)$ is not necessarily be discontinuous at x = a. e.g.

$$f(\mathbf{x}) = \mathbf{x} \text{ and } g(\mathbf{x}) = \begin{bmatrix} \sin\frac{\pi}{\mathbf{x}} & \mathbf{x} \neq 0\\ 0 & \mathbf{x} = 0 \end{bmatrix}$$

(d) If f(x) and g (x) both are discontinuous at x = a then the product function φ (x) = f(x) . g (x) is not necessarily be discontinuous at x = a . e.g.

$$f(\mathbf{x}) = -g(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{x} \ge 0\\ -1 & \mathbf{x} < 0 \end{bmatrix}$$

(e) Point functions are to be treated as discontinuous eg.

$$f(x) = \sqrt{1-x} + \sqrt{x-1}$$
 is not continuous at $x = 1$.

- (f) A continuous function whose domain is closed must have a range also in closed interval.
- (g) If f is continuous at x = a and g is continuous at x = f(a) then the composite g[f(x)] is continuous at

x = a E.g
$$f(x) = \frac{x \sin x}{x^2 + 2}$$
 and $g(x) = |x|$ are continuous at x

= 0, hence the composite (gof) (x) =
$$\left| \frac{x \sin x}{x^2 + 2} \right|$$
 will also be

continuous at x = 0.

DIFFERENTIABILITY

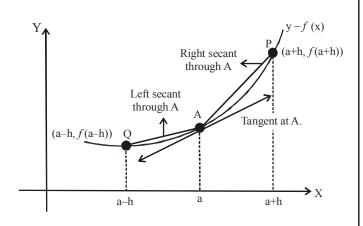
7. DEFINITION

Let f(x) be a real valued function defined on an open interval (a, b) where $c \in (a, b)$. Then f(x) is said to be differentiable or derivable at x = c,

iff,
$$\lim_{x\to c} \frac{f(x) - f(c)}{(x-c)}$$
 exists finitely

This limit is called the derivative or differentiable coefficient of the function f(x) at x = c, and is denoted by

$$f'(c)$$
 or $\frac{d}{dx}(f(x))_{x=c}$



• Slope of Right hand secant =
$$\frac{f(a+h) - f(a)}{h}$$
 as

 $h \rightarrow 0, P \rightarrow A$ and secant (AP) \rightarrow tangent at A

$$\Rightarrow \quad \text{Right hand derivative} = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

- = Slope of tangent at A (when approached from right) $f'(a^+)$.
- Slope of Left hand secant = $\frac{f(a-h) f(a)}{-h}$ as h

 \rightarrow 0, Q \rightarrow A and secant AQ \rightarrow tangent at A

$$\Rightarrow \quad \text{Left hand derivative} = \lim_{h \to 0} \left(\frac{f(a-h) - f(a)}{-h} \right)$$

= Slope of tangent at A (when approached from left) $f'(a^{-})$. Thus, f(x) is differentiable at x = c.

$$\Leftrightarrow \lim_{x \to c} \frac{f(x) - f(c)}{(x - c)} \text{ exists finitely}$$

$$\Rightarrow \qquad \lim_{\mathbf{x}\to\mathbf{c}^{-}}\frac{f(\mathbf{x})-f(\mathbf{c})}{(\mathbf{x}-\mathbf{c})} = \lim_{\mathbf{x}\to\mathbf{c}^{+}}\frac{f(\mathbf{x})-f(\mathbf{c})}{(\mathbf{x}-\mathbf{c})}$$

$$\Leftrightarrow \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Hence,
$$\lim_{\mathbf{x}\to\mathbf{c}^-}\frac{f(\mathbf{x})-f(\mathbf{c})}{(\mathbf{x}-\mathbf{c})} = \lim_{\mathbf{h}\to\mathbf{0}}\frac{f(\mathbf{c}-\mathbf{h})-f(\mathbf{c})}{-\mathbf{h}}$$
 is

called the **left hand derivative** of f(x) at x = c and is denoted by $f'(c^{-})$ or Lf'(c).

While,
$$\lim_{\mathbf{x}\to\mathbf{c}^+}\frac{f(\mathbf{x})-f(\mathbf{c})}{\mathbf{x}-\mathbf{c}} = \lim_{\mathbf{h}\to\mathbf{0}}\frac{f(\mathbf{c}+\mathbf{h})-f(\mathbf{c})}{\mathbf{h}}$$
 is

called the **right hand derivative** of f(x) at x = cand is denoted by $f'(c^+)$ or Rf'(c).

If $f'(c^-) \neq f'(c^+)$, we say that f(x) is not differentiable at x = c.

8. DIFFERENTIABILITY IN A SET

- A function f(x) defined on an open interval (a, b) is said to 1. be differentiable or derivable in open interval (a, b), if it is differentiable at each point of (a, b).
- A function f(x) defined on closed interval [a, b] is said to be 2. differentiable or derivable. "If f is derivable in the open interval (a, b) and also the end points a and b, then f is said to be derivable in the closed interval [a, b]".

i.e.,
$$\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}$$
 and $\lim_{x\to b^-} \frac{f(x)-f(b)}{x-b}$, both exist.

A function f is said to be a differentiable function if it is differentiable at every point of its domain.

- 1. If f(x) and g(x) are derivable at x = a then the functions f(x) + g(x), f(x) - g(x), $f(x) \cdot g(x)$ will also be derivable at x = a and if $g(a) \neq 0$ then the function $f(\mathbf{x})/g(\mathbf{x})$ will also be derivable at x = a.
- 2. If f(x) is differentiable at x = a and g(x) is not differentiable at x = a, then the product function F (x) = f(x). g(x) can still be differentiable at $\mathbf{x} = \mathbf{a}$. E.g. $f(\mathbf{x}) = \mathbf{x}$ and $g(\mathbf{x}) = |\mathbf{x}|$.
- 3. If f(x) and g(x) both are not differentiable at x = a then the product function; F(x) = f(x). g(x)can still be differentiable at x = a. E.g., $f(\mathbf{x}) = |\mathbf{x}|$ and $g(\mathbf{x}) = |\mathbf{x}|$.
- If f(x) and g(x) both are not differentiable at 4. x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function. E.g., f(x) = |x| and $g(\mathbf{x}) = -|\mathbf{x}|$.

9. RELATION B/W CONTINUITY & DIFFERENTIABILITY

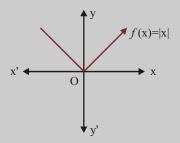
In the previous section we have discussed that if a function is differentiable at a point, then it should be continuous at that point and a discontinuous function cannot be differentiable. This fact is proved in the following theorem.

Theorem : If a function is differentiable at a point, it is necessarily continuous at that point. But the converse is not necessarily true,

- or f(x) is differentiable at x = c
- \Rightarrow $f(\mathbf{x})$ is continuous at $\mathbf{x} = \mathbf{c}$.

Note

Converse : The converse of the above theorem is not necessarily true i.e., a function may be continuous at a point but may not be differentiable at that point. **E.g.**, The function f(x) = |x| is continuous at x = 0 but it is not differentiable at x = 0, as shown in the figure.



The figure shows that sharp edge at x = 0 hence, function is not differentiable but continuous at x = 0.

(a) Let $f'^+(a) = p \& f'^-(a) = q$ where p & q are finite then

(i) $p = q$	\Rightarrow f is derivable at x = a
	C • . • . •

 \Rightarrow f is continuous at x = a. \Rightarrow f is not derivable at x = a.

It is very important to note that f may be still continuous at x = a.

In short, for a function f:

Differentiable \Rightarrow Continuous;

Not Differentiable \Rightarrow Not Continuous (i.e., function may be continuous) But.

(ii) p ≠ q

- **Not Continuous** \Rightarrow Not Differentiable.
- (b) If a function f is not differentiable but is continuous at x = a it geometrically implies a sharp corner at $\mathbf{x} = \mathbf{a}$.

Theorem 2 : Let f and g be real functions such that fog is defined if g is continuous at x = a and f is continuous at g (a), show that fog is continuous at x = a.

6

DIFFERENTIATION

10. DEFINITION

(a) Let us consider a function y = f(x) defined in a certain interval. It has a definite value for each value of the independent variable x in this interval.

Now, the ratio of the increment of the function to the increment in the independent variable,

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Now, as $\Delta x \to 0$, $\Delta y \to 0$ and $\frac{\Delta y}{\Delta x} \to$ finite quantity, then

derivative f(x) exists and is denoted by y' or f'(x) or $\frac{dy}{dx}$

Thus,
$$f'(x) = \lim_{x \to 0} \left(\frac{\Delta y}{\Delta x}\right) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(if it exits)

for the limit to exist,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x-h) - f(x)}{-h}$$

(Right Hand derivative) (I

(Left Hand derivative)

(b) The derivative of a given function f at a point x = a of its domain is defined as :

$$\underset{h \to 0}{\text{Limit}} \frac{f(a+h) - f(a)}{h}, \text{ provided the limit exists & is}$$

denoted by f'(a).

Note that alternatively, we can define

$$f'(a) = \underset{x \to a}{\text{Limit}} \frac{f(x) - f(a)}{x - a}$$
, provided the limit exists.

This method is called first principle of finding the derivative of f(x).

11. DERIVATIVE OF STANDARD FUNCTION

(i)
$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}; x \in \mathbb{R}, n \in \mathbb{R}, x > 0$$

(ii)
$$\frac{d}{dx}(e^x) = e^x$$

(iii)
$$\frac{d}{dx}(a^x) = a^x \cdot \ln a (a > 0)$$

(iv)
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

(v)
$$\frac{d}{dx} (\log_a |x|) = \frac{1}{x} \log_a e$$

(vi)
$$\frac{d}{dx}(\sin x) = \cos x$$

(vii)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(viii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(ix)
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

(x)
$$\frac{d}{dx}(\operatorname{cosec} x) = -\operatorname{cosec} x \cdot \cot x$$

(xi)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

(xii)
$$\frac{d}{dx}(constant) = 0$$

(xiii)
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \quad -1 < x < 1$$

(xiv)
$$\frac{d}{dx} (\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}, \quad -1 < x < 1$$

(xv)
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}, \qquad x \in \mathbb{R}$$

(xvi)
$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\cot^{-1} x \right) = \frac{-1}{1+x^2}, \qquad x \in \mathbb{R}$$

(xvii)
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}, \quad |x| > 1$$

(xviii) $\frac{d}{dx} \left(\csc^{-1} x \right) = \frac{-1}{|x|\sqrt{x^2 - 1}}, |x| > 1$

(xix) Results :

 \Rightarrow

If the inverse functions f & g are defined by y = f(x) & x = g(y). Then g(f(x)) = x. $g'(f(x)) \cdot f'(x) = 1$.

This result can also be written as, if $\frac{dy}{dx}$ exists & $\frac{dy}{dx} \neq 0$, then

$$\frac{dx}{dy} = 1/\left(\frac{dy}{dx}\right) \text{ or } \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \text{ or } \frac{dy}{dx} = 1/\left(\frac{dx}{dy}\right) \left[\frac{dx}{dy} \neq 0\right]$$

12. THEOREMS ON DERIVATIVES

If u and v are derivable functions of x, then,

- Term by term differentiation : $\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$ (i)
- Multiplication by a constant $\frac{d}{dx}(K u) = K \frac{du}{dx}$, where K is (ii) any constant

(iii) **"Product Rule"**
$$\frac{d}{dx}(u.v) = u\frac{dv}{dx} + v\frac{du}{dx}$$
 known as
In general,

If $u_1, u_2, u_3, u_4, ..., u_n$ are the functions of x, then (a)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathbf{u}_1 \cdot \mathbf{u}_2 \cdot \mathbf{u}_3 \cdot \mathbf{u}_4 \dots \mathbf{u}_n \right)$$
$$= \left(\frac{\mathrm{d}u_1}{\mathrm{d}x} \right) \left(\mathbf{u}_2 \mathbf{u}_3 \mathbf{u}_4 \dots \mathbf{u}_n \right) + \left(\frac{\mathrm{d}u_2}{\mathrm{d}x} \right) \left(\mathbf{u}_1 \mathbf{u}_3 \mathbf{u}_4 \dots \mathbf{u}_n \right)$$

$$+ \left(\frac{du_{3}}{dx}\right) \left(u_{1} u_{2} u_{4} \dots u_{n}\right) + \left(\frac{du_{4}}{dx}\right) \left(u_{1} u_{2} u_{3} u_{5} \dots u_{n}\right)$$
$$+ \dots + \left(\frac{du_{n}}{dx}\right) \left(u_{1} u_{2} u_{3} \dots u_{n-1}\right)$$

(iv) "Quotient Rule"
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$$
 where $v \neq 0$

 (d_{11})

known as

(b) **Chain Rule :** If
$$y = f(u)$$
, $u = g(w)$, $w = h(x)$

then
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dw} \cdot \frac{dw}{dx}$$

or
$$\frac{dy}{dx} = f'(u) \cdot g'(w) \cdot h'(x)$$

In general if
$$y = f(u)$$
 then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$

13. METHODS OF DIFFERENTIATION

13.1 Derivative by using Trigonometrical Substitution

Using trigonometrical transformations before differentiation shorten the work considerably. Some important results are given below :

(i)
$$\sin 2x = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$$

(ii)
$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

(iii)
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

$$(iv) \quad \sin 3x = 3\sin x - 4\sin^3 x$$

$$(v) \quad \cos 3x = 4\cos^3 x - 3\cos x$$

(vi)
$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

(vii)
$$\tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x}$$

(viii)
$$\tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$$

(ix) $\sqrt{(1 \pm \sin x)} = \left|\cos\frac{x}{2} \pm \sin\frac{x}{2}\right|$
(x) $\tan^{-1}x \pm \tan^{-1}y = \tan^{-1}\left(\frac{x \pm y}{1 \mp xy}\right)$
(xi) $\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}\left\{x\sqrt{1 - y^2} \pm y\sqrt{1 - x^2}\right\}$
(xii) $\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}\left\{xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2}\right\}$
(xiii) $\sin^{-1}x + \cos^{-1}x = \tan^{-1}x + \cot^{-1}x = \sec^{-1}x + \csc^{-1}x = \pi/2$
(xiv) $\sin^{-1}x = \csc^{-1}(1/x)$; $\cos^{-1}x = \sec^{-1}(1/x)$; $\tan^{-1}x = \cot^{-1}(1/x)$
Note.
Some standard substitutions :
Expressions Substitutions
 $\sqrt{(a^2 - x^2)}$ $x = a \sin \theta$ or $a \cos \theta$

Some standard substitutions :
Expressions Substitutions

$$\sqrt{(a^2 - x^2)}$$
 $x = a \sin \theta$ or $a \cos \theta$
 $\sqrt{(a^2 + x^2)}$ $x = a \tan \theta$ or $a \cot \theta$
 $\sqrt{(x^2 - a^2)}$ $x = a \sec \theta$ or $a \csc \theta$
 $\sqrt{(x^2 - a^2)}$ $x = a \sec \theta$ or $a \csc \theta$
 $\sqrt{(\frac{a + x}{a - x})}$ or $\sqrt{(\frac{a - x}{a + x})}$ $x = a \cos \theta$ or $a \cos 2\theta$
 $\sqrt{(a - x)(x - b)}$ or $x = a \cos^2 \theta + b \sin^2 \theta$
 $\sqrt{(x - a)(x - b)}$ or $x = a \sec^2 \theta - b \tan^2 \theta$
 $\sqrt{(\frac{x - a}{x - b})}$ or $\sqrt{(\frac{x - b}{a - x})}$

 $\sqrt{(2ax-x^2)}$ $x = a(1-\cos\theta)$

 $a \cos 2\theta$

13.2 Logarithmic Differentiation

To find the derivative of :

If
$$y = \{f_1(x)\}^{f_2(x)}$$
 or $y = f_1(x) \cdot f_2(x) \cdot f_3(x) \dots$
or $y = \frac{f_1(x) \cdot f_2(x) \cdot f_3(x) \dots}{g_1(x) \cdot g_2(x) \cdot g_3(x) \dots}$

then it is convenient to take the logarithm of the function first and then differentiate. This is called derivative of the logarithmic function.

Important Notes (Alternate methods)

1. If
$$y = \{f(x)\}^{g(x)} = e^{g(x)\ln f(x)}$$
 ((variable)^{variable}) $\{\because x = e^{\ln x}\}$
 $\therefore \frac{dy}{dx} = e^{g(x)\ln f(x)} \cdot \{g(x) \cdot \frac{d}{dx}\ln f(x) + \ln f(x) \cdot \frac{d}{dx}g(x)\}$
 $= \{f(x)\}^{g(x)} \cdot \{g(x) \cdot \frac{f'(x)}{f(x)} + \ln f(x) \cdot g'(x)\}$
2. If $y = \{f(x)\}^{g(x)}$
 $\therefore \frac{dy}{dx} = \text{Derivative of y treating } f(x) \text{ as constant + Derivative of } y \text{ treating } g(x) \text{ as constant}$
 $= \{f(x)\}^{g(x)} \cdot \ln f(x) \cdot \frac{d}{dx}g(x) + g(x)\{f(x)\}^{g(x)-1} \cdot \frac{d}{dx}f(x)$
 $= \{f(x)\}^{g(x)} \cdot \ln f(x) \cdot g'(x) + g(x) \cdot \{f(x)\}^{g(x)-1} \cdot f'(x)$

13.3 Implict Differentiation :
$$\phi(x, y) = 0$$

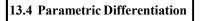
- (i) In order to find dy/dx in the case of implicit function, we differentiate each term w.r.t. x, regarding y as a function of x & then collect terms in dy/dx together on one side to finally find dy/dx.
- In answers of dy/dx in the case of implicit function, both x & (ii) y are present.

Alternate Method : If f(x, y) = 0

then
$$\frac{dy}{dx} = -\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} = -\frac{\text{diff. of } f \text{ w.r.t. } x \text{ treating } y \text{ as constant}}{\text{diff. of } f \text{ w.r.t. } y \text{ treating } x \text{ as constant}}$$

10

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION



If y = f(t) & x = g(t) where t is a Parameter, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} \qquad \dots (1)$$

1. $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$

2.
$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \left(\because \frac{dy}{dx} \text{ in terms of } t\right)$$

$$= \frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{f'(t)}{g'(t)} \right) \cdot \frac{1}{f'(t)} \quad \{\mathrm{From}(1)\}$$

$$\frac{f''(t)g'(t)-g''(t)f'(t)}{\{f'(t)\}^3}$$

13.5 Derivative of a Function w.r.t. another Function

Let
$$y = f(x)$$
; $z = g(x)$ then $\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$

13.6 Derivative of Infinite Series

If taking out one or more than one terms from an infinite series, it remains unchanged. Such that

(A) If
$$y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$$

then $y = \sqrt{f(x) + y} \Rightarrow (y^2 - y) = f(x)$

Differentiating both sides w.r.t. x, we get $(2y-1) \frac{dy}{dx} = f'(x)$

(B) If
$$y = \{f(x)\}^{\{f(x)\}, \{f(x)\}, \dots, \infty}$$
 then $y = \{f(x)\}^y \implies y = e^{y \ln f(x)}$

Differentiating both sides w.r.t. x, we get

$$\frac{dy}{dx} = \frac{y\{f(x)\}^{y-1} \cdot f'(x)}{1 - \{f(x)\}^{y} \cdot \ell n f(x)} = \frac{y^2 f'(x)}{f(x)\{1 - y \ell n f(x)\}}$$

14. DERIVATIVE OF ORDER TWO & THREE

Let a function y = f(x) be defined on an open interval (a, b). It's derivative, if it exists on (a, b), is a certain function f'(x) [or (dy/dx) or y'] & is called the first derivative of y w.r.t. x. If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second derivative of y w.r.t. x & is denoted by f''(x) or (d^2y/dx^2) or y''.

Similarly, the 3rd order derivative of y w.r.t. x, if it exists, is

defined by
$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$$
 it is also denoted by $f''(x)$ or y''' .

Some Standard Results :

(i)
$$\frac{d^{n}}{dx^{n}}(ax+b)^{m} = \frac{m!}{(m-n)!} \cdot a^{n} \cdot (ax+b)^{m-n}, m \ge n.$$

(ii)
$$\frac{d^n}{dx^n}x^n = n!$$

(iii)
$$\frac{d^n}{dx^n}(e^{mx}) = m^n \cdot e^{mx}, m \in \mathbb{R}$$

(iv)
$$\frac{d^n}{dx^n}(\sin(ax+b)) = a^n \sin(ax+b+\frac{n\pi}{2}), n \in \mathbb{N}$$

(v)
$$\frac{d^n}{dx^n} \left(\cos(ax+b) \right) = a^n \cos\left(ax+b+\frac{n\pi}{2}\right), n \in \mathbb{N}$$

(vi)
$$\frac{d^n}{dx^n} \left\{ e^{ax} \sin(bx+c) \right\} = r^n \cdot e^{ax} \cdot \sin(bx+c+n\phi), n \in \mathbb{N}$$

where
$$r = \sqrt{(a^2 + b^2)}, \phi = \tan^{-1}(b/a).$$

(vii)
$$\frac{d^n}{dx^n} \left\{ e^{ax} . \cos(bx + c) \right\} = r^n . e^{ax} . \cos(bx + c + n\phi), n \in \mathbb{N}$$

where
$$r = \sqrt{(a^2 + b^2)}, \phi = \tan^{-1}(b/a).$$

15. DIFFERENTIATION OF DETERMINANTS

If
$$F(\mathbf{X}) = \begin{vmatrix} f(\mathbf{x}) & g(\mathbf{x}) & h(\mathbf{x}) \\ \ell(\mathbf{x}) & m(\mathbf{x}) & n(\mathbf{x}) \\ u(\mathbf{x}) & v(\mathbf{x}) & w(\mathbf{x}) \end{vmatrix}$$

where f, g, h, l, m, n, u, v, w are differentiable function of x then

$$F'(\mathbf{x}) = \begin{vmatrix} f'(\mathbf{x}) & g'(\mathbf{x}) & h'(\mathbf{x}) \\ \ell(\mathbf{x}) & m(\mathbf{x}) & n(\mathbf{x}) \\ u(\mathbf{x}) & v(\mathbf{x}) & w(\mathbf{x}) \end{vmatrix} + \begin{vmatrix} f(\mathbf{x}) & g(\mathbf{x}) & h(\mathbf{x}) \\ \ell'(\mathbf{x}) & m'(\mathbf{x}) & n(\mathbf{x}) \\ u(\mathbf{x}) & v(\mathbf{x}) & w(\mathbf{x}) \end{vmatrix} + \begin{vmatrix} f(\mathbf{x}) & g(\mathbf{x}) & h(\mathbf{x}) \\ \ell(\mathbf{x}) & w(\mathbf{x}) & w(\mathbf{x}) \end{vmatrix} + \begin{vmatrix} f(\mathbf{x}) & g(\mathbf{x}) & h(\mathbf{x}) \\ \ell(\mathbf{x}) & m(\mathbf{x}) & n(\mathbf{x}) \\ \ell(\mathbf{x}) & w'(\mathbf{x}) & w'(\mathbf{x}) \end{vmatrix}$$

16. L' HOSPITAL'S RULE

If f(x) & g(x) are functions of x such that :

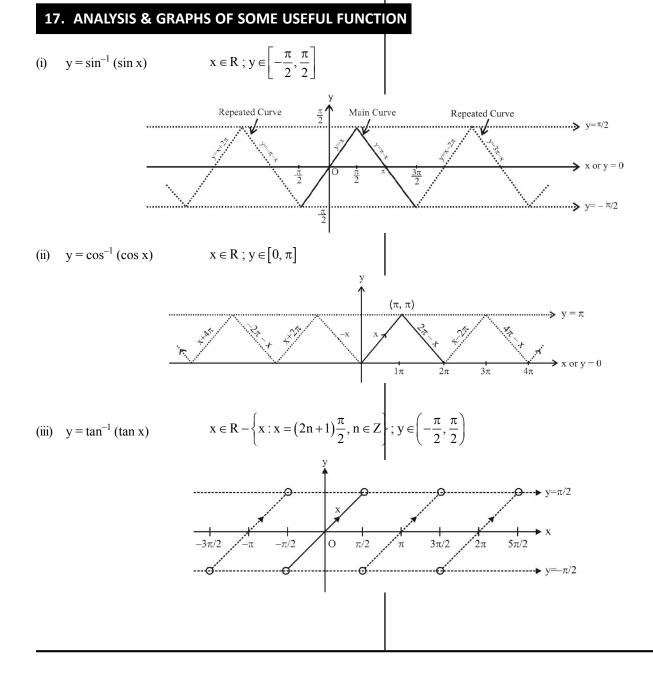
(i)
$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$$
 or $\lim_{x \to a} f(x) = \infty = \lim_{x \to a} g(x)$ and

11

- (ii) Both f(x) & g(x) are continuous at x = a and
- Both f(x) & g(x) are differentiable at x = a and (iii)
- Both f'(x) & g'(x) are continuous at x = a, Then (iv)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)} \text{ & so on till}$$

indeterminant form vanishes..



SOLVED EXAMPLES

Example – 1

Show that
$$f(x) = \begin{cases} 5x - 4, & \text{when } 0 < x \le 1\\ 4x^3 - 3x, & \text{when } 1 < x < 2 \end{cases}$$

is continuous at x = 1.

Sol. We have,

 $(LHL at x = 1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 5x - 4$ $x \rightarrow 1^{-}$ $[:: f(x) = 5x - 4, \text{ when } x \le 1]$ $= 5 \times 1 - 4 = 1$, (RHL at x = 1) = $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} 4x^{3} - 3x$ $[:: f(x) = 4x^3 - 3x, x > 1]$ $=4(1)^{3}-3(1)=1$, and, $f(1) = 5 \times 1 - 4 = 1$ [:: f(x) = 5x - 4, where $x \le 1$] $\lim f(x) = f(1) = \lim f(x)$ $x \rightarrow l^{-}$ $x \rightarrow l^+$ So, f(x) is continuous at x = 1.

Example-2

...

Test the continuity of the function f(x) at the origin :

$$f(x) = \begin{cases} \frac{|x|}{x}; & x = 0\\ 1; & x = 0 \end{cases}$$

Sol. We have,

$$(LHL at x = 0) = \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h)$$
$$= \lim_{h \to 0} \frac{|-h|}{-h} = \lim_{h \to 0} \frac{h}{-h} = \lim_{h \to 0} -1 = -1$$
and, (RHL at x = 0) = $\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h)$

$$= \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1$$

Thus, f(x) is not continuous at the origin.

Example-3

Discuss the continuity of the function of given by f(x) = |x-1| + |x-2| at x = 1 and x = 2.

Sol. We have,

$$f(x) = |x-1| + |x-2|$$

$$\Rightarrow f(x) = \begin{cases} -(x-1) - (x-2), & \text{if } x < 1\\ (x-1) - (x-2), & \text{if } 1 \le x < 2\\ (x-1) + (x-2), & \text{if } x \ge 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x+3, & \text{if } x < 1\\ 1, & \text{if } 1 \le x < 2\\ 2x-3, & x \ge 2 \end{cases}$$
Continuity at x = 1:
We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-2x+3) = -2 \times 1 + 3 = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} 1 = 1$$
and, $f(1) = 1$.

$$\therefore \lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$
So, $f(x)$ is continuous at $x = 1$.
Continuity at $x = 2$
We have,

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 1 = 1$$
and, $f(2) = 2 \times 2 - 3 = 1$.

$$\therefore \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$
So, $f(x)$ is continuous at $x = 2$.

12

Example-4

Examine the function f(t) given by

$$f(t) = \begin{cases} \frac{\cos t}{\pi/2 - t}; & t \neq \pi/2\\ 1 & ; & t = \pi/2 \end{cases}$$

for continuity at t = $\pi/2$

Sol. We have,

(LHL at $t = \pi/2$) = $\lim_{t \to \pi/2^{-}} f(t)$ = $\lim_{h \to 0} f(\pi/2 - h) = \lim_{h \to 0} \frac{\cos(\pi/2 - h)}{\pi/2 - (\pi/2 - h)} = \lim_{h \to 0} \frac{\sin h}{h} = 1$ and, (RHL at $t = \pi/2$) = $\lim_{t \to \pi/2^{+}} f(t)$

$$= \lim_{h \to 0} f(\pi/2 + h) = \lim_{h \to 0} \frac{\cos(\pi/2 + h)}{\pi/2 - (\pi/2 + h)}$$

$$= \lim_{h \to 0} \frac{-\sin h}{-h} = \lim_{h \to 0} \frac{\sin h}{h} = 1$$

Also, $f(\pi/2) = 1$.

 $\therefore \lim_{t \to \pi/2^{-}} f(t) = \lim_{t \to \pi/2^{+}} = f(\pi/2)$ So, f(t) is continuous at $t = \pi/2$.

Example-5

Prove that the greatest integer function [x] is continuous at all points except at integer points.

Sol. Let f(x) = [x] be the greatest integer function. Let k be any integer. Then,

$$f(x) = [x] = \begin{cases} k-1, & \text{if } k-1 \le x < k \\ k, & \text{if } k \le x < k+1 \end{cases}$$
[By def.]
Now (LHL at x = k)

$$= \lim_{x \to k^{-}} f(x) = \lim_{h \to 0} f(k-h) = \lim_{h \to 0} [k-h]$$

$$= \lim_{h \to 0} (k-1) = k-1$$
[$\because k-1 \le k-h < k \therefore [k-h] = k-1$]
and, (RHL at x = k)

$$= \lim_{x \to k^{+}} f(x) = \lim_{h \to 0} f(k+h) = \lim_{h \to 0} [k+h]$$

$$= \lim_{x \to k^{+}} f(x) = \lim_{h \to 0} f(k+h) = \lim_{h \to 0} [k+h]$$

 $[\because k \le k+h < k+1 \therefore [k+h] = k]$

 $\therefore \quad \lim_{x \to k^-} f(x) \neq \lim_{x \to k^+} f(x)$

So, f(x) is not continuous at x = k.

Since k is an arbitrary integer. Therefore, f(x) is not continuous at integer points.

Let a be any real number other than an integer. Then, there exists an integer k such that $k - 1 \le a \le k$.

Now, (LHL at x = a)

$$\lim_{x \to a^{-}} f(x) = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} [a - h]$$

=
$$\lim_{x \to 0} k - 1 = k - 1$$

[$\because k - 1 < a - h < k \therefore [a - h] = k - 1$]
(RHL at x = a)
=
$$\lim_{x \to a^{+}} f(x) = \lim_{h \to 0} f(a + h)$$

=
$$\lim_{h \to 0} [a + h] = \lim_{h \to 0} (k - 1) = k - 1$$

[$\because k - 1 < a + h < k \therefore [a + h] = k - 1$]
and, $f(a) = k - 1$
[$\because k - 1 < a < k \therefore [a] = k - 1$]

Thus,

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

So, f(x) is continuous at x = a. Since a is an arbitrary real number, other than an integer. Therefore, f(x) is continuous at all real points except integer points.

Example-6

Show that the function f(x) given by

$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0\\ 0, & \text{when } x = 0 \end{cases}$$
 is discontinuous at x=0.

Sol. We have,

$$(LHL at x = 0) = \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h)$$

$$= \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = \lim_{h \to 0} \frac{\frac{1}{e^{1/h}} - 1}{\frac{1}{e^{1/h}} + 1} = \frac{0 - 1}{0 + 1} = -1$$

$$\left[\because \lim_{h \to 0} \frac{1}{e^{1/h}} = 0 \right]$$

and, (RHL at x = 0) = $\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h)$ $x \rightarrow 0^+$

$$= \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0} \frac{1 - 1/e^{1/h}}{1 + 1/e^{1/h}} = \frac{1 - 0}{1 + 0} = 1$$

So, f(x) is not continuous at x = 0 and has a discontinuity of first kind at x = 0.

Example-7

Find the value of the constant λ so that the function given below is continuous at x = -1.

$$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x + 1}, & x \neq -1 \\ \lambda, & x = -1 \end{cases}$$

Sol. Since f(x) is continuous at x = -1. Therefore,

$$\lim_{x \to -1} f(x) = f(-1)$$

$$\Rightarrow \quad \lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1} = \lambda \qquad [\because f(-1) = \lambda]$$

$$\Rightarrow \lim_{x \to -1} \frac{(x-3)(x+1)}{x+1} = \lambda \Rightarrow \lim_{x \to -1} (x-3) = \lambda \Rightarrow -4 = \lambda$$

So, f(x) is continuous at x = -1, if $\lambda = -4$.

Example-8

If the function f(x) defined by $\left(\log\left(1+ax\right)-\log\left(1-bx\right)\right)$

$$f(x) = \begin{cases} \frac{\log (1 + dx) - \log (1 - bx)}{x}, & \text{if } x \neq 0\\ k & , & \text{if } x = 0 \end{cases}$$

is continuous at x = 0, find k.

Sol. Since f(x) is continuous at x = 0. Therefore,

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \quad \lim_{x \to 0} \frac{\log (1 + ax) - \log (1 - bx)}{x} = k \qquad [\because f(0) = k]$$

$$\Rightarrow \quad \lim_{x \to 0} \left[\frac{\log (1 + ax)}{x} - \frac{\log (1 - bx)}{x} \right] = k$$

$$\Rightarrow \quad \lim_{x \to 0} \frac{\log (1 + ax)}{x} - \lim_{x \to 0} \frac{\log (1 - bx)}{x} = k$$

$$\Rightarrow \quad a \lim_{x \to 0} \frac{\log (1 + ax)}{ax} - (-b) \lim_{x \to 0} \frac{\log (1 - bx)}{(-b) x} = k$$

$$\left[U\sin g: \lim_{x \to 0} \frac{\log (1+x)}{x} = 1 \right]$$

a(1)-(-b)(1)=k

 \Rightarrow a+b=kThus, f(x) is continuous at x = 0, if k = a + b.

Example-9

 \Rightarrow

Let
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} &, \text{ if } x < 0\\ a &, \text{ if } x = 0\\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} &, \text{ if } x > 0 \end{cases}$$

Determine the value of a so that f(x) is continuous at x = 0.

Sol. For
$$f(x)$$
 to be continuous at $x = 0$, we must have

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$
$$\Rightarrow \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = a \qquad \dots (i)$$

...

Now,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1 - \cos 4x}{x^2}$$

.

$$\left[\because f(x) = \frac{1 - \cos 4x}{x^2} \text{ for } x < 0 \right]$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \frac{2\sin^2 2x}{x^2}$$

 \Rightarrow

$$\lim_{x \to 0^-} f(x) = 2 \lim_{x \to 0} \left(\frac{\sin 2x}{x} \right)^2$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = 2 \times 4 \cdot \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^2 = 8(1)^2 = 8 \quad \dots \text{ (ii)}$$

and,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0} \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}$$

14

$$\left[\because f(x) = \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4} \text{ for } x > 0 \right]$$

$$\Rightarrow \quad \lim_{x \to 0^+} f(x) = \lim_{x \to 0} \frac{\sqrt{x}}{16 + \sqrt{x} - 16} \cdot (\sqrt{16 + \sqrt{x}} + 4)$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} (\sqrt{6} + \sqrt{x} + 4) = 4 + 4 = 8 \qquad \dots \text{(iii)}$$

From (i), (ii) and (iii), we get a = 8.

Example – 10

 \Rightarrow

Determine the value of the constant m so that the function

 $f(x) = \begin{cases} m(x^2 - 2x), & \text{if } x < 0\\ \cos x, & \text{if } x \ge 0 \end{cases}$ is continuous

Sol. When x < 0, we have

 $f(x) = m(x^2-2x)$, which being a polynomial is continuous at each x < 0.

When x > 0, we have

 $f(x) = \cos x$, which being a cosine function is continuous at eaxh x > 0.

So, consider the point x = 0.

We have,

 $(LHL \text{ at } x=0) = \lim_{x\to 0^{-}} f(x) = \lim_{x\to 0} (x^2 - 2x) = 0$, for all values of m

and (RHL at x = 0) = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} \cos x = 1$

Clearly, $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$ for all values of m.

So, f(x) cannot be made continuous for any value of m.

In other words, the value of m does not exist for which f(x) can be made continuous.

Example – 11

	[1	,	if $x \le 3$
If $f(x) =$	$\begin{cases} ax + b \end{cases}$,	if $x \le 3$ if $3 < x < 5$ if $5 \le x$
	7	,	if $5 \le x$
Determi	ne the va	alue	es of a and b so that $f(x)$ is continuous.

Sol. The given function is a constant function for all x < 3 and for all x > 5 so it is continuous for all x < 3 and for all x > 5. We know that a polynomial function is continuous. So, the given function is continuous for all $x \in (3, 5)$. Thus, f(x) is

continuous at each $x \in R$ except possibly at x = 3 and x = 5.

At,
$$x = 3$$
, we have

 $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} 1 = 1, \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} ax + b = 3a + b, \text{ and,}$ f(3) = 1

... (i)

For f(x) be continuous at x = 3, we must have

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

$$\Rightarrow$$
 1 = 3a + b

At
$$x = 5$$
, we have

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5} ax + b = 5a + b; \lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} bx = 1$$

$$7 = 7$$
, and, $f(5) = 7$

For f(x) to be continuous at x = 5, we must have

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

$$\Rightarrow$$
 5a + b = 7

Solving (i) and (ii), we get a = 3, b = -8 ... (ii)

Example – 12

Show that the function $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi$.

Sol. Let $g(x) = \sin x + \cos x$ and h(x) = |x|. Then, f(x) = hog(x). In order to prove that f(x) is continuous at $x = \pi$. It is sufficient to prove that g(x) is continuous at $x = \pi$ and h(x) is continuous at $y = g(\pi) = \sin \pi + \cos \pi = -1$.

Now,

$$\lim_{x \to \pi} g(x) = \lim_{x \to \pi} (\sin x + \cos x) = \sin \pi + \cos \pi = -1$$

and $g(\pi) = -1$

 $\therefore \lim_{\mathbf{x}\to\mathbf{x}} \mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{\pi})$

So, g (x) is continuous at $x = \pi$.

We have, $g(\pi) = -1 \Rightarrow y = g(\pi) = -1$.

Now,
$$\lim_{y \to -1} h(y) = \lim_{y \to -1} |y| = \lim_{y \to -1} -y = -(-1) = 1$$

and, $h(g(\pi)) = h(-1) = |-1| = 1$.
 $\therefore \qquad \lim_{y \to -1} h(y) = h(g(\pi))$

$$\Rightarrow \lim_{g(x)\to -1} h(g(x)) = h(g(\pi))$$

$$\Rightarrow \lim_{g(x)\to g(\pi)} h(g(x)) = h(g(\pi))$$

 \Rightarrow h is continuous at g (π)

Hence, f(x) = hog(x) is continuous at $x = \pi$.

16

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Example – 13

 $\begin{cases} x-1, & \text{if } x < 2\\ 2x-3, & \text{if } x \ge 2 \end{cases} \text{ is not}$ Show that the function f(x) = differentiable at x = 2.

Sol. We have,

$$(LHD at x = 2) = \lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2}$$

$$\Rightarrow (LHD at x = 2) = \lim_{x \to 2} \frac{(x - 1) - (4 - 3)}{x - 2}$$

$$[\because f(x) = x - 1 \text{ for } x < 2]$$

$$\Rightarrow (LHD at x = 2) = \lim_{x \to 2} \frac{x - 2}{x - 2} = \lim_{x \to 2} 1 = 1$$
and, (RHD at x = 2) = $\lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2}$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} \frac{(2x - 3) - (4 - 3)}{x - 2}$$

$$[\because f(x) = 2x - 3 \text{ for } x \ge 2]$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} \frac{2x - 4}{x - 2} = \lim_{x \to 2} 2 = 2$$

$$\Rightarrow (LHD at x = 2) \neq (RHD at x = 2).$$

So, f(x) is not differentiable at x = 2.

Example – 14

Show that the function
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is
differentiable at x = 0 and f'(0) = 0.

Sol. We have,

$$(LHD at x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow (LHD at x = 0) = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}$$

$$\Rightarrow (LHD at x = 0) = \lim_{h \to 0} \frac{f(-h) - f(0)}{-h}$$

$$\Rightarrow (LHD at x = 0) = \lim_{h \to 0} \frac{(-h)^2 \sin\left(\frac{1}{-h}\right) - 0}{-h}$$

$$\Rightarrow (LHD at x = 0) = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$

$$\Rightarrow$$
 (LHD at x = 0) = 0 × (an oscillating number between -1 and 1) = 0

(RHD at x = 0) =
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$

 \Rightarrow (RHD at x = 0) = $\lim_{h \to 0} \frac{f(0 + h) - f(0)}{0 + h - 0}$

$$\Rightarrow \quad (\text{RHD at } x = 0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right) - 0}{h}$$

$$\Rightarrow \quad (\text{RHD at } x = 0) = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$

$$\Rightarrow$$
 (RHD at x = 0) = 0 × (an oscillating number between -1 and 1) = 0

$$\therefore \quad (LHD \text{ at } x = 0) = (RHD \text{ at } x = 0) = 0.$$

So, f(x) is differentiable at x = 0 and f'(0) = 0.

Example – 15

Discuss the differentiability of
$$f(x) = |x-1| + |x-2|$$
.

Sol. We have,

$$f(x) = |x-1| + |x-2|$$

$$\Rightarrow \quad f(x) = \begin{cases} -(x-1) - (x-2) \text{ for } x < 1\\ x-1 - (x-2) \text{ for } 1 \le x < 2\\ (x-1) + (x-2) \text{ for } x \ge 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x+3 , & x < 1 \\ 1 , & 1 \le x < 2 \\ 2x-3 , & x \ge 2 \end{cases}$$

When x < 1, we have

f (x) = -2x + 3 which, being a polynomial function is continuous and differentiable.

When $1 \le x \le 2$, we have

f(x) = 1 which, being a constant function, is differentiable on (1, 2).

When $x \ge 2$, we have

f (x) = 2x - 3 which, being a polynomial function, is differentiable for all x > 2. Thus, the possible points of nondifferentiability of f(x) are x = 1 and x = 2.

x - 1

Now,

 \Rightarrow

(LHD at x = 1) =
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$$

(LHD at x = 1) = $\lim_{x \to 1} \frac{(-2x + 3) - 1}{x - 1}$

$$[:: f(x) = -2x + 3 \text{ for } x < 1]$$

$$\Rightarrow (LHD at x = 1) = \lim_{x \to 1^{+}} \frac{-2(x-1)}{x-1} = -2$$

$$(RHD at x = 1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x-1}$$

$$\Rightarrow (RHD at x = 1) = \lim_{x \to 1} \frac{1-1}{x-1} = 0$$

$$[\because f(x) = 1 \text{ for } 1 \le x < 2]$$

$$\therefore (LHD at x = 1) \neq (RHD at x = 1)$$
So, f(x) is not differentiable at x = 1.

$$(LHD at x = 2) = \lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x-2}$$

$$\Rightarrow (LHD at x = 2) = \lim_{x \to 2^{-}} \frac{1 - (2 \times 2 - 3)}{x-2}$$

$$\begin{bmatrix} \because f(x) = 1 \text{ for } 1 \le x < 2\\ and f(2) = 2 \times 2 - 3 \end{bmatrix}$$

$$\Rightarrow (LHD at x = 2) = \lim_{x \to 2^{+}} \frac{1-1}{x-2} = 0.$$

$$(RHD at x = 2) = \lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x-2}$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x-2}$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2^{+}} \frac{2(x-2)}{x-2} = 2$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} \frac{2x-4}{x-2} = \lim_{x \to 2} \frac{2(x-2)}{x-2} = 2$$

$$\therefore (LHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = \lim_{x \to 2} (2x-3) = 1$$

$$\Rightarrow (RHD at x = 2) = 1$$

$$\Rightarrow$$

Example – 16

Discuss the differentiability of

$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}, \quad x = 0.$$

Sol. We have,

$$f(x) = \begin{cases} xe^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = xe^{-2/x}, & x \ge 0\\ xe^{-\left(\frac{-1}{x} + \frac{1}{x}\right)} = x, & x < 0\\ 0, & x = 0 \end{cases}$$

Now,

$$(LHD at x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow (LHD at x = 0) = \lim_{x \to 0} \frac{x - 0}{x - 0} = 1$$

$$[\because f(x) = x \text{ for } x < 0 \text{ and } f(0) = 0]$$
and,
$$(RHD at x = 0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$$

$$\Rightarrow (RHD at x = 0) = \lim_{x \to 0} \frac{xe^{-2/x} - 0}{x}$$

$$\left[\because f(x) = xe^{-2/x} \text{ for } x > 0 \\ and f(0) = 0 \right]$$

$$\Rightarrow (RHD at x = 0) = \lim_{x \to 0} e^{-2/x} = 0.$$

$$\Rightarrow (LHD at x = 0) \neq (RHD at x = 0)$$
So, f(x) is not differentiable at x = 0.

Example – 17

Find the values of a & b so that the function is continuous for $0 \le x \le \pi$

$$f(\mathbf{x}) = \begin{cases} \mathbf{x} + \mathbf{a}\sqrt{2}\sin \mathbf{x}, & 0 \le \mathbf{x} < \frac{\pi}{4} \\ 2\mathbf{x}\cot \mathbf{x} + \mathbf{b}, & \frac{\pi}{4} \le \mathbf{x} \le \frac{\pi}{2} \\ \mathbf{a}\cos 2\mathbf{x} - \mathbf{b}\sin \mathbf{x}, & \frac{\pi}{2} < \mathbf{x} \le \pi \end{cases}$$

Sol. Since,
$$f(x)$$
 is continuous for $0 \le x \le \pi$
 \therefore RHL $\left(at \ x = \frac{\pi}{4}\right) = LHL \left(at \ x = \frac{\pi}{4}\right)$
 $\Rightarrow \left(2.\frac{\pi}{4}\cot\frac{\pi}{4} + b\right) = \left(\frac{\pi}{4} + a\sqrt{2}.\sin\frac{\pi}{4}\right)$
 $\Rightarrow \frac{\pi}{2} + b = \frac{\pi}{4} + a$
 $\Rightarrow a - b = \frac{\pi}{4}$ (i)
Also, RHL $\left(at \ x = \frac{\pi}{2}\right) = LHL \left(at \ x = \frac{\pi}{2}\right)$
 $\Rightarrow \left(a\cos\frac{2\pi}{2} - b\sin\frac{\pi}{2}\right) = \left(2.\frac{\pi}{2}.\cot\frac{\pi}{2} + b\right)$
 $\Rightarrow -a - b = b$

$$\Rightarrow a+2b=0$$

From eqs. (i) and (ii), $a = \frac{\pi}{6}$ and $b = \frac{-\pi}{12}$

Example – 18

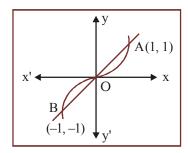
Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \max \{x, x^3\}$. Show that the set of points $\{-1, 0, 1\}, f(\mathbf{x})$ is not differentiable.

1]

Sol. $f(x) = \max \{x, x^3\}$ considering the graph separately, $y = x^3$ and y = x.

Now,
$$\begin{cases} f(\mathbf{x}) = \mathbf{x} \text{ in } (-\infty, -\infty) \\ \mathbf{x}^{3} \text{ in } [-1, 0] \\ \mathbf{x} \text{ in } [0, 1] \\ \mathbf{x}^{3} \text{ in } [1, \infty) \end{cases}$$

The point of consideration are



$$f'(-1^-) = 1$$
 and $f'(-1^+) = 3$
 $f'(-0^-) = 0$ and $f'(0^+) = 1$
 $f'(1^-) = 1$ and $f'(1^+) = 3$
Hence, f is not differentiable at $-1, 0, 1$.

Example – 19

Show that the function f(x) is continuous at x = 0 but its derivative does not exists at x = 0

if
$$f(\mathbf{x}) = \begin{cases} x \sin(\log x^2); & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$$

Sol. LHL =
$$\lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(-h) \sin \log(-h)^2$$

$$=-\lim_{h\to 0}h\sin \log h^2$$

As $h \rightarrow 0$, $\log h^2 \rightarrow -\infty$. Hence sin $log h^2$ oscillates between -1 and +1.

L.H.L =
$$-\lim_{h \to 0} (h) \times \lim_{h \to 0} (\sin \log h^2)$$

= $-0 \times (\text{number between } -1 \text{ and } +1) = 0$

$$R.H.L = \lim_{h \to 0} f(0+h)$$

...(ii)

$$= \lim_{h \to 0} h \sin \log h^{2} = \lim_{h \to 0} h \lim_{h \to 0} \sin \log h^{2}$$
$$= 0 \times (\text{oscillating between} -1 \text{ and } +1) = 0$$
$$f(0)=0 \qquad (\text{Given})$$
$$\Rightarrow \text{ L.H.L.} = \text{ R.H.L.} = f(0)$$
$$\text{Hence } f(x) \text{ is continuous at } x = 0.$$
$$\text{Test for differentiability :}$$
$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{h(0)}$$

$$= \lim_{h \to 0} \frac{-h \sin \log (-h)^2 - 0}{-h}$$

$$= \lim_{h \to 0} \sin\left(\log h^2\right)$$

As the expression oscillates between -1 and +1, the limit does not exists.

 \Rightarrow Left hand derivative is not defined.

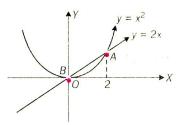
Hence the function is not differentiable at x = 0

Example – 20

 \Rightarrow

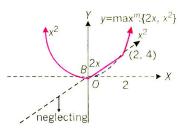
Draw graph for $y = \max \{2x, x^2\}$ and discuss the continuity and differentiability.

Sol. Here, to draw, $y = \max \{2x, x^2\}$



Firstly plot y = 2x and $y = x^2$ on graph and put $2x = x^2 \Rightarrow x =$ 0, 2 (i.e., their point of intersection).

Now, since $y = \max$. $\{2x, x^2\}$ we have to neglect the curve below point of intersections thus, the required graph is, as shown.



Thus, from the given graph y = max. $\{2x, x^2\}$ we can say y =max. $\{2x, x^2\}$ is continuous for all $x \in R$.

But y = max. $\{2x, x^2\}$ is differentiable for all $x \in R - \{0, 2\}$

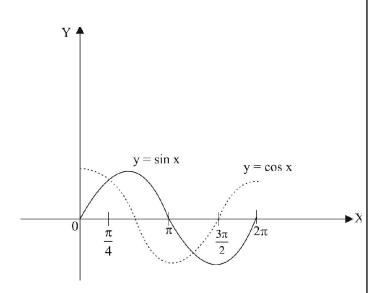
Note...

One must remember the formula we can write,

$$\max \{f(x), g(x)\} = \frac{f(x) + g(x)}{2} + \left| \frac{f(x) - g(x)}{2} \right|$$
$$\min \{f(x), g(x)\} = \frac{f(x) + g(x)}{2} - \left| \frac{f(x) - g(x)}{2} \right|$$

Example-21

- Find the number of points of non-differentiability of $f(x) = \max \{ \sin x, \cos x, 0 \}$ in $(0, 2n\pi)$.
- **Sol.** Here, we know sin x and cos x are periodic with period 2π . Thus we could sketch the curve as; (In the interval 0 to 2π) Which shows



 $y = \max \{ \sin x, \cos x, 0 \}$

$$= \begin{cases} \cos x, \ 0 < x < \frac{\pi}{4} \text{ or } \frac{3\pi}{2} < x < 2\pi \\ 0, \ \pi < x < \frac{3\pi}{2} \\ \sin x, \frac{\pi}{4} < x < \pi \end{cases}$$

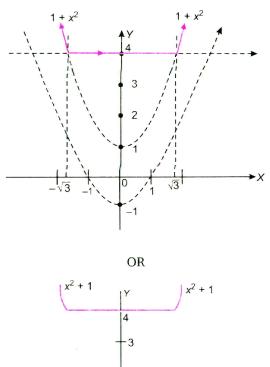
Clearly, $y = \max$. {sin x, cos x, 0} is not differentiable at 3 points when $x = (0, 2\pi)$.

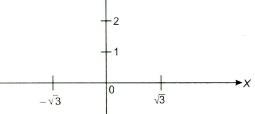
Thus, y = max. {sin x, cos x, 0} is not differentiable at 3n points.

Example – 22

Let $f(x) = maximum \{4, 1+x^2, x^2-1\} \forall x \in \mathbb{R}$. Then find the total number of points, where f(x) is not differentiable.

Sol. We have discussed in last chapter for sketching maximum $\{4,\,1+x^2,\,x^2-1\}$ as





Thus, from above graph we can simply say, f(x) is not differentiable at $x = \pm \sqrt{3}$. And it could be defined as :

$$f(x) = \begin{cases} 4, -\sqrt{3} \le x \le \sqrt{3} \\ x^2 + 1, x \le -\sqrt{3} \text{ or } x \ge \sqrt{3} \end{cases}$$

Vedantu Learn LIVE Online

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Example – 23

Let f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f(x) is continuous at x = 0, show that f(x) is continuous at all x.

Sol. Since f(x) is continuous at x = 0. Therefore,

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$

- $\Rightarrow \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(0+h) = f(0)$
- $\Rightarrow \lim_{h \to 0} f(0 + (-h) = \lim_{h \to 0} f(0 + h) = f(0)$
- $\Rightarrow \lim_{h \to 0} [f(0) + f(-h)] = \lim_{h \to 0} [f(0) + f(h)] = f(0)$ [Using: f(x + y) = f(x) + f(y)]
- $\Rightarrow \quad f(0) + \lim_{h \to 0} f(-h) = f(0) + \lim_{h \to 0} f(h) = f(0)$

$$\Rightarrow \lim_{h \to 0} f(-h) = \lim_{h \to 0} f(h) = 0 \qquad \dots (i)$$

Let a be any real number. Then,

$$\lim_{x \to a^{-}} f(x) = \lim_{h \to 0} f(a-h) = \lim_{h \to 0} f(a+(-h))$$

$$\Rightarrow \lim_{x \to a^{-}} f(x) = \lim_{h \to 0} [f(a) + f(-h)]$$
$$[:: f(x+y) = f(x) + f(y)]$$
$$\Rightarrow \lim_{x \to a^{-}} f(x) = f(a) + \lim_{h \to 0} f(-h)$$

- $\Rightarrow \lim_{x \to a^{-}} f(x) = f(a) + 0 \qquad [Using (i)]$
- $\Rightarrow \lim_{x \to a^{-}} f(x) = f(a). \qquad \text{and},$

 $\lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a+h)$

$$\Rightarrow \lim_{x \to a^{+}} f(x) = \lim_{h \to 0} [f(a) + f(h)]$$
$$[\because f(x+y) = f(x) + f(y)]$$
$$\Rightarrow \lim_{x \to a^{+}} f(x) = f(a) + \lim_{h \to 0} f(h)$$

 $\Rightarrow \lim_{x \to a^+} f(x) = f(a) + 0 = f(a) \qquad [Using (i)]$

Thus, we have

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

∴ f(x) is continuous at x = a. Since a is an arbitrary real number. So, f(x) is continuous at all $x \in \mathbb{R}$.

Example – 24

If $f: R \rightarrow R$ is continuous and satisfies the relation f(x+y)+f(x-y)=2 f(x)+2 f(y)and f(1)=1, then f(3) is equal to____.

Sol. In the given relation, taking x = y = 0, we have f(0) = 0. Also x = 0 implies f(y) + f(-y) = 0 + 2 f(y)f(-y) = f(y) \Rightarrow Again if we put y = x in the given relation we get $f(2x) = 4 f(x) = 2^2 f(x)$ Now replacing y with 2x in the given relation we obtain f(3x) + f(-x) = 2f(x) + 2f(2x)Therefore [: f(-x) = f(x)] f(3x) = f(x) + 2f(2x) $= f(x) + 2.2^{2} f(x)$ $= 3^{2} f(x)$ Therefore by induction, we have $f(n x) = n^2 f(x)$ for all positive integers n. Replacing n with -n and observing that $f(-x) = f(x) \forall x$, we have $f(-nx) = f(nx) = n^2 f(x) = (-n)^2 f(x)$ Therefore $f(nx) = n^2 f(x)$ for all integers x. Also $f(n) = n^2$ (:: f(1) = 1) If x = p/q is rational, then $q^{2}f(x) = f(qx) = f(p) = p^{2}f(1) = p^{2}(\because f(1) = 1)$ Therefore

$$f(x) = \frac{p^2}{q^2} = x^2$$
 for all rational

If x is irrational, then let $[x_n]$ be a sequence of rational numbers such that $x_n \rightarrow x$ as $n \rightarrow \infty$. Since f is continuous, by Theorem we have

$$f(x_n) \rightarrow f(x) as n \rightarrow \infty$$

But

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (x_n^2) = x^2$$

Therefore $f(x) = x^2$ when x is irrational. Also $f(x) = x^2$ for all real x. Hence $f(3) = 3^2 = 9$

20

Example-25

If f is a real-valued function defined for all $x \neq 0, 1$ and satisfying the relation

$$f(x) + f\left(\frac{1}{1-x}\right) = \frac{2}{x} - \frac{2}{1-x}$$

Then $\lim_{x\to 2} f(x)$ is _____.

Sol. Given relation is

$$f(x) + f\left(\frac{1}{1-x}\right) = \frac{2}{x} - \frac{2}{1-x}$$
 ...(1)

Replacing x with $\frac{1}{1-x}$ in above equation Eq. we have

$$f\left(\frac{1}{1-x}\right) + f\left(\frac{x-1}{x}\right) = 2(1-x) + \frac{2(1-x)}{x} \qquad ...(2)$$

Again replacing x with $\frac{1}{1-x}$ in Eq. (1), we get

$$f\left(\frac{x-1}{x}\right) + f(x) = -2x - \frac{2x}{1-x}$$
 ... (3)

Now adding Eqs. (1) and (3) and subtracting Eq. (2) gives

$$2f(x) = \left(\frac{2}{x} - \frac{2}{1-x} - 2x - \frac{2x}{1-x}\right) - 2(1-x) - \frac{2(1-x)}{x}$$
$$= \left(\frac{2}{x} - \frac{2(1-x)}{x}\right) + \left(\frac{-2}{1-x} - \frac{2x}{1-x}\right) - 2x - 2(1-x)$$
$$= \frac{2x}{x} - \frac{2(1+x)}{(1-x)} - 2$$
$$= 2 + \frac{2(x+1)}{x-1} - 2$$
$$= \frac{2(x+1)}{x-1}$$

Therefore

$$f(x) = \frac{x+1}{x-1}$$

Taking limit we get

$$\lim_{x \to 2} \left(\frac{x+1}{x-1} \right) = \frac{2+1}{2-1} = 3$$

Example – 26

If f is a real-valued function satisfying the relation

$$f(x) + 2f\left(\frac{1}{x}\right) = 3x$$

for all real $x \neq 0$, then $\lim_{x \to 0} (\sin x) f(x)$ is equal to

(a) 1
 (b) 2

 (c) 0
 (d)
$$\infty$$

Ans. (b)

Sol. We have
$$f(x) + 2f\left(\frac{1}{x}\right) = 3x$$
 ... (1)

Replacing x with 1/x, we have

$$2f(x) + f\left(\frac{1}{x}\right) = \frac{3}{x} \qquad \dots (2)$$

From Eqs. (1) and (2) we get

$$f(x) = \frac{2}{x} - x$$

Therefore

$$\lim_{x \to 0} (\sin x) f(x) = \lim_{x \to 0} \left(\frac{2 \sin x}{x} - x \sin x \right)$$

= 2 (1) - 0 = 2.

Example-27

P (x) is a polynomial such that P(x) + P (2x) = 5x²-18.
Then
$$\lim_{x \to 3} \left(\frac{P(x)}{x-3} \right) =$$

(a) 6 (b) 9
(c) 18 (d) 0

Ans. (a)

Sol. Since $5x^2 - 18$ is a quadratic polynomial and $P(x) + P(2x) = 5x^2 - 18$ it follows that P(x) must be a quadratic polynomial. Suppose $P(x) = ax^2 + bx + c$ By hypothesis $(ax^2 + bx + c) + (4ax^2 + 2bx + c) = 5x^2 - 18$ or $5ax^2 + 3bx + 2c = 5x^2 - 18$ This gives a = 1, b = 0, c = -9So $P(x) = x^2 - 9$ Therefore $\lim_{x \to 3} \frac{P(x)}{x - 3} = \lim_{x \to 3} (x + 3) = 6$

Example – 28

Differentiate the following function w.r.t.x : $\log \sin x^2$

Sol. We have,

Let $y = \log \sin x^2$. Putting $v = x^2$ and $u = \sin x^2 = \sin v$, we get $y = \log u$, $u = \sin v$ and $v = x^2$

 $\therefore \quad \frac{dy}{du} = \frac{1}{u}, \frac{du}{dv} = \cos v \text{ and } \frac{dv}{dx} = 2x.$ Now,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}v} \times \frac{\mathrm{d}v}{\mathrm{d}x}$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{1}{u} \times \cos v \times 2x = \frac{1}{\sin v} \cos v \times 2x$$

[:: 4 = sin v]

$$\Rightarrow \quad \frac{dy}{dx} = \cot y \cdot 2x = 2x \cot x^2$$
$$[\because y = x^2]$$

Hence,
$$\frac{d}{dx} (\log \sin x^2) = 2x \cot x^2$$

Example – 29

Differentiate the following functions with respect to x : (i) log (sec $x + \tan x$) (ii) $e^{x \sin x}$

Sol. (i) Let $y = \log(\sec x + \tan x)$. Putting $u = \sec x + \tan x$, we get $y = \log u$ and $u = \sec x + \tan x$ $\therefore \quad \frac{dy}{dt} = \frac{1}{u}$ and $\frac{du}{dt} = \sec x \tan x + \sec^2 x$.

Now,
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{1}{u} \cdot (\sec x \tan x + \sec^2 x)$$
$$\Rightarrow \quad \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \sec x (\tan x + \sec x) = \sec x.$$

(ii) Let
$$y = e^{x \sin x}$$
.
Putting $u = x \sin x$, we get
 $y = e^u$ and $u = x \sin x$

$$\frac{dy}{du} = e^u$$
 and $\frac{du}{dx} = x \cos x + \sin x$.

Now,
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\Rightarrow \quad \frac{dy}{dx} = e^{u} \cdot (x \cos x + \sin x) = e^{x \sin x} (x \cos x + \sin x)$$

Example-30

÷.

If
$$y = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \log \sqrt{1 - x^2}$$
, then prove that
$$\frac{dy}{dx} = \frac{\sin^{-1} x}{(1 - x^2)^{3/2}}.$$

Sol. We have,
$$y = x \sin^{-1} x (1 - x^2)^{-1/2} + \frac{1}{2} \log(1 - x^2)$$
.
Differentiating with respect to x, we get
 $\frac{dy}{dx} = \frac{d}{dx} \left\{ x \cdot \sin^{-1} x \cdot (1 - x^2)^{1-/2} \right\} + \frac{1}{2} \frac{d}{dx} \left\{ \log(1 - x^2) \right\}$
 $\Rightarrow \frac{dy}{dx} = \sin^{-1} x \cdot (1 - x^2)^{-1/2} \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\sin^{-1} x) \cdot (1 - x^2)^{-1/2}$
 $+ x \sin^{-1} x \cdot \frac{d}{dx} (1 - x^2)^{-1/2} + \frac{1}{2} \cdot \frac{1}{1 - x^2} \frac{d}{dx} (1 - x^2)$
 $\Rightarrow \frac{dy}{dx} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \cdot 1 + x \times \frac{1}{\sqrt{1 - x^2}} \times \frac{1}{\sqrt{1 - x^2}}$
 $+ x \sin^{-1} x \cdot \left(-\frac{1}{2} \right) (1 - x^2)^{-3/2} \frac{d}{dx} (1 - x^2) + \frac{1}{2(1 - x^2)} (0 - 2x)$
 $\Rightarrow \frac{dy}{dx} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} + \frac{x}{1 - x^2} - \frac{x}{2} \frac{(\sin^{-1} x)}{(1 - x^2)^{3/2}} (0 - 2x) - \frac{x}{1 - x^2}$
 $\Rightarrow \frac{dy}{dx} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} + \frac{x^2 \sin^{-1} x}{(1 - x^2)^{3/2}}$
 $\Rightarrow \frac{dy}{dx} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \left\{ 1 + \frac{x^2}{1 - x^2} \right\} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \times \frac{1}{1 - x^2} = \frac{\sin^{-1} x}{(1 - x^2)^{3/2}}$

22

Example-31

If
$$y = \frac{\sqrt{a^2 + x^2} + \sqrt{a^2 - x^2}}{\sqrt{a^2 + x^2} - \sqrt{a^2 - x^2}}$$
, show that
$$\frac{dy}{dx} = \frac{-2a^2}{x^3} \left\{ 1 + \frac{a^2}{\sqrt{a^4 - x^4}} \right\}.$$

Sol. We have,

$$y = \frac{\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}}{\sqrt{a^{2} + x^{2}} - \sqrt{a^{2} - x^{2}}} = \frac{\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}}{\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}} \cdot \frac{\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}}{\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}}$$

$$\Rightarrow \quad y = \frac{\left[\sqrt{a^{2} + x^{2}} + \sqrt{a^{2} - x^{2}}\right]^{2}}{(a^{2} + x^{2}) - (a^{2} - x^{2})} = \frac{a^{2} + x^{2} + a^{2} - x^{2} + 2\sqrt{a^{2} + x^{2}} \sqrt{a^{2} - x^{2}}}{2x^{2}}$$

$$\Rightarrow \quad y = \frac{2a^{2} + 2\sqrt{a^{4} - x^{4}}}{2x^{2}}$$

$$\Rightarrow \quad y = \frac{a^{2}}{x^{2}} + \frac{\sqrt{a^{4} - x^{4}}}{x^{2}}$$

$$\Rightarrow \quad y = \frac{a^{2}}{x^{2}} + \frac{\sqrt{a^{4} - x^{4}}}{x^{2}}$$

$$\Rightarrow \quad y = a^{2}x^{-2} + \sqrt{a^{4} - x^{4}} x^{-2}$$

$$\Rightarrow \quad \frac{dy}{dx} = a^{2}\frac{d}{dx}(x^{-2}) + \frac{d}{dx}\left\{\sqrt{a^{4} - x^{4}} + x^{-2}\right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = -2a^{2}x^{-3} + (-2)x^{-3}\sqrt{a^{4} - x^{4}} + (x^{-2})\frac{1}{2}(a^{4} - x^{4})^{-1/2}\frac{d}{dx}(a^{4} - x^{4})$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{-2a^{2}}{x^{3}} - \frac{2}{x^{4}}\sqrt{a^{4} - x^{4}} + \frac{1}{2x^{2}\sqrt{a^{4} - x^{4}}}(-4x^{3})$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{-2a^{2}}{x^{3}} - 2\left\{\frac{\sqrt{a^{4} - x^{4}}}{x^{3}} + \frac{x}{\sqrt{a^{4} - x^{4}}}\right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{-2a^{2}}{x^{3}} - 2\left\{\frac{\sqrt{a^{4} - x^{4}}}{x^{3}\sqrt{a^{4} - x^{4}}} + \frac{x}{\sqrt{a^{4} - x^{4}}}\right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{-2a^{2}}{x^{3}} - 2\left\{\frac{a^{4} - x^{4} + x^{4}}{x^{3}\sqrt{a^{4} - x^{4}}}\right\}$$

Example-32

If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, prove that $\frac{dy}{dx} = -\frac{1}{(x+1)^2}$

23

Sol. We have,

$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$

$$\Rightarrow \quad x\sqrt{1+y} = -y\sqrt{1+x}$$

 \Rightarrow x²(1+y)=y²(1+x) [On squaring both sides]

$$\Rightarrow x^2 - y^2 = y^2 x - x^2 y$$

- $\Rightarrow (x+y)(x-y) = -xy(x-y)$
- $\Rightarrow x+y=-xy [::x-y \neq 0. as y = x does not satisfy the given equation]$

$$\Rightarrow x = -y - xy$$
$$\Rightarrow y(1+x) = -x$$

$$\Rightarrow$$
 y = $-\frac{x}{1+x}$

$$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}} = -\left\{\frac{(1+x).1-x(0+1)}{(1+x)^2}\right\}$$

$$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{1}{\left(1+x\right)^2}$$

Example – 33

If sin y = x sin (a + y), prove that
$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

Sol. Differentiating both sides of the given relation with respect to x, we get

$$\frac{d}{dx}(\sin y) = \frac{d}{dx} [x \sin(a+y)]$$

$$\Rightarrow \quad \cos y \frac{dy}{dx} = 1 \cdot \sin(a+y) + x \cos(a+y) \cdot \frac{d}{dx}(a+y)$$

$$\Rightarrow \quad \cos y \frac{dy}{dx} = \sin(a+y) + x \cos(a+y) \cdot \frac{dy}{dx}$$

$$\Rightarrow \quad \cos y \frac{dy}{dx} - x \cos(a+y) \frac{dy}{dx} = \sin(a+y)$$

$$\Rightarrow \left\{\cos y - x\cos(a+y)\right\} \frac{dy}{dx} = \sin(a+y)$$

$$\Rightarrow \left\{ \cos y - \frac{\sin y}{\sin(a+y)} \cdot \cos(a+y) \right\} \frac{dy}{dx} = \sin(a+y)$$

$$\left[\because \sin y = x \sin(a+y) \\ \therefore x = \frac{\sin y}{\sin(a+y)} \right]$$

$$\Rightarrow \left\{ \frac{\sin(a+y)\cos y - \sin y \cos(a+y)}{\sin(a+y)} \right\} \frac{dy}{dx} = \sin(a+y)$$

$$\Rightarrow \frac{\sin(a+y-y)}{\sin(a+y)} \times \frac{dy}{dx} = \sin(a+y) \Rightarrow \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$
Example-34
If $\sqrt{1-x^6} + \sqrt{1-y^6} = a(x^3 - y^3)$, prove that
$$\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}, \text{ where } -1 < x < 1 \text{ and } -1 < y < 1.$$

Sol. Putting $x^3 = \sin A$ and $y^3 = \sin B$ in the given relation, we get

$$\Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a \left(\sin A - \sin B \right)$$
$$\Rightarrow 2 \cos \left(\frac{A + B}{2} \right) \cos \left(\frac{A - B}{2} \right) = 2a \sin \left(\frac{A - B}{2} \right) \cos \left(\frac{A + B}{2} \right)$$
$$\Rightarrow \cot \left(\frac{A - B}{2} \right) = a \Rightarrow \frac{A - B}{2} = \cot^{-1}(a)$$

- $A B = 2 \cot^{-1}(a)$ \Rightarrow
- $\sin^{-1} x^3 \sin^{-1} y^3 = 2 \cot^{-1}(a).$ \Rightarrow

Differentiating both sides with respect to x, we get

$$\frac{1}{\sqrt{1-x^6}} \times \frac{d}{dx} (x^3) - \frac{1}{\sqrt{1-y^6}} \times \frac{d}{dx} (y^3) = 0.$$

$$\Rightarrow \quad \frac{1}{\sqrt{1-x^6}} \times 3x^2 - \frac{1}{\sqrt{1-y^6}} \times 3y^2 \frac{dy}{dx} = 0.$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$$

(i) x^{x^x}

Differentiate the following functions with respect to x :

(ii)
$$(\mathbf{x}^{\mathbf{x}})$$

Sol. (i) Let
$$y = x^{x^{x}}$$
. Then,
 $y = e^{x^{x}} \cdot \log x$
On differentiating both sides with respect to x, we get
 $\frac{dy}{dx} = e^{x^{x}} \cdot \log x \frac{d}{dx} (x^{x} \cdot \log x)$

$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{x}} \frac{d}{dx} \left(e^{x \log x} \cdot \log x \right)$$
$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{x}} \left\{ \log x \cdot \frac{d}{dx} \left(e^{x \log x} \right) + e^{x \log x} \cdot \frac{d}{dx} \left(\log x \right) \right\}$$
$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{x}} \left\{ \log x \cdot e^{x} \log x \frac{d}{dx} \left(x \log x \right) + e^{x \log x} \cdot \frac{1}{x} \right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{x}} \left\{ \log x \cdot x^{x} \left(x \cdot \frac{1}{x} + \log x \right) + x^{x} \cdot \frac{1}{x} \right\}$$
$$\Rightarrow \quad \frac{dy}{dt} = x^{x^{x}} \left\{ x^{x} \left(1 + \log x \right) \cdot \log x + \frac{x^{x}}{x} \right\}$$
$$\Rightarrow \quad \frac{dy}{dt} = x^{x^{x}} \cdot x^{x} \left\{ (1 + \log x) \cdot \log x + \frac{1}{x} \right\}$$

$$\Rightarrow \quad \frac{dy}{dt} = x^{x^{x}} \cdot x^{x} \left\{ \left(1 + \log x \right) \cdot \log x + \frac{1}{x} \right\}$$

(ii) Let $y = (x^{x})^{x}$. Then,

x . x

$$y = x^{x \cdot x} = x^{x^2}$$

 $\Rightarrow \quad y = e^{x^2} \cdot \log x$
On differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = e^{x^{2}} \cdot \log x \frac{d}{dx} (x^{2} \cdot \log x)$$

$$\Rightarrow \quad \frac{dy}{dx} = e^{x^{2}} \cdot \log x \left(\log x \cdot \frac{d}{dx} (x^{2}) + x^{2} \cdot \frac{d}{dx} (\log x)\right)$$

$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{2}} \left(\log x \cdot 2x + x^{2} \cdot \frac{1}{x}\right)$$

$$\left[\because e^{x^{2}} \cdot \log x = x^{x^{2}}\right]$$

$$\Rightarrow \quad \frac{dy}{dx} = x^{x^{2}} (2x \cdot \log x + x)$$

$$\Rightarrow \quad \frac{dy}{dx} = x \cdot x^{x^{2}} (2\log x + 1).$$

24

Example – 36

Differentiate : $(\log x)^x + x^{\log x}$ with respect to x.

Sol. Let $y = (\log x)^x + x \log x$. Then,

$$y = e^{\log(\log x)^{x}} + e^{\log(x^{\log x})^{x}}$$

$$\Rightarrow \quad y = e^{x \log(\log x)} + e^{\log x \cdot \log x}$$

On differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = e^{x \log(\log x)} \cdot \frac{d}{dx} \{x \log(\log x)\} + e^{(\log x)^2} \frac{d}{dx} (\log x)^2$$

$$\Rightarrow \quad \frac{dy}{dx} = (\log x)^x \left\{ \log(\log x) \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log(\log x)) \right\} + x^{\log x}$$

$$\left\{ 2 (\log x \cdot \frac{d}{dx} (\log x)) \right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = (\log x)^x \left\{ \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x} \right\} + x^{\log x} \left\{ 2 \log x \cdot \frac{1}{x} \right\}$$

$$\Rightarrow \quad \frac{dy}{dx} = (\log x)^x \left\{ \log(\log x) + \frac{1}{\log x} \right\} + x^{\log x} \left\{ \frac{2 \log x}{x} \right\}.$$

Example-37

Differentiate the following functions with respect to x : $x^{\text{cot }x} + \frac{2x^2 - 3}{x^2 + x + 2}$

Sol. Let
$$y = x^{\cot x} + \frac{2x^2 - 3}{x^2 + x + 2}$$
. Then,

$$y = e^{\cot x \cdot \log x} + \frac{2x^2 - 3}{x^2 + x + 2}$$
$$\left[\because x^{\cot x} = e^{\log x^{\cot x}} = e^{\cot x \cdot \log x} \right]$$

On differentiating both sides with respect to x, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\cot x \cdot \log x} \right) + \frac{d}{dx} \left(\frac{2x^2 - 3}{x^2 + x + 2} \right)$$
$$\frac{dy}{dx} = e^{\cot x \cdot \log x} \frac{d}{dx} (\cot x \cdot \log x)$$
$$+ \frac{(x^2 + x + 2)\frac{d}{dx} (2x^2 - 3) - (2x^2 - 3)\frac{d}{dx} (x^2 + x + 2)}{(x^2 + x + 2)^2}$$

$$\frac{dy}{dx} = x^{\cot x} \left\{ \log x \cdot \frac{d}{dx} (\cot x) + \cot x \cdot \frac{d}{dx} (\log x) \right\}$$
$$+ \frac{(x^2 + x + 2)(4x) - (2x^2 - 3)(2x + 1)}{(x^2 + x + 2)^2}$$
$$\frac{dy}{dx} = x^{\cot x} \left\{ -\cos ec^2 x \cdot \log x + \frac{\cot x}{x} \right\} + \frac{2x^2 + 14x + 3}{(x^2 + x + 2)^2}$$

Example-38

If
$$y = f\left(\frac{2x-1}{x^2+1}\right)$$
 and $f'(x) = \sin x^2$, find $\frac{dy}{dx}$.

Sol. Let
$$z = \frac{2x-1}{x^2+1}$$
. Then,
 $y = f(z)$
 $\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \{f(z)\} = \frac{d}{dz} \{f(z)\} \cdot \frac{dz}{dx}$
 $\Rightarrow \frac{dy}{dx} = f'(z) \frac{d}{dx} \left(\frac{2x-1}{x^2+1}\right)$
 $\Rightarrow \frac{dy}{dx} = f'(z) \left\{\frac{2(x^2+1)-(2x-1)2x}{(x^2+1)^2}\right\}$
 $\Rightarrow \frac{dy}{dx} = \sin z^2 \frac{2(x^2+1)-(4x^2-2x)}{(x^2+1)^2}$
 $\left[\because f'(x) = \sin x^2 \right]$
 $\Rightarrow \frac{dy}{dx} = 2\sin \left(\frac{2x-1}{x^2+1}\right) \left\{\frac{1+x-x^2}{(x^2+1)^2}\right\}$

Example-39

Given that
$$\cos \frac{x}{2} \cdot \cos \frac{x}{4} \cdot \cos \frac{x}{8} \dots = \frac{\sin x}{x}$$
, prove that
 $\frac{1}{2^2} \sec^2 \frac{x}{2} + \frac{1}{2^4} \sec^2 \frac{x}{4} + \dots = \csc^2 x - \frac{1}{x^2}$

Sol. We have,

$$\cos \frac{x}{2}$$
. $\cos \frac{x}{4}$. $\cos \frac{x}{8}$...= $\frac{\sin x}{x}$

26

Taking log on both sides, we get

$$\log \cos \frac{x}{2} + \log \cos \frac{x}{4} + \log \cos \frac{x}{8} \dots = \log \sin x - \log x$$

Differentiating both sides with respect to x, we get

$$-\frac{1}{2}\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} - \frac{1}{4}\frac{\sin\frac{x}{4}}{\cos\frac{x}{4}} - \frac{1}{8}\frac{\sin\frac{x}{8}}{\cos\frac{x}{8}} \dots = \frac{\cos x}{\sin x} - \frac{1}{x}$$

 $\Rightarrow \quad -\frac{1}{2}\tan\frac{x}{2} - \frac{1}{4}\tan\frac{x}{4} - \frac{1}{8}\tan\frac{x}{8} \dots = \cot x - \frac{1}{x}$

Differentiating both sides with respect to x, we get

$$-\frac{1}{2^2}\sec^2\frac{x}{2} - \frac{1}{4^2}\sec^2\frac{x}{4} - \frac{1}{8^2}\sec^2\frac{x}{8} \dots = -\csc^2x + \frac{1}{x^2}$$
$$-\frac{1}{2^2}\sec^2\frac{x}{2} + \frac{1}{4^2}\sec^2\frac{x}{4} + \frac{1}{8^2}\sec^2\frac{x}{8} \dots = \csc^2x - \frac{1}{x^2}$$

Example-40

If
$$y = a^{x^{a^{x^{\infty}}}}$$
, prove that $\frac{dy}{dx} = \frac{y^2 \log y}{x(1 - y \log x \cdot \log y)}$.

Sol. The given series may be written as

$$y = a^{(x^y)}$$

- $\Rightarrow \log y = x^y \log a$ [Taking log of both sides]
- $\Rightarrow \log(\log y) = y \log x + \log(\log a)$

$$\Rightarrow \quad \frac{1}{\log y} \frac{d}{dx} (\log y) = \frac{dy}{dx} \cdot \log x + y \cdot \frac{d}{dx} (\log x) + 0$$

[Differentiating both sides with respect to x]

$$\Rightarrow \frac{1}{\log y} \cdot \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \cdot \log x + y \cdot \frac{1}{x}$$
$$\Rightarrow \frac{dy}{dx} \left\{ \frac{1}{y \log y} - \log x \right\} = \frac{y}{x}$$
$$\Rightarrow \frac{dy}{dx} \left\{ \frac{1 - y \log y \cdot \log x}{y \log y} \right\} = \frac{y}{x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{y^2 \log y}{x \{1 - y \log y \cdot \log x\}}.$$

Example-41

If
$$y = e^{x + e^{x + e^{x + \dots + 10^{\infty}}}}$$
, show that $\frac{dy}{dx} = \frac{y}{1 - y}$

- Sol. The given function may be written as $y = e^{x+y}$
- $\Rightarrow \log y = (x + y) \cdot \log e$ [Taking log of both sides]
- $\Rightarrow \log y = x + y[:: \log e = 1]$

$$\Rightarrow \quad \frac{1}{y} \frac{dy}{dx} = 1 + \frac{dy}{dx} \qquad [Differentiating with respect to x]$$

$$\Rightarrow \quad \frac{dy}{dx} \left(\frac{1}{y} - 1\right) = 1 \Rightarrow \frac{dy}{dx} = \frac{y}{1 - y}$$

Example-42

Find
$$\frac{dy}{dx}$$
 in the following cases :
(i) $x = a \left\{ \cos t + \frac{1}{2} \log \tan^2 \frac{t}{2} \right\}$ and $y = a \sin t$
(ii) $x = a (\theta - \sin \theta)$ and $y = a (1 - \cos \theta)$

Sol. We have,

(i)
$$x = a \left\{ \cos t + \frac{1}{2} \log \tan^2 \frac{t}{2} \right\}$$
 and $y = a \sin t$

$$\Rightarrow \quad x = a \left\{ \cos t + \frac{1}{2} 2 \log \tan \frac{t}{2} \right\} \text{ and } y = a \sin t$$

$$\Rightarrow x = a \left\{ \cos t + \log \tan \frac{t}{2} \right\} \text{ and } y = a \sin t.$$

Differentiating with respect to t, we get

$$\frac{\mathrm{dx}}{\mathrm{dt}} = a \left\{ -\sin t + \frac{1}{\tan t/2} \sec^2 \frac{t}{2} \cdot \frac{1}{2} \right\} \text{ and } \frac{\mathrm{dy}}{\mathrm{dt}} = a \, \cos t \, t$$

$$\Rightarrow \quad \frac{dx}{dt} = a \left\{ -\sin t + \frac{1}{2\sin(t/2)\cos(t/2)} \right\} \text{ and } \frac{dy}{dt} = a \cos t$$

$$\Rightarrow \quad \frac{dx}{dt} = a \left\{ -\sin t + \frac{1}{\sin t} \right\} \text{ and } \frac{dy}{dt} = a \cos t$$

$$\Rightarrow \quad \frac{dx}{dt} = \frac{a\cos^2 t}{\sin t} \text{ and } \frac{dy}{dt} = a\cos t$$

Vedantu Learn LIVE Online 27

$$\Rightarrow \quad \frac{dx}{dt} = a \left\{ \frac{-\sin^2 t + 1}{\sin t} \right\} \text{ and } \frac{dy}{dx} = a \cos t$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a \cos t}{\frac{a \cos^2 t}{\sin t}} = \tan t$$

(ii) We have,

 $x = a (\theta - \sin \theta)$ and $y = a (1 - \cos \theta)$ Differentiating with respect to θ , we get

$$\frac{dx}{d\theta} = a(1 - \cos\theta) \text{ and } \frac{dy}{d\theta} = a \sin\theta$$

 $dy \quad dy/d\theta \quad a \sin\theta \quad 2\sin(\theta/2)\cos(\theta/2)$

$$\therefore \quad \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a\sin\theta}{a(1-\cos\theta)} = \frac{2\sin(\theta/2)\cos(\theta/2)}{2\sin^2(\theta/2)} = \cot\frac{\theta}{2}$$

Example-43

If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$, a > 0 and -1 < t < 1, show that $\frac{dy}{dx} = -\frac{y}{x}$

Sol. We have,

$$\begin{aligned} x &= \sqrt{a^{\sin^{-1}t}} \text{ and } y = \sqrt{a^{\cos^{-1}t}} \\ \Rightarrow & \frac{dx}{dt} = \frac{1}{2} \left(a^{\sin^{-1}t} \right)^{-1/2} \frac{d}{dt} \left(a^{\sin^{-1}t} \right) \text{ and } \frac{dy}{dx} = \frac{1}{2} \left(a^{\cos^{-1}t} \right)^{-1/2} \frac{d}{dt} \left(a^{\cos^{-1}t} \right) \\ \Rightarrow & \frac{dx}{dt} = \frac{1}{2} \left(a^{\sin^{-1}t} \right)^{-1/2} \left(a^{\sin^{-1}t} \log_{e} a \right) \cdot \frac{d}{dt} \left(\sin^{-1} t \right) \text{ and }, \\ & \frac{dy}{dt} = \frac{1}{2} \left(a^{\cos^{-1}t} \right)^{-1/2} \left(a^{\cos^{-1}t} \log_{e} a \right) \cdot \frac{d}{dt} \left(\cos^{-1} t \right) \\ \Rightarrow & \frac{dx}{dt} = \frac{1}{2} \left(a^{\sin^{-1}t} \right)^{1/2} \left(\log_{e} a \right) \times \frac{1}{\sqrt{1-t^{2}}} = \frac{x \log_{e} a}{2\sqrt{1-t^{2}}} \text{ and }, \\ & \frac{dy}{dt} = \frac{1}{2} \left(a^{\cos^{-1}t} \right)^{1/2} \left(\log_{e} a \right) \times \frac{-1}{\sqrt{1-t^{2}}} = \frac{-y \log_{e} a}{2\sqrt{1-t^{2}}} \\ \therefore & \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \\ \Rightarrow & \frac{dy}{dx} = \frac{-y \log_{e} a}{2\sqrt{1-t^{2}}} \times \frac{2\sqrt{1-t^{2}}}{x \log_{e} a} = \frac{-y}{x} \end{aligned}$$

Example-44

Differentiate
$$\tan^{-1}\left\{\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right\}$$
 with respect to $\cos^{-1}x^2$

Sol. Let
$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right\}$$
 and $v = \cos^{-1} x^2$.

Putting
$$x^2 = \cos \theta$$
, we get

$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + \cos \theta} - \sqrt{1 - \cos \theta}}{\sqrt{1 + \cos \theta} + \sqrt{1 - \cos \theta}} \right\}$$

$$\Rightarrow \quad u = \tan^{-1} \left\{ \frac{\sqrt{2\cos^2 \theta/2} - \sqrt{2\sin^2 \theta/2}}{\sqrt{2\cos^2 \theta/2} + \sqrt{2\sin^2 \theta/2}} \right\}$$

$$\Rightarrow \quad u = \tan^{-1} \left\{ \frac{\cos \theta / 2 - \sin \theta / 2}{\cos \theta / 2 + \sin \theta / 2} \right\}$$
$$\Rightarrow \quad u = \tan^{-1} \left\{ \frac{1 - \tan \theta / 2}{1 + \tan \theta / 2} \right\}$$

[Dividing numerator and denominator by $\cos \theta/2$]

$$\Rightarrow u = \tan^{-1} \left\{ \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \right\}$$

$$\Rightarrow u = \frac{\pi}{4} - \frac{1}{2}\theta = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x^{2} \quad [\because x^{2} = \cos\theta \therefore \theta \cos^{-1}x^{2}]$$

$$\therefore \frac{du}{dx} = -\frac{1}{2} \times \frac{-2x}{\sqrt{1 - x^{4}}} = \frac{x}{\sqrt{1 - x^{4}}}$$
and , $v = \cos^{-1}x^{2} \Rightarrow \frac{dv}{dx} = \frac{-2x}{\sqrt{1 - x^{4}}}$
So, $\frac{du}{dv} = \frac{du/dx}{dv/dx} = -\frac{1}{2}$

Vedantu Learn LIVE Online

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Example-45

Differentiate
$$\tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
 with respect to
 $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$, if
(i) $x \in (-1, 1)$ (ii) $x \in (1, \infty)$
(iii) $x \in (-\infty, -1)$

Sol. Let $u = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ and $v = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

Putting $x = \tan \theta$, we have

$$u = \tan^{-1}\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$$
 and $v = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)$

- \Rightarrow u = tan⁻¹ (tan 2 θ) and v = sin⁻¹ (sin 2 θ)
- (i) When $x \in (-1, 1)$. We have,

 $x \in (-1, 1)$ and $x = \tan \theta$

- $\Rightarrow -1 < \tan \theta < 1 \Rightarrow -\frac{\pi}{4} < \theta < \frac{\pi}{4} \Rightarrow -\frac{\pi}{2} < 2\theta < \frac{\pi}{2}$
- \Rightarrow tan⁻¹ (tan 2 θ) = 2 θ and sin⁻¹ (sin θ) = 2 θ
- \therefore u = 2 θ and v = 2 θ
- $\Rightarrow \quad u = 2 \tan^{-1} x \text{ and } v = 2 \tan^{-1} x$ $[\because x = \tan \theta \Rightarrow \theta \tan^{-1} x]$

$$\Rightarrow \frac{du}{dx} = \frac{2}{1+x^2} \text{ and } \frac{dv}{dx} = \frac{2}{1+x^2}$$

$$\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dv}} = \frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{\mathrm{dv}}{\mathrm{dx}}} = \frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}} = 1$$

1

(ii) When $x \in (1, \infty)$

We have,

 $x \in (1, \infty)$ and $x = \tan \theta$

$$\Rightarrow 1 < \tan \theta < \infty \Rightarrow \frac{\pi}{4} < \theta < \frac{\pi}{2} \Rightarrow \frac{\pi}{2} < 2\theta < \pi$$

$$\therefore u = \tan^{-1} (\tan 2\theta) = \tan^{-1} \{-\tan (\pi - 2\theta)\}$$
$$= \tan^{-1} \{\tan (2\theta - \pi)\} = 2\theta - \pi$$

$$\mathbf{u} = 2 \tan^{-1} \mathbf{x} - \pi \qquad [\because \theta = \tan^{-1} \mathbf{x}]$$

$$\Rightarrow \quad \frac{du}{dx} = \frac{2}{1+x^2} - 0 = \frac{2}{1+x^2}$$

and, $v = \sin^{-1}(\sin 2\theta) = \sin^{-1}(\sin(\pi - 2\theta)) = \pi - 2\theta$
 $= \pi - 2\tan^{-1}x$

$$\Rightarrow \quad \frac{\mathrm{d} v}{\mathrm{d} x} = 0 - \frac{2}{1 + x^2} = \frac{-2}{1 + x^2}$$

 \Rightarrow

$$\therefore \qquad \frac{\mathrm{du}}{\mathrm{dv}} = \frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{\mathrm{dv}}{\mathrm{dx}}} = \frac{\frac{2}{1+x^2}}{\frac{-2}{1+x^2}} = -1$$

(iii) When $x \in (-\infty, -1)$. We have,

$$x = \tan \theta$$
 and $x \in (-\infty, -1)$

$$\Rightarrow -\infty < \tan \theta < -1 \Rightarrow -\frac{\pi}{2} < \theta < -\frac{\pi}{4} \Rightarrow -\pi < 2\theta < -\frac{\pi}{2}$$

:.
$$u = \tan^{-1}(\tan 2\theta) = \tan^{-1}\{\tan(\pi + 2\theta)\} = \pi + 2\theta = \pi + 2\tan^{-1}x$$

$$\Rightarrow \frac{du}{dx} = 0 + \frac{2}{1+x^2} = \frac{2}{1+x^2}$$

and, $v = \sin^{-1} (\sin 2\theta) = \sin^{-1} \{-\sin (\pi + 2\theta)\}$
$$\Rightarrow v = \sin^{-1} (\sin (-\pi - 2\theta)) = -\pi - 2\theta = -\pi - 2\tan^{-1} x$$

$$\Rightarrow \frac{dv}{dx} = -\frac{2}{1+x^2}$$

$$\therefore \frac{du}{dx} = \frac{\frac{du}{dx}}{1+x^2} = \frac{2}{1+x^2} = -1$$

$$\frac{dv}{dv} = \frac{\frac{dv}{dv}}{\frac{dv}{dx}} = \frac{1}{\frac{2}{1+x^2}} = \frac{1}{\frac{2}{1+x^2}}$$

Example – 46

If
$$y = A \cos(\log x) + B \sin(\log x)$$
, prove that
 $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$.

Sol. We have,

 $y = A \cos (\log x) + B \sin (\log x)$. On differentiating with respect to x, we get

$$\frac{dy}{dx} = -\frac{1}{x}A\sin(\log x) + \frac{B}{x}\cos(\log x)$$

28

Vedantiu Learn LIVE Online 29

$$\Rightarrow \quad x\frac{dy}{dx} = -A\sin(\log x) + B\cos(\log x).$$

On differentiating again with respect to x, we get

$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} = -A \frac{\cos(\log x)}{x} - B \frac{\sin(\log x)}{x}$$

$$\Rightarrow \quad x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -\{A \cos(\log x) + B \sin(\log x)\}$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$$

 $\Rightarrow \quad x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$

Example – 47

If
$$y = x \log \left(\frac{x}{a+bx}\right)$$
, prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$

Sol. We have,

$$y = x \log\left(\frac{x}{a + bx}\right)$$

- \Rightarrow y = x [log x log (a + bx)]
- $\Rightarrow \frac{y}{x} = \log x \log (a + bx)$

On differentiating with respect to x, we get

$$\frac{x\frac{dy}{dx} - y}{x^2} = \frac{1}{x} - \frac{1}{a + bx}\frac{d}{dx}(a + bx)$$
$$x\frac{dy}{dx} - y = x^2\left\{\frac{1}{x} - \frac{b}{a + bx}\right\}$$

$$\Rightarrow \quad x\frac{dy}{dx} - y = x^2 \left\{ \frac{1}{x} - \frac{b}{a + bx} \right\}$$

$$\Rightarrow x\frac{dy}{dx} - y = \frac{ax}{a + bx}$$

Differentiating both sides of (i) with respect to x, we get

$$x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} - \frac{dy}{dx} = \frac{(a+bx) \cdot a - ax(0+b)}{(a+bx)^{2}}$$

$$\Rightarrow x \frac{d^2 y}{dx^2} = \frac{a^2}{(a+bx)^2}$$

$$\Rightarrow x^{3} \frac{d^{2}y}{dx^{2}} = \frac{a^{2}x^{2}}{(a+bx)^{2}}$$
 [Multiplying both sides by x²]

$$\Rightarrow \quad x^3 \frac{d^2 y}{dx^2} = \left(\frac{ax}{a+bx}\right)^2$$

From (i) and (ii), we have

$$x^{3} \frac{d^{2} y}{dx^{2}} = \left(x \frac{dy}{dx} - y\right)^{2}$$

Example-48

If
$$y = \sin^{-1} \left\{ x \sqrt{(1-x)} - \sqrt{x} \sqrt{1-x^2} \right\}$$
 then find $\frac{dy}{dx}$.

Sol. We have
$$y = \sin^{-1} \left\{ x \sqrt{(1-x)} - \sqrt{x} \sqrt{1-x^2} \right\}$$

Putting
$$x = \sin \theta$$
 and $\sqrt{x} = \sin \phi$
then $y = \sin^{-1} {\sin \theta \cos \phi - \cos \theta \sin \phi} = \sin^{-1} \sin (\theta - \phi) = \theta - \phi$
 $= \sin^{-1} x - \sin^{-1} \sqrt{x}$
 $\therefore \quad \frac{dy}{dx} = \frac{d}{dx} \sin^{-1} x - \frac{d}{dx} \sin^{-1} \sqrt{x}$
 $= \frac{1}{\sqrt{(1 - x^2)}} - \frac{1}{\sqrt{1 - x}} \frac{d}{dx} \sqrt{x} = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}$

Example-49

If
$$u = f(x^2)$$
, $v = g(x^3)$, $f'(x) = \sin x$ and $g'(x) = \cos x$ then find
 $\frac{du}{dv}$

Sol. Differentiating $u = f(x^2)$ and $v = g(x^3)$ w.r.t.x we get

$$\frac{du}{dx} = f'(x^2) \cdot 2x = \sin(x^2) \cdot 2x$$

$$\{\because f'(x) = \sin x \Rightarrow f'(x^2) = \sin(x^2)\}$$

$$\frac{dv}{dx} = g'(x^3) \cdot 3x^2 = \cos(x^3) \cdot 3x^2$$

$$\{\because g'(x) = \cos x \Rightarrow g'(x^3) = \cos(x^3)\}$$

$$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\sin(x^2) \cdot 2x}{\cos(x^3) \cdot 3x^2} = \frac{2}{3x} \cdot \frac{\sin x^2}{\cos x^3}$$

Vedantu Learn LIVE Online

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Example – 50

If
$$\sqrt{(1-x^{2n})} + \sqrt{(1-y^{2n})} = a(x^n - y^n)$$
 then prove that

$$\frac{dy}{dx} = \frac{x^{n-1}}{y^{n-1}} \sqrt{\left(\frac{1-y^{2n}}{1-x^{2n}}\right)}.$$

Sol. We have
$$\sqrt{(1-x^{2n})} + \sqrt{(1-y^{2n})} = a(x^n - y^n) \dots (1)$$

Putting $x^n = \sin \theta \implies \theta = \sin^{-1} x^n$
and $y^n = \sin \phi \implies \phi = \sin^{-1} y^n$...(2)

then (1), becomes $\cos \theta + \cos \phi = a (\sin \theta - \sin \phi)$

$$\Rightarrow 2\cos\left(\frac{\theta+\phi}{2}\right)\cos\left(\frac{\theta-\phi}{2}\right) = a \cdot 2\cos\left(\frac{\theta+\phi}{2}\right)\sin\left(\frac{\theta-\phi}{2}\right)$$

$$\Rightarrow \operatorname{cot}\left(\frac{\theta+\phi}{2}\right) = a \Rightarrow \theta-\phi = 2\operatorname{cot}^{-1}a$$

 $\Rightarrow \quad sin^{-1} x^n - sin^{-1} y^n = 2cot^{-1} a \qquad \{from (2)\} \\ Differentiating both sides w.r.t. x, we get$

$$\frac{1}{\sqrt{\left(1-x^{2n}\right)}} \cdot nx^{n-1} - \frac{1}{\sqrt{\left(1-y^{2n}\right)}} \cdot ny^{n-1} \frac{dy}{dx} = 0$$
$$\Rightarrow \quad \frac{dy}{dx} = \frac{x^{n-1}}{y^{n-1}} \sqrt{\left(\frac{1-y^{2n}}{1-x^{2n}}\right)} \qquad (\text{Remember})$$

Corollary : (i) For n = 1

$$\sqrt{(1-x^2)} + \sqrt{(1-y^2)} = a(x-y)$$
 then $\frac{dy}{dx} = \sqrt{\left(\frac{1-y^2}{1-x^2}\right)}$

(ii) For n = 2

$$\sqrt{(1-x^{4})} + \sqrt{(1-y^{4})} = a(x^{2} - y^{2})$$

then $\frac{dy}{dx} = \frac{x}{y} \sqrt{\left(\frac{1-y^{4}}{1-x^{4}}\right)}$

(iii) For n = 3

$$\sqrt{(1-x^{6})} + \sqrt{(1-y^{6})} = a(x^{3} - y^{3})$$

then $\frac{dy}{dx} = \frac{x^{2}}{y^{2}} \sqrt{\left(\frac{1-y^{6}}{1-x^{6}}\right)}$

Example – 51

Find the derivative of f (tan x) with respect to
g (sec x) at x =
$$\pi/4$$
, if $f'(1) = 2$, $g'(\sqrt{2}) = 4$.

Sol. Let
$$u = f(\tan x)$$

$$\therefore \quad \frac{du}{dx} = f'(\tan x) \cdot \sec^2 x \qquad \dots(1)$$

and let $v = g$ (sec x)
$$\frac{dv}{dx} = g'(\sec x) \cdot \sec x \tan x \dots(2)$$

From (1) and (2)

$$\frac{\mathrm{du}}{\mathrm{dv}} = \frac{\left(\frac{\mathrm{du}}{\mathrm{dx}}\right)}{\left(\frac{\mathrm{dv}}{\mathrm{dx}}\right)} = \frac{f'(\tan x) \cdot \sec^2 x}{g'(\sec x) \cdot \sec x \tan x} = \frac{f'(\tan x)}{g'(\sec x)} \cdot \frac{1}{\sin x}$$

$$\therefore \qquad \frac{\mathrm{du}}{\mathrm{dv}}\Big|_{\mathrm{x}=\pi/4} = \frac{f'(1)}{g'(\sqrt{2})} \cdot \frac{1}{(1/\sqrt{2})} = \frac{2 \cdot \sqrt{2}}{4} = \frac{1}{\sqrt{2}}$$

In general if
$$y = f(u)$$
 then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$

Example-52

If f, g, h are differentiable functions of x and

$$\Delta(x) = \begin{vmatrix} f & g & h \\ (xf)' & (xg)' & (xh)' \\ (x^2f)'' & (x^2g)'' & (x^2h)'' \end{vmatrix}, \text{ prove that}$$

$$\frac{d\Delta(x)}{dx} = \begin{vmatrix} f & g & h \\ f' & g' & h' \\ (x^3f'')' & (x^3g'')' & (x^3h'')' \end{vmatrix}$$
Sol.
$$\Delta(x) = \begin{vmatrix} f & g & h \\ f + xf' & g + xg' & h + xh' \\ 2f + 4xf' + x^2f'' & 2g + 4xg' + x^2g'' & 2h + 4xh' + x^2h'' \end{vmatrix}$$

$$\{\because (x^2f)' = 2xf + x^2f' (x^2f)'' = 2(f + xf') + 2xf' + x^2f''\}$$

$$= \begin{vmatrix} f & g & h \\ xf' & xg' & xh' \\ 2xf' + x^2f'' & 2xg' + x^2g'' & 2xh' + x^2h' \\ R_3 \rightarrow R_3 - 2R_1, R_2 \rightarrow R_2 - R_1 \\ = \begin{vmatrix} f & g & h \\ xf' & xg' & xh' \\ x^2f'' & x^2g'' & x^2h'' \end{vmatrix}, R_3 \rightarrow R_3 - 2R_2 \\ = \begin{vmatrix} f & g & h \\ f' & g' & h' \\ x^3f'' & x^3g'' & x^3h'' \end{vmatrix},$$
taking the common factor x from R₂ to R₃
$$\therefore \frac{d\Delta(x)}{dx} = \begin{vmatrix} f' & g' & h' \\ f' & g' & h' \\ x^3f'' & x^3g'' & x^3h'' \end{vmatrix}$$

$$+ \begin{vmatrix} f & g & h \\ f'' & g'' & h'' \\ x^{3}f'' & x^{3}g'' & x^{3}h'' \end{vmatrix}$$

$$+ \begin{vmatrix} f & g & h \\ f' & g' & h' \\ (x^{3}f'')' & (x^{3}g'')' & (x^{3}h'')' \end{vmatrix}$$

$$= 0 + x^{3} \begin{vmatrix} f & g & h \\ f'' & g'' & h'' \\ f'' & g'' & h'' \\ (x^{3}f'')' & (x^{3}g'')' & (x^{3}h'')' \end{vmatrix}$$

$$+ \begin{vmatrix} f & g & h \\ f' & g'' & h' \\ (x^{3}f'')' & (x^{3}g'')' & (x^{3}h'')' \end{vmatrix}$$

$$= 0 + x^{3} \times 0 + \begin{vmatrix} f & g & h \\ f' & g' & h' \\ (x^{3}f'')' & (x^{3}g'')' & (x^{3}h'')' \end{vmatrix}$$

Example – 53

Find the sum of

 $\sin x + 3\sin 3x + 5\sin 5x + ... + (2k-1)\sin (2k-1)x$.

Sol. Let $S = \cos x + \cos 3x + \cos 5x + ... + \cos (2k-1) x$. Here the angles are in AP whose first term = x, common diff. =2x.

$$\therefore \qquad S = \frac{\sin \frac{k \cdot 2x}{2}}{\sin \frac{2x}{2}} \cos \left\{ \frac{x + (2k - 1)x}{2} \right\}$$

$$=\frac{\sin kx}{\sin x}\cos kx = \frac{\sin 2kx}{2\sin x}$$

 $\therefore \quad \cos x + \cos 3x + \cos 5x + \dots + \cos (2k-1) x = \frac{\sin 2kx}{2\sin x}$

Differentiating w.r.t.x,

$$-\{\sin x + 3\sin 3x + 5\sin 5x + ... + (2k-1)\sin (2k-1)x\}$$

$$=\frac{1}{2} \cdot \frac{2k\cos 2kx \cdot \sin x - \sin 2kx \cdot \cos x}{\sin^2 x}$$

 \therefore sin x + 3sin 3x + 5sin 5x +...+ (2k-1) sin (2k-1) x

$$= \frac{-1}{2\sin^2 x} \left[k \left\{ \sin(2k+1)x - \sin(2k-1)x \right\} - \frac{1}{2} \left\{ \sin(2k+1)x + \sin(2k-1)x \right\} \right]$$

$$=\frac{1}{4\sin^2 x} \left[(2k+1)\sin(2k-1)x - (2k-1)\sin(2k+1)x \right]$$

Example-54

Let
$$f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$
, where p is constant then
find $\frac{d^3}{dx^3} \{f(x)\}$ at $x = 0$.

Sol. We have

$$f(\mathbf{x}) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

Vedantu Learn LIVE Online

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

$$\frac{d^{3}}{dx^{3}} \{f(x)\} = \begin{vmatrix} \frac{d^{3}}{dx^{3}}x^{3} & \frac{d^{3}}{dx^{3}}\sin x & \frac{d^{3}}{dx^{3}}\cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \end{vmatrix}$$

 $(\cdot:$ All elements in second row and third row are constants)

$$\begin{vmatrix} 3! & \sin\left(x + \frac{3\pi}{2}\right) & \cos\left(x + \frac{3\pi}{2}\right) \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

$$\frac{d^{3}}{dx^{3}}f(x)\Big|_{x=0} = \begin{vmatrix} 6 & \sin\frac{3\pi}{2} & \cos\frac{3\pi}{2} \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \end{vmatrix} = \begin{vmatrix} 6 & -1 & 0 \\ 6 & -1 & 0 \\ p & p^{2} & p^{3} \end{vmatrix} = 0$$

(:: first and second rows are identical).

Example – 55

If
$$y = \tan^{-1} \frac{1}{(x^2 + x + 1)} + \tan^{-1} \frac{1}{(x^2 + 3x + 3)}$$

+ $\tan^{-1} \frac{1}{(x^2 + 5x + 7)} + \tan^{-1} \frac{1}{(x^2 + 7x + 13)} + \dots$ to
n terms. Find $\frac{dy}{dx}$.

Sol. Since

$$y = \tan^{-1} \frac{1}{\left(x^{2} + x + 1\right)} + \tan^{-1} \frac{1}{\left(x^{2} + 3x + 3\right)}$$
$$+ \tan^{-1} \frac{1}{\left(x^{2} + 5x + 7\right)} + \tan^{-1} \frac{1}{\left(x^{2} + 7x + 13\right)} + \dots \text{ to n terms.}$$

$$= \tan^{-1} \left(\frac{(x+1)-x}{1+x(x+1)} \right) + \tan^{-1} \left(\frac{(x+2)-(x+1)}{1+(x+1)(x+2)} \right)$$
$$+ \tan^{-1} \left(\frac{(x+3)-(x+2)}{1+(x+2)(x+3)} \right) + \tan^{-1} \left(\frac{(x+4)-(x+3)}{1+(x+3)(x+4)} \right)$$
$$+ \dots + \tan^{-1} \left(\frac{(x+n)-(x+n-1)}{1+(x+n-1)(x+n)} \right)$$
$$= \tan^{-1} (x+1) - \tan^{-1} x + \tan^{-1} (x+2) - \tan^{-1} (x+1)$$
$$+ \tan^{-1} (x+3) - \tan^{-1} (x+2) + \tan^{-1} (x+4) - \tan^{-1} (x+3)$$
$$+ \dots + \tan^{-1} (x+n) - \tan^{-1} (x+n-1) = \tan^{-1} (x+n) - \tan^{-1} x$$
$$\frac{dy}{dx} = \frac{1}{1+(x+n)^2} - \frac{1}{(1+x^2)}.$$

Example – 56

...

If
$$(a + bx)e^{y/x} = x$$
, show that $x^3 y'' = (xy' - y)^2$.

Sol. We have $(a + bx)e^{y/x} = x$

$$\Rightarrow e^{y/x} = \frac{x}{(a+bx)} \qquad \dots (1)$$

Taking logarithm of both sides, we have

$$\frac{y}{x} = \ln x - \ln(a + bx)$$

Differentiating both sides w.r.t. x, we get

$$\frac{xy'-y}{x^2} = \frac{1}{x} - \frac{b}{(a+bx)}$$

$$\Rightarrow \quad xy'-y = \frac{ax}{(a+bx)} = ae^{y/x} \qquad \text{{from (1)}}$$

Again taking logarithm of both sides, we have

$$\ln(xy'-y) = \ln a + \frac{y}{x}$$

Again differentiating both sides w.r.t. x, we get

$$\Rightarrow \frac{(xy''+y'-y')}{(xy'-y)} = 0 + \frac{(xy'-y.1)}{x^2}$$

Hence $x^3y'' = (xy'-y)^2$

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

Checking continuity at a point
1. Let
$$f(x) = \frac{1-\tan x}{4x-\pi}, x \neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$$
. $f(x)$ is
continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is
(a) -1/2 (b) 1/2
(c) 1 (d) -1
2. If f(x) be a continuous function and g(x) be discontinuous
function, then f(x) + g(x) is a
(a) continuous function (b) discontinuous function
(c) can't say anything (d) none of these
3. The point of discontinuity of the function
 $f(x) = \frac{1+\cos 5x}{1+\cos 4x}$, is
(a) $x=2$ (b) $x = \frac{\pi}{6}$
(c) $x=\pi$ (d) $x = \frac{\pi}{4}$
4. The function $f(x) = \left\{\frac{1}{4^x-1}; x \neq 0$ is continuous
(a) everywhere except at $x = 0$ and $x = 1$
(b) nowhere
(c) everywhere
(d) everywhere except at $x = 0$
5. The function $f(x) = (1+x)^{ext}$ is not defined at $x = 0$. The value
of f(0) so that f(x) becomes continuous at $x = 0$ is

(a) 1 (b) 0

(c) e (d) 1	none of these
-------------	---------------

The function $f(x) = \frac{1}{u^2 + u - 2}$, where $u = \frac{1}{x - 1}$, is 6. discontinuous at the points

(a)
$$x = -2, 1, \frac{1}{2}$$
 (b) $x = \frac{1}{2}, 1, 2$

(c) x = 1, 0If $f: R \rightarrow R$ is defined by

$$f(x) = \begin{cases} \frac{x-2}{x^2-3x+2}, & \text{if } x \in R - \{1, 2\} \\ 2, & \text{if } x = 1 \\ 1, & \text{if } x = 2 \end{cases}$$

then
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} =$$

(a) 0 (b) -1
(c) 1 (d) -1/2

If
$$f(\mathbf{x}) = \begin{cases} \frac{1-\sin^2 x}{3\cos^2 x}, & x < \frac{\pi}{2} \\ a, & x = \frac{\pi}{2} \end{cases}$$
. Then $f(\mathbf{x})$ is $\frac{b(1-\sin x)}{(\pi-2x)^2}, & x > \frac{\pi}{2} \end{cases}$

continuous at
$$x = \frac{\pi}{2}$$
, if

(a)
$$a = \frac{1}{3}, b = 2$$

(b) $a = \frac{1}{3}, b = \frac{8}{3}$
(c) $a = \frac{2}{3}, b = \frac{8}{3}$
(d) None of these

34

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Finding unknown when function is continuous

9. Let
$$f(x) = \begin{cases} \frac{(x^3 + x^2 - 16x + 20)}{(x - 2)^2} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases}$$

If $f(x)$ is continuous for all x, then $k =$
(a) 7 (b) 2
(c) 0 (d) -1
10. If the function $f(x) = \begin{cases} \frac{x^2 - (A + 2)x + A}{x - 2}, & \text{for } x \neq 2 \\ 2, & \text{for } x = 2 \end{cases}$
continuous at $x = 2$, then
(a) $A = 0$ (b) $A = 1$
(c) $A = -1$ (d) None of these
11. The function $f(x) = \frac{\ln(1 + ax) - \ln(1 - bx)}{x}$ is not defined
at $x = 0$. The value which should be assigned to f at $x = 0$ so
that it is continuous at $x = 0$, is
(a) $a - b$ (b) $a + b$
(c) $\ln a + \ln b$ (d) None of these
12. Let $f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x = \frac{\pi}{4} \end{cases}$
Then the value of a so that $f(x)$ is continuous at $x = \frac{\pi}{4}$ is
(a) 2 (b) 4
(c) 3 (d) 1
13. $F(x) = \begin{cases} ax^2 + b, & 0 \le x < 1 \\ 4, & x = 1 \end{cases}$ then the value of (a, b) for

 $1 < x \le 2$ x + 3, which f(x) cannot be continuous at x = 1.

(a) (2, 2)	(b) (3, 1)
(c)(4,0)	(d) (5, 12)

14. If
$$f(x) = \begin{cases} \frac{A + 3\cos x}{x^2}, & x < 0\\ B\tan\frac{\pi}{[x+3]}, & x \ge 0 \end{cases}$$

is

is

where [.] represents greatest integer function is continuous at x = 0. Then,

(a)
$$A = -3, B = -\sqrt{3}$$
 (b) $A = 3, B = -\frac{\sqrt{3}}{2}$

(c) A = -3, B =
$$-\frac{\sqrt{3}}{2}$$
 (d) A = $-\frac{\sqrt{3}}{2}$, B = -3

15. Let
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} , x < 0 \\ a , x = 0 \\ \frac{\sqrt{x}}{(16 + \sqrt{x})^{1/2} - 4} , x > 0 \end{cases}$$

The value of 'a' for which f(x) becomes continuous at 0 must be

The value of f(0) so that the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ 16. is continous at each point on its domain is

(a) 2 (b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$
 (d) $-\frac{1}{3}$

 $F(x) = (x-1)^{\frac{1}{2-x}}$ is not defined at x = 2. If f(x) is continuous, 17. then F(2) is equal to

(a) e (b)
$$e^{-1}$$

(c) e^{-2} (d) 1

18. If the function
$$f(x) = \begin{cases} x + a\sqrt{2}\sin x, & 0 \le x < \frac{\pi}{4} \\ 2x \cot x + b, & \frac{\pi}{4} \le x \le \frac{\pi}{2} \\ a \cos 2x - b \sin x, & \frac{\pi}{2} < x \le \pi \end{cases}$$

is continuous in the interval $[0, \pi]$, then

(a)
$$a = \frac{\pi}{6}, b = \frac{\pi}{12}$$
 (b) $a = -\frac{\pi}{6}, b = \frac{\pi}{12}$
(c) $a = -\frac{\pi}{6}, b = -\frac{\pi}{12}$ (d) $a = \frac{\pi}{6}, b = -\frac{\pi}{12}$

19. Let
$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4\\ a+b, & x = 4 \end{cases}$$
 then $f(x)$ is continuous $\frac{|x-4|}{|x-4|} + b, & x > 4 \end{cases}$

at x = 4, when

(a)
$$a = b = 0$$

(b) $a = b = 1$
(c) $a = -1, b = 1$
(d) $a = 1, b = -1$

20. If the function
$$f(x) = \begin{cases} Ax - B, & x \le 1 \\ 3x, & 1 < x < 2 \\ Bx^2 - A, & x \ge 2 \end{cases}$$

continuous at x = 1 and discontinuous at x = 2, then (a) A = 3 + B, $B \neq 3$ (b) A = 3 + B, B = 3(c) A = 3 + B (d) none of these

21. If
$$f(x) = \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2}$$
 (x \ne 0); then for f to be

continous everywhere, f(0) is equal to

(a) -1 (b) 1 (c) 2^6 (d) none of these

Mixed Problems of Continuous Differentiability

22. The function $f(x) = \sin^{-1}(\cos x)$ is

(a) discontinuous at x = 0

(b) continuous at x = 0

(c) differentiable at x = 0

(d) None of these

- 23. The function f(x) = 1 + | sin x | is
 (a) continuous no where
 (b) continuous every where and no differentiable at x = 0
 (c) differentiable no where
 - (d) differentiable at x = 0
- 24. For the function $f(x) = (\pi x) \frac{\cos x}{|\sin x|}$; $x \neq \pi$, $f(\pi) = 1$, which

of the following statements is true ? (a) $f(\pi-0) = -1$ at $f(\pi+0) = 1$ (b) f(x) is continuous at $x = \pi$ (c) f(x) is differentiable at $x = \pi$ (d) None of these

25. The function
$$f(x) = \begin{cases} |2x-3|.[x], & x \ge 1 \\ \sin\left(\frac{\pi x}{2}\right), & x < 1 \end{cases}$$

- (where [x] denotes greatest integer ≤ x)
 (a) continuous at x = 2
 (b) differentiable at x = 1
- (c) continuous but not differentiable at x = 1

(d) None of these

26. If
$$f(x) = \begin{cases} \frac{\lfloor x \rfloor - 1}{x - 1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
, where $\lfloor x \rfloor$ denotes greatest

integer \leq x. then f(x) is

(a) continuous as well as differentiable at x = 1

(b) differentiable but not continuous at x = 1

(c) continuous but not differentiable at x = 1

(d) neither continuous nor differentiable at x = 1

27. If
$$f(x) = \begin{cases} 3^x, & -1 \le x \le 1 \\ 4 - x, & 1 < x \le 4 \end{cases}$$
, then $f(x)$ is

(a) continuous as well as differentiable at x = 1(b) continuous but not differentiable at x = 1

(b) continuous but not unreferitiable at x = 1

(c) differentiable but not continuous at x = 1

(d) none of the above

28. The set of points where the function $f(x) = |x-1| e^x$ is differentiable is

(a) R (b) $R-\{1\}$ (c) $R-\{-1\}$ (d) $R-\{0\}$ 36

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

29.	If $f(x) = x + \frac{x}{1+x} + \frac{x}{(1+x)^2} +$ to ∞ , then at $x = 0$, $f(x)$			
	(a) $\lim_{x\to 0} f(x)$ does not exist			
	(b) is discontinuous			
	(c) is continuous but not differentiable(d) is differentiable			
30.	• Let $f(x+y) = f(x) f(y)$ for all $x, y \in \mathbb{R}$.			
	Suppose that $f(3) = 3$ then, $f'(3)$ is equal to			
	(a) 22 (b))44		
	(c) 28 (d) none of these		
31.	If $f(x) = x^3 \operatorname{sgn} x$, then			
	(a) f is derivable at $x = 0$			
	(b) f is continuous but not derivable at $x = 0$			
	(c) LHD at $x = 0$ is 1			
	(d) RHD at $x = 0$ is 1			
32.	The set of points where the fu	unction		
	$f(x) = [x] + 1 - x , -1 \le x \le 3$			
	where [.] denotes the greatest integer function, is not differentiable, is			
	(a) $\{-1, 0, 1, 2, 3\}$ (b)) {-1, 0, 2}		
	(c) $\{0, 1, 2, 3\}$ (d)) {-1, 0, 1, 2}		

- 33. Let $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$. Then, which one of the following is incorrect ?
 - (a) continuous at $x = \pi/2$
 - (b) discontinuous at $x = \pi/2$
 - (c) discontinuous at $x = -\pi/2$
 - (d) discontinuous at infinite number of points.

34. If
$$f(x) = \begin{cases} \frac{|x+2|}{\tan^{-1}(x+2)}; & x \neq -2 \\ = 2; & x = -2 \end{cases}$$
 then $f(x)$ is

- (a) continuous at x = -2
- (b) not continuous at x = -2
- (c) differentiable at x = -2
- (d) continuous but not diff. at x = -2

For the function $f(x) = \begin{cases} |x-3|, & x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$ which of 35. the following is incorrect? (a) continuous at x = 1(b) continuous at x = 3(c) derivable at x = 1(d) derivable at x = 336. The number of points at which the function $f(x) = |x - 0.5| + |x-1| + \tan x$ does not have a derivative in interval (0, 2) is (a) 1 (b) 2 (c) 3 (d)4 $F(x) = \begin{cases} [\cos \pi x], & x < 1 \\ |x - 2|, & 2 > x \ge 1 \end{cases}, \text{ then } f(x) \text{ is where } [.] \text{ denotes} \end{cases}$ 37. greatest integer fraction. (a) discontinous and non-diff. at x = -1 and x = 1(b) continuous and differentiable at x = 0(c) discontinuous at $x = \frac{1}{2}$ (d) cont. but & t not diff. at x = 238. A function is defined as follows : $f(x) = \begin{cases} x^3; & x^2 < 1\\ x; & x^2 \ge 1 \end{cases}$ The function is (a) dis continuous at x = 1(b) differentiable at x = 1(c) continuous but not differentiable at x = 1(d) none of these If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}; & x \neq 0\\ 0; & x = 0 \end{cases}$ then 39.

- (a) $\lim_{x \to 0} f(x) = 1$
- (b) f(x) is continuous at x = 0
- (c) f(x) is differentiable at x = 0
- (d) None of these

40. If
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$
 then $f(x)$ is
(a) continuous on $[-1, 1]$ and differentiable on $(-1, 1)$
(b) continuous on $[-1, 1]$ and differentiable on $(-1, 1)$
(c) continuous on $[-1, 1]$ and differentiable on $(-1, 1)$
(d) None of these
Questions Based on Based Differentiation
(**Product Rule, Quotient Rule**)
41. Derivative of $x^4 + 6^5$ with respect to x is
(a) $12x$ (b) $x + 4$
(c) $6x^4 + 6^5 \log 6$ (d) $6x^4 + x6^{-1}$
42. If $y = \frac{a + bx^{3/2}}{x^{3/4}}$ and $y' = 0$ at $x = 5$, then the ratio $a : b$ is
equal to
(a) $\sqrt{5}:1$ (b) $5:2$
(c) $3:5$ (d) $1:2$
43. If $y = \log_x x + \log_x a$, $\log_x x + \log_x a$, then $\frac{dy}{dx}$ is equal to
(a) $\frac{1}{x} + x \log a$ (b) $\frac{\log a}{x} + \frac{x}{\log a}$
(c) $\frac{1}{x \log a} + x \log a$ (d) $\frac{1}{x \log a} - \frac{\log a}{x (\log x)^2}$
44. If $y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right]$, then $\frac{dy}{dx}$ is equal to
(a) $\frac{1}{2}$ (b) $\frac{\pi}{4}$
(c) 0 (d) 11
45. If $y = (1 + x^3) \tan^{-1} x - x$, then $\frac{dy}{dx}$ is equal to
(a) $\tan^{-1} x$ (b) $2x \tan^{-1} x$
(c) $2x \tan^{-1} x - 1$ (d) $\frac{2x}{\tan^{-1} x}$

Vedantiu Learn LIVE Online

tt.

52.	If $f(x) = \log_x (\log_e x)$, then	nf'(x) at $x = e$ is	Ques	stion
	(a) e	(b) $\frac{1}{e}$	59.	If
	(c) $\frac{2}{r}$	0(1)		
	(c) $\frac{1}{e}$	(d) 0		(a
53.	$If f(x) = e^{x} g(x), g(0) = 2$,
	(a) 1	(b) 3		(c
Ques	(c) 2 tions Based on Impticit Fu	(d) 0 nction	60	
			60.	If
54.	If $2^{x} + 2^{y} = 2^{x+y}$, then the y	value of $\frac{dy}{dx}$ at x = y = 1, is		(a (c
	(a) 0	(b)-1		(c If
	(c) 1	(d) 2	61.	It
55.	If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is e	qual to		у
	(a) $(1 + log x)^{-1}$	(b) $(1 + \log x)^{-2}$		(a
	(c) $\log x \cdot (1 + \log x)^{-2}$			(c
56.	If $e^{y} + xy = e$, then the val	lue of $\frac{d^2 y}{dx^2}$ for x = 0, is	62.	If
	(a) 1/e	(b) $1/e^2$		(a
	(c) $1/e^3$	(d) e		(c
57.	If $2x^2 - 3xy + y^2 + x + 2y$	$-8 = 0$, then $\frac{dy}{dx} =$	63.	If
	(a) $\frac{3y-4x-1}{2y-3x+2}$	(b) $\frac{3y+4x+1}{2y+3x+2}$		(a
	(c) $\frac{3y-4x+1}{2y-3x-2}$	(d) $\frac{3y-4x+1}{2y+3x+2}$		(c
58.	If $x^2 + y^2 = t + \frac{1}{t}$ and $x^4 + \frac{1}{t}$	$y^4 = t^2 + \frac{1}{t^2}$, then $\frac{dy}{dx}$ is equal to	64.	If
	(a) $\frac{y}{x}$	$(b) - \frac{y}{x}$		(a (c
	(c) $\frac{x}{y}$	$(d) - \frac{x}{y}$		

Questions Based on Parametric Functions

59.	If $x = \frac{1-t^2}{1+t^2}$ and $y = \frac{2t}{1+t}$	$\frac{1}{2}$, then $\frac{dy}{dx}$ is equal to
	(a) $-\frac{y}{x}$	(b) $\frac{y}{x}$
	(c) $-\frac{x}{y}$	(d) $\frac{\mathbf{x}}{\mathbf{y}}$
60.	If $x = a \cos^4 \theta$, $y = a \sin^4 \theta$	θ , then $\frac{dy}{dx}$ at $\theta = \frac{3\pi}{4}$ is
	(a)-1	(b) 1
	$(c)-a^2$	$(d) a^2$
61.	If $t \in (0, \frac{1}{2})$ and $x = \sin^{-1}$	$(3t - 4t^3)$ and
	$y = \cos^{-1}\left(\sqrt{1-t^2}\right)$, then	$\frac{dy}{dx}$ is equal to
	(a) 1/2	(b) 2/5
	(c) 3/2	(d) 1/3
62.	If $y = A \cos nx + B \sin nx$, then $\frac{d^2 y}{dx^2} =$
	$(a) -n^2 y$	(b) –y
	(c) $n^2 y$	(d) none of these
63.	If $x = a \sin \theta$ and $y = b \cos \theta$	by θ , then $\frac{d^2y}{dx^2}$ is equal to
	(a) $\frac{a}{b^2} \sec^2 \theta$	(b) $-\frac{b}{a}\sec^2\theta$
	(c) $\frac{b}{a^2} \sec^3 \theta$	(d) $-\frac{b}{a^2} \sec^3 \theta$
		$en(1-x^2) d^2y dy$
64.	If $x = \cos \theta$, $y = \sin 5\theta$, th	$\frac{dx^2}{dx^2} - x \frac{dx}{dx} =$
64.	a) -5y	(b) 5y
64.		ux ux

Questions based on Differentiation of a function w.r.t. another | Logarithmic Differentiation function

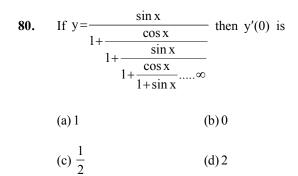
65. The derivative of
$$f(\tan x)$$
 w.r.t. $g(\sec x)$ at $x = \frac{\pi}{4}$, where
 $f'(1) = 2$ and $g'(\sqrt{2}) = 4$, is
(a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$
(c) 1 (d) None of these
66. The derivative of e^{x^3} with respect to $log x$ is
(a) e^{x^3} (b) $3x^2 2e^{x^3}$
(c) $3x^3 e^{x^3}$ (d) $3x^2 e^{x^3} + 3x^2$
67. The derivative of $log_{10} x$ with respect to x^2 is
(a) $\frac{1}{2x^2} \log_e 10$ (b) $\frac{2}{x^2} \log_{10} e$
(c) $\frac{1}{2x^2} \log_e 10$ (d) $\frac{2}{x^2} \log_{10} e$
(c) $\frac{1}{2x^2} \log_{10} e$ (d) None of these
68. If $y = e^{\sin^{-1}x}$ and $u = log x$, then $\frac{dy}{du}$ is
(a) $\frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$ (b) $x e^{\sin^{-1}x}$
(c) $\frac{x e^{\sin^{-1}x}}{\sqrt{1-x^2}}$ (d) $\frac{e^{\sin^{-1}x}}{x}$
69. The derivative of $\sin^2 x$ with respect to $\cos^2 x$ is
(a) $\tan^2 x$ (b) $\tan x$
(c) $-\tan x$ (d) None of these

70. Let
$$f(x) = \frac{(x+1)^2(x-1)}{(x-2)^3}$$
, then $f'(0)$ is
(a) $-\frac{9}{8}$ (b) $-\frac{11}{8}$
(c) $-\frac{13}{8}$ (d) None of these

71.
$$\frac{d}{dx} \left[\log \left\{ e^{x} \left(\frac{x-2}{x+2} \right)^{3/4} \right\} \right] \text{ is equal to}$$
(a) 1
(b) $\frac{x^{2}+1}{x^{2}-4}$
(c) $\frac{x^{2}-1}{x^{2}-4}$
(d) $e^{x} \cdot \frac{x^{2}-1}{x^{2}-4}$
72. The derivative of $y = x^{\ln x}$ is
(a) $x^{\ln x-1} \ln x$
(b) $x^{\ln x-1} \ln x$
(c) $2x^{\ln x-1} \ln x$
(d) $x^{\ln x-2}$
73. If $y = \{f(x)\}^{\phi(x)}$, then $\frac{dy}{dx}$ is
(a) $e^{\phi(x)\log f(x)} \left\{ \frac{\phi(x) d f(x)}{f(x) dx} + \log f(x) \cdot \frac{d \phi(x)}{dx} \right\}$
(b) $\frac{\phi(x)}{f(x)} \left(\frac{df(x)}{dx} \right) + \frac{d\phi(x)}{dx} \log f(x)$
(c) $e^{\phi(x)\log f(x)} \left\{ \frac{\phi(x) \frac{f'(x)}{f(x)} + \phi'(x) \log f'(x) \right\}$
(d) None of these
74. If $y = \log_{\cos x} \sin x$, then $\frac{dy}{dx}$ is equal to
(a) (cot x $\log \cos x + \tan x \log \sin x) / (\log \cos x)^{2}$
(b) (tan x $\log \cos x + \tan x \log \sin x) / (\log \cos x)^{2}$
(c) (cot x $\log \cos x + \tan x \log \sin x) / (\log \sin x)^{2}$
(d) None of these
75. Let $f(x) = (x^{x})^{x}$ and $g(x) = x^{(x^{x})}$ then
(a) $f'(1) = 1$ and $g'(1) = 2$
(b) $g'(1) = 2$ and $f'(1) = 2$

(c) f'(1) = 1 and g'(1) = 0(d) f'(1) = 1 and g'(1) = 1

40 **Differentiation of Infinite Sereis** If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots \infty}}}$ then $\frac{dy}{dx}$ is equal to 76. (a) $\frac{\cos x}{2y-1}$ (b) $\frac{-\cos x}{2y-1}$ (c) $\frac{\sin x}{1-2y}$ (d) $\frac{-\sin x}{1-2y}$ 77. If $y = \sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + \dots \infty}}}}$, then $\frac{dy}{dx}$ is equal to (a) $\frac{y+x}{y^2-2x}$ (b) $\frac{y^3-x}{2y^2-2xy-1}$ (c) $\frac{y^3 + x}{2y^2 - x}$ (d) None of these 78. If $y = x^{x^{x^{x^{...,\infty}}}}$, then $x (1 - y \log x) \frac{dy}{dx}$ (b) y^{2} $(a)x^{2}$ (c) xy^2 (d) xy If $y=x+\frac{1}{x+$ 79. (a) $\frac{y}{2y-x}$ (b) $\frac{x}{2x-y}$ (c) $\frac{y}{y-x}$ (d) $\frac{x}{x-y}$



81.	For $ x < 1$, let $y = 1 + x + x$	$dx^2 + \dots$ to ∞ , then $\frac{dy}{dx}$ equal to
	(a) $\frac{x}{y}$	(b) $\frac{x^2}{y^2}$
	(c) $\frac{x}{y^2}$	$(d) xy^2 + y$
Diffe	rentiation Based on Trigon	ometric Substitution
82.	If $\mathbf{x} \in (0, 1)$ The derivative	the of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect
	to $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is	
	(a)-1	(b) 1
	(c) 2	(d) 4
83.	Let $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$,	find f'(1/2)
	(a) $\frac{5}{8}$	(b) $\frac{6}{7}$
	(c) $\frac{8}{5}$	(d) $\frac{7}{6}$
84.	Find the derivative of y =	$\tan^{-1}\left(\frac{2x}{1-x^2}\right) \text{ at } x = 0$
	(a) 0	(b) $\frac{1}{4}$
	(b) $\frac{1}{2}$	(d) None
85.	Let $f(x) = \tan^{-1} \left(\frac{\sqrt{1+x}}{\sqrt{1+x}} + \frac{1}{\sqrt{1+x}} \right)^{-1}$	$\left(\frac{-\sqrt{1-x}}{\sqrt{1-x}}\right)$, then f'(0) is
	(a) 0	(b) $\frac{1}{2}$
	(c) 1	(d) 2

86. Let
$$f(x) = 2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2}\right)$$
. Then.
(a) $f'(2) = f'(3)$ (b) $f'(2) = 0$
(c) $f'\left(\frac{1}{2}\right) = \frac{16}{5}$ (d) All the above
87. If $f(x) = 2 \tan^{-1} x + \cos^{-1} \left(\frac{1-x^2}{1+x^2}\right)$, then
(a) $f'(-2) = \frac{4}{5}$
(b) $f'(-1) = -1$
(c) $f'(x) = 0$ for all $x < 0$
(d) None of these
88. If $y = \cos^{-1} \left(\frac{2\cos x - 3\sin x}{\sqrt{13}}\right)$; $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is
(a) $2xo$ (b) $2xo = 1$, then
(a) $x < 0$
(c) $\frac{d^2y}{dx^2}$, is equal to
(c) $\frac{d^2x}{dx^2}$, is equal to
(c) $\frac{d^$

92.	If $\sqrt{x+y} + \sqrt{y-x} = c$ then	$\frac{d^2y}{dx^2}$ is
	(a) $\frac{2x}{c^2}$	(b) $\frac{2}{c^3}$
	(c) $-\frac{2}{c^2}$	(d) $\frac{2}{c^2}$
93.	Let $x = \sin(l nt)$ and $y = cc$	by $(l \text{ nt})$ then $\frac{d^2 y}{dx^2}$ is
	(a) $-\frac{1}{y^2}$	(b) $-\frac{1}{y^3}$
	(c) $\frac{1}{y^2}$	(d) $\frac{1}{y^3}$
94.	If $y = a \cos(\log x) + b \sin(\log x)$ the $x^2y'' + xy'$ is equal to	bg x) where a, b are parameters,
	(a) y (c) 2y	(b) -y (d) -2y
Probl	ems Based on Existence of D	
95.	If $f(x) = \sqrt{x^2 - 10x + 25}$, the interval [0, 7] is	hen the derivative of $f(\mathbf{x})$ on the
	(a) 1	(b)-1
	(c) 0	(d) Does not exist
96.	If $f(\mathbf{x}) = \sqrt{\mathbf{x}^2 + 6\mathbf{x} + 9}$, the	$\mathbf{n}f'(\mathbf{x})$ is equal to
	(a) 1 for $x < -3$	(b) -1 for x < -3
	(c) 1 for all $x \in R$	(d) None of these
97.	If $f(x) = (x-4)(x-5) $, the	$en f'(\mathbf{x})$ is equal to
	(a) $-2x+9$, for all $x \in \mathbb{R}$	(b) $2x - 9$ if $4 < x < 5$
	(c) $-2x + 9$ if $4 < x < 5$	(d) None of these
98.	If $y = \cos x + \sin x $ then	$\frac{\mathrm{d}y}{\mathrm{d}x}$ at $x = \frac{2\pi}{3}$ is
	(a) $\frac{1-\sqrt{3}}{2}$	(b) 0
	(c) $\frac{1}{2}(\sqrt{3}-1)$	(d) none of these
99.	If $f(\mathbf{x}) = \log \mathbf{x} , \mathbf{x} \neq 0$ then f	'(x) equals
	(a) $\frac{1}{ \mathbf{x} }$	(b) $\frac{1}{x}$
	(c) $-\frac{1}{x}$	(d) None of these

Vedantu

Learn LIVE

Online

Learn LIVE Online

If $f(\mathbf{x}) = \sin \left\{ \frac{\pi}{3} [\mathbf{x}] - \mathbf{x}^2 \right\}$ where [x] denotes the greatest 100. integer less than or equal to x, then $f'(\sqrt{\pi/3})$ is equal to (a) $\sqrt{\pi/3}$ (b) $-\sqrt{\pi/3}$ (c) $-\sqrt{\pi}$ (d) None of these **Misc. Problems** 101. If $f(x) = \left(\frac{x^a}{x^b}\right)^{a+b} \left(\frac{x^b}{x^c}\right)^{b+c} \left(\frac{x^c}{x^a}\right)^{c+a}$ then f'(x) is equal to (a) 1 (b)0(c) x^{a+b+c} (d) None of these **102.** If $y = \frac{1}{1+x^{\beta-\alpha}+x^{\gamma-\alpha}} + \frac{1}{1+x^{\alpha-\beta}+x^{\gamma-\beta}} + \frac{1}{1+x^{\alpha-\gamma}+x^{\beta-\gamma}}$ then $\frac{dy}{dx}$. (b) 1 (a) 0 (c) $(\alpha + \beta + \gamma) x^{\alpha + \beta + \gamma - 1}$ (d) None of these 103. If $f(x) = \left(\frac{\sin^m x}{\sin^n x}\right)^{m+n} \left(\frac{\sin^n x}{\sin^p x}\right)^{n+p} \left(\frac{\sin^p x}{\sin^m x}\right)^{p+m}$, then $f'(\mathbf{x})$ is equal to (a) 0 (b) 1 (c) $\cos^{m+n+p} x$ (d) None of these 104. If $y = (1+x)(1+x^2)(1+x^4) \dots (1+x^{2^n})$, then $\frac{dy}{dx}$ at x = 0 is (a) - 1(b) 1

105. If
$$y = (1 + x^{1/4})(1 + x^{1/2})(1 - x^{1/4})$$
, then $\frac{dy}{dx} =$
(a) 1 (b) -1
(c) x (d) \sqrt{x}

(c)0

106. If
$$f'(x) = \sqrt{2x^2 - 1}$$
 and $y = f(x^2)$ then $\frac{dy}{dx}$ at $x = 1$ is
(a) 2 (b) 1
(c) -2 (d) none of these

(d) None of these

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

107. A triangle has two of its vertices at P(a, 0), Q(0, b) and the third vertex R(x, y) is moving along the straight line y = x.

If ab < (a+b)x and A be the area of the triangle, then $\frac{dA}{dx} =$

(a)
$$\frac{a-b}{2}$$
 (b) $\frac{a-b}{4}$
(c) $\frac{a+b}{2}$ (d) $\frac{a+b}{4}$

108. If $f(x) = \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x$, then the value of $f'\left(\frac{\pi}{4}\right)$ is

(a) 1 (b)
$$\sqrt{2}$$

(c)
$$\frac{1}{\sqrt{2}}$$
 (d) 0

109. If
$$y = f\left(\frac{2x-1}{x^2+1}\right)$$
 and $f'(x) = \sin x^2$, then $\frac{dy}{dx}$ is equal to

(a)
$$\sin\left(\frac{2x-1}{x^2+1}\right)^2 \left\{\frac{x^2+2x+2}{(x^2+1)^2}\right\}$$

(b) $\sin\left(\frac{2x-1}{x^2+1}\right)^2 \left\{\frac{2+2x-2x^2}{(x^2+1)^2}\right\}$

(c)
$$\sin\left(\frac{2x-1}{x^2+1}\right)^2 \left\{\frac{2+2x-x^2}{(x^2+1)}\right\}$$

(d) None of these

110. If
$$y = \left[\tan^{-1} \frac{1}{1 + x + x^2} + \tan^{-1} \frac{1}{x^2 + 3x + 3} + \tan^{-1} \frac{1}{x^2 + 5x + 7} + \dots \text{ upto n terms} \right]$$
 then $y'(0)$ equals
(a) $\frac{-1}{n^2 + 1}$ (b) $\frac{-n^2}{n^2 + 1}$
(c) $\frac{n^2}{n^2 + 1}$ (d) None of these

EXERCISE - 2 : PREVIOUS YEAR JEE MAINS QUESTIONS

1.	If $f(1) = 1, f'(1) = 2$, then	$\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is	(2002)	7.	Let $f(x)$ be a polynom $f(1)=f(-1)$ and a, b, c a are in		-
	(a) 2	(b) 4			(a) AP		
	(c) 1	(d) 1/2			(b) GP		
					(c) HP		
2.	If $y = (x + \sqrt{1 + x^2})^n$, then	$(1+x^2)\frac{d^2y}{d^2} + x\frac{dy}{d^2}$ is	s (2002)		(d) Arithmetico-Geomet	ric Progression	
	(a) n ² y	dx^2 dx (b) $-n^2y$		8.	Let $f(a) = g(a) = k$ and the and are not equal for so		, g ⁿ (a) exist
	(c) –y	$(d) 2x^2y$			f(a) = (x) + f(a) = a	(a) f(x) + c(a)	
3.	If $\sin y = x \sin (a + y)$, then	$n \frac{dy}{dt}$ is	(2002)		$\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)}{g(x) - f(a)}$	$\frac{(a)f(x) + g(a)}{(x)} = 4,$	
		dx	、		then the value of k is ec	ual to	(2003)
	sin a	$\sin^2(a+y)$			(a) 4	(b) 2	
	(a) $\frac{\sin a}{\sin^2 (a+y)}$	(b) $\frac{\sin^2(a+y)}{\sin a}$			(c) 1	(d) 0	
	(c) sin a sin ² (a + y)	(d) $\frac{\sin^2(a-y)}{\sin a}$		9.	If $f(x) = \begin{cases} xe^{-(\frac{1}{ x } + \frac{1}{x})}, & x \\ 0, & x \end{cases}$	$x \neq 0$, then f(x) is x = 0	(2003)
	dy.				(a) continuous as well as	s differentiable for all v	
4.	If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is		(2002)		(b) continuous for all x		
					(c) neither differentiable		
	(a) $\frac{1+x}{1+\log x}$	(b) $\frac{1 - \log x}{1 + \log x}$			(d) discontinuous every		0
	$1 + \log x$	$1 + \log x$			(d) discontinuous every	, where	
	(c) not defined	(d) $\frac{\log x}{\left(1 + \log x\right)^2}$		10.	If $x = e^{y + e^{y +\infty}}$, $x > 0$, the expected of the expectation of the expectati	hen $\frac{dy}{dx}$ is	(2004)
5.	If $f(x + y) = f(x)$. f'(0) = 3, then $f'(5)$ is	f (y) \forall x, y and f	(5) = 2, (2002)		(a) $\frac{x}{1+x}$	(b) $\frac{1}{x}$	
	(a) 0	(b) 1			. 1−x	1+x	
	(c) 6	(d) 2			(c) $\frac{1-x}{x}$	(d) ${x}$	
6.	If $f(\mathbf{x}) = \mathbf{x}^{n}$, then the value	e of			1 400 -	- r -1	
	$f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{2!}$	$\frac{f(1)}{2!} + \dots + \frac{(-1)^n f^n(1)}{n!}$	is (2003)	11.	Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, x	$x \neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$. If	f (x) is
	(a) 2^{n-1}	(b) 0			continuous in $\left[0, \frac{\pi}{2}\right]$, t	hen $f\left(\frac{\pi}{4}\right)$ is	(2004)
	(c) 1	$(d) 2^n$					
					(a) 1 (c) $1/2$	(b) $1/2$	
					(c)-1/2	(d) - 1	
				1			

Vod	antu
	IVE Online

CONTINUITY,	DIFFERENTIABILITY 8	& DIFFERENTIATION

	$\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, the	en f'(1) equals	(2005)	18.
	(a) 6	(b) 5		
	(a) 0 (c) 4	(d) 3		
13.	If f is a real-valued	differentiable function so $x, y \in \mathbb{R}$ and $f(0) = 0$, then $f(0) = 0$		
	(a) 1	(b) 2		
	(c) 0	(d)-1		19.
14.	If $x^m y^n = (x + y)^{m+n}$, t	hen $\frac{dy}{dx}$ is	(2006)	
	(a) $\frac{x+y}{xy}$	(b) xy		
	(c) $\frac{x}{y}$	(d) $\frac{y}{x}$		
15.	The set of points, who	ere $f(x) = \frac{x}{1+ x }$ is different	itiable, is	20.
			(2006)	
	$(a) (-\infty, -1) \cup (-1, \infty)$			
	$(\mathbf{c})(0,\infty)$	$(\mathbf{d}) (-\infty, 0) \cup (0, \infty)$		21.
16.		the a function defi + 1}. Then, which of the following the	-	
	(a) $f(x) \ge 1$ for all $x \in$	R		
	(b) $f(x)$ is not different	ntiable at $x = 1$		
	(c) $f(x)$ is differential	ble everywhere		22.
	(d) $f(x)$ is not different	tiable at $x = 0$		
17.	The function $f : R / \{0$	\rightarrow R given by		
	$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$			
	can be made continue	bus at $x = 0$ by defining f (0) as	
			(2007)	
	(a) 2	(b)-1		
	(c) 0	(d) 1		

44

12.

(c) 0 (d) 1

Suppose $f(x)$ is different suppose $f(x)$ is different suppose $f(x)$ by the suppose $f(x)$ is the suppose	fferentiable at $x = 1$ a	ind	(1		
$\lim_{h\to 0} \frac{1}{h} f(1+h) = 5, \text{ then } f'$	(1) equals (200	18.	Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1} \\ 0 \end{cases}$	$\frac{1}{1}$, if $x \neq 1$	
			(0,	1f x = 1	
(a) 6	(b) 5		Then which one of the fol	lowing is true ?	(2008)
(c) 4	(d) 3		(a) f is differentiable at x =	= 1 but not at $x = 0$	
-	ferentiable function satisfy $\in R$ and $f(0) = 0$, then $f(1)$ equ	-	(b) f is neither differentiab	le at $x = 0$ nor at $x = 1$	
$ J(\mathbf{x}) J(\mathbf{y}) = (\mathbf{x} \mathbf{y}), \mathbf{x}, \mathbf{y}$	(200		(c) f is differentiable at x =	= 0 and at $x = 1$	
(a) 1	(b) 2		(d) f is differentiable at x =	= 0 but not at $x = 1$	
(c) 0	(d)-1	19.	Let $f(x) = x x $ and $g(x) = si$	in x	
If $x^m y^n = (x + y)^{m+n}$, then	$\frac{dy}{dt}$ is (200)6)	Statement I gof is different is continuous at that point		lerivative
	dx		Statement II gof is twice d	lifferentiable at $x = 0$.	(2009)
(x) $x + y$	(b) wy		(a) Statement I is false, Sta	atement II is true.	
(a) $\frac{x+y}{xy}$	(b) xy		(b) Statement I is true, Sta	tement II is true;	
			Statement II is a correct ex	xplanation for Stateme	ent I.
(c) $\frac{x}{y}$	(d) $\frac{y}{x}$		(c) Statement I is true, Sta	tement II is true,	
() y	X		Statement II is not a corre-	ct explanation for Stat	ement I.
The set of the interval and the	X is differentiable		(d) Statement I is true, Sta	tement II is false	
The set of points, where f	$f(\mathbf{x}) = \frac{\mathbf{x}}{1+ \mathbf{x} } \text{ is differentiable}$ (200		Let y be an implicit $x^{2x}-2x^{x} \cot y - 1 = 0$. Then		ined by (2009)
(a) $(-\infty, -1) \cup (-1, \infty)$	· ·	- /	(a)-1	(b) 1	
(c) (0,∞)			(c) log 2	(d) -log 2	
Let $f : R \rightarrow R$ b	e a function defined Then, which of the followin. (200	g is	If $f: (-1, 1) \rightarrow R$ be a $f(0)=-1$ and $f'(0)=1$. Let is equal to		
(a) $f(x) \ge 1$ for all $x \in \mathbb{R}$	(=00	,	(a) 4	(b)-4	
(b) $f(x)$ is not differentiable at $x = 1$			(c) 0	(d)-2	
(c) f (x) is differentiable everywhere			d^2x		
(d) $f(x)$ is not differentiable at $x = 0$		22.	$\frac{d^2x}{dy^2}$ equals		(2011)
The function $f: \mathbb{R}/\{0\} \rightarrow \mathbb{R}$ given by					
$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$			(a) $-\left(\frac{d^2y}{dx^2}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$	(b) $\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2}$	

(c)
$$-\left(\frac{d^2y}{dx^2}\right)\left(\frac{dy}{dx}\right)^{-3}$$
 (d) $\left(\frac{d^2y}{dx^2}\right)^{-1}$

23. The values of p and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1) x + \sin x}{x}, & x < 0\\ q, & x = 0\\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{3/2}}, & x > 0 \end{cases}$$

is continuous for all x in R, are

(2011)

26.

(a)
$$p = \frac{5}{2}, q = \frac{1}{2}$$
 (b) $p = -\frac{3}{2}, q = \frac{1}{2}$
(c) $p = \frac{1}{2}, q = \frac{3}{2}$ (d) $p = \frac{1}{2}, q = -\frac{3}{2}$

24. Define F (x) as the product of two real functions $f_1(x)=x, x \in IR$,

and
$$f_2(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$
 as follows

 $F(x) = \begin{cases} f_1(x).f_2(x), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$

Statement I F (x) is continuous on IR.

Statement II f₁(x) and f₂(x) are continuous on IR. (2011)
(a) Statement I is false, Statement II is true.
(b) Statement I is true, Statement II is true;

Statement II is a correct explanation for Statement I.

(c) Statement I is true, Statement II is true,

Statement II is not a correct explanation for Statement I.(d) Statement I is true, Statement II is false

25. If $f : R \to R$ is a function defined by $f(x) = [x] \cos x$

 $\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the greatest integer function, then f is (2012)

(a) continuous for every real x

(b) discontinuous only at x = 0

- (c) discontinuous only at non-zero integral values of x
- (d) continuous only at x = 0

Consider the function, f(x) = |x-2| + |x-5|, $x \in R$. **Statement 1** f'(4)=0 **Statement 2** f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5). (2012) (a) Statement I is false, Statement II is true. (b) Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I. (c) Statement I is true, Statement II is true,

Statement II is not a correct explanation for Statement I.(d) Statement I is true, Statement II is false

27. If
$$y = e^{nx}$$
 then $\left(\frac{d^2y}{dx^2}\right)\left(\frac{d^2x}{dy^2}\right)$ is equal to:

(2014/Online Set-1)

(a)
$$ne^{nx}$$
 (b) ne^{-r}

(c) 1 (d)
$$-ne^{-nx}$$

28. Let f(x) = x|x|, $g(x) = \sin x$ and h(x) = (gof)(x). Then

(2014/Online Set-2)

(a) h(x) is not differentiable at x = 0.

(b) h(x) is differentiate at x = 0, but h'(x) is not continuous at x = 0.

(c) h'(x) is continuous at x = 0 but it is not differentiable at x=0.

(d) h'(x) is differentiable at x = 0

29. Let f, $g : R \rightarrow R$ be two functions defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases} \text{ and } g(x) = xf(x)$$

Statement I : f is a continuous function at x = 0. Statement II : g is a differentiable function at x = 0.

(2014/Online Set-3)

(a) Both statements I and II are false.

(b) Both statements I and Ii are true.

(c) Statement I is true, statement II is false.

(d) Statement I is false, statement II is true.

30. Let f and g be two differentiable functions on R such that

f'(x) > 0 and f'(x) < 0, for all $x \in R$. Then for all x:

(2014/Online Set-3)

(a) $f(g(x)) > f(g(x-1))$	(b) $f(g(x)) > f(g(x+1))$
(c) g(f(x)) > g(f(x-1))	(d) $g(f(x)) > g(f(x+1))$

31. If the function
$$f(x) = \begin{cases} \frac{\sqrt{2 + \cos x} - 1}{(\pi - x)^2}, & x \neq \pi \\ k, & x = \pi \end{cases}$$
 is continuous at $x = \pi$, then k equals:
(2014/Online Set-4)
(a) 0 (b) $\frac{1}{2}$

32. Let $f: R \to R$ be a function such tht $|f(x)| \le x^2$, for all $x \in R$. Then at x = 0 is: (2014/Online Set-4) (a) continuous but not differentiate (b) continuous as well as differentiate

(d) $\frac{1}{4}$

- (c) neigher continuous not differentiate
- (d) differentiable but not continuous.
- 33. If the function.

(a)4

(c) 2

 $g(x) = \begin{cases} k\sqrt{x+1} & , & 0 \le x \le 3\\ mx+2 & , & 3 < x \le 5 \end{cases}$ is differentiable, then the value of k + m is: (2015)

(a) $\frac{10}{3}$ (b)4

(d) $\frac{16}{5}$ (c) 2

34. The distance, from the origin, of the normal to the curve, $x = 2 \cos t + 2t \sin t$, $y = 2 \sin t - 2t \cos t$ at $t = \frac{\pi}{4}$, is:

- (2015/Online Set-1)
 - (b) 3
- (d) $2\sqrt{2}$ (c) 2

35. For
$$x \in R$$
, $f(x) = |\log 2 - \sin x|$ and $g(x) = f(f(x))$, then :
(2016)

(a) $g'(0) = \cos(\log 2)$ (b) $g'(0) = -\cos(\log 2)$ (c) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$ (d) g is not differentiable at x = 0

36. If
$$y = \left[x + \sqrt{x^2 - 1}\right]^{15} + \left[x - \sqrt{x^2 - 1}\right]^{15}$$
, then
 $(x^2 - 1)\frac{d^2y}{12} + x\frac{dy}{12}$ is equal to : (2017/Online Set-1)

$$(-1)\frac{d^2y}{dx^2} + x\frac{dy}{dx}$$
 is equal to : (2017/Online Set-1)

(a)
$$125 \text{ y}$$
(b) 224 y^2 (c) 225 y^2 (d) 225 y

37. If
$$2x = y^{\frac{1}{5}} + y^{-\frac{1}{5}}$$
 and

$$(x^{2}-1)\frac{d^{2}y}{dx^{2}} + \lambda x \frac{dy}{dx} + ky = 0$$
, then $\lambda + k$ is equal to :

(2017/Online Set-2)

(a)
$$-23$$
 (b) -24
(c) 26 (d) -26

38. Let *f* be a polynomial function such that

 $f(3x) = f'(x) \cdot f''(x)$, for all $x \in \mathbb{R}$. Then :

(a)
$$f(2) + f'(2) = 28$$
 (b) $f''(2) - f'(2) = 0$

(c)
$$f''(2) - f(2) = 4$$
 (d) $f(2) - f'(2) + f''(2) = 10$

.

$$f(x) = \begin{cases} \left(\frac{4}{5}\right)^{\frac{\tan 4x}{\tan 5x}}, & 0 < x < \frac{\pi}{2} \\ k + \frac{2}{5}, & x = \frac{\pi}{2} \end{cases}$$

is continuous at $x = \frac{\pi}{2}$, is : (2017/Online Set-2)

(a)
$$\frac{17}{20}$$
 (b) $\frac{2}{5}$

(c)
$$\frac{3}{5}$$
 (d) $-\frac{2}{5}$

Let $S = \{t \in R : f(x) = |x - \pi| . (e^{|x|} - 1) sin |x|$ 40. is not differentiable at t}. Then the set S is equal to: (2018)

(a)
$$\{0, \pi\}$$
 (b) ϕ (an empty set)

(c)
$$\{0\}$$
 (d) $\{\pi\}$

41. Let
$$f(x) = \begin{cases} (x-1)^{\frac{1}{2-x}} & ,x > 1, x \neq 2 \\ k & ,x = 2 \end{cases}$$

The value of k for which f is continuous at x = 2 is:

(2018/Online Set-2)

(a) 1 (b) e
(c)
$$e^{-1}$$
 (d) e^{-2}

EXERCISE - 3 : ADVANCED OBJECTIVE QUESTIONS

Single Type Questions

- The function $f(x) = x |x x^2|, -1 \le x \le 1$ is continuous on 1. the interval
 - (a)[-1,1](b)(-1,1) $(d)(-1,1) - \{0\}$

 $(c)[-1,1]-\{0\}$

If $f(\mathbf{x}) = \begin{cases} 4, -3 < \mathbf{x} < -1 \\ 5 + \mathbf{x}, -1 \le \mathbf{x} < 0 \\ 5 - \mathbf{x}, 0 \le \mathbf{x} < 2 \\ \mathbf{x}^2 + \mathbf{x} - 3, 2 \le \mathbf{x} < 3 \end{cases}$, then $f |\mathbf{x}|$ is 2.

(a) differentiable but not continuous in (-3, 3)

(b) continuous but not differentiable in (-3, 3)

(c) continuous as well as differentiable in (-3, 3)

(d) neither continuous nor differentiable in (-3, 3)

Let $f(x) = a[x] + b e^{|x|} + c |x|^2$, where a, b and c are real 3. constants. where [x] denotes greatest integer \leq x. If f(x) is differentiable at x = 0, then

> (b) $a = 0, c = 0, b \in R$ (a) $b = 0, c = 0, a \in \mathbb{R}$ (d) None of these (c) $a = 0, b = 0, c \in \mathbb{R}$

4. If
$$f(x) = \lim_{n \to \infty} \frac{(1 + \cos \pi x)^n + 1}{(1 + \cos \pi x)^n - 1}$$
, then
(a) $f(1+0) = 1$

(b) f(1-0)=2

(c) f(x) is continuous at x = 1

(d) f(x) is not continuous at x = 1

5. If
$$f(x) = \begin{cases} \frac{\lfloor x \rfloor - 1}{x - 1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
, where $\lfloor x \rfloor$ denotes greatest

integer $\leq x$. then f(x) is

- (a) continuous as well as differentiable at x = 1
- (b) differentiable but not continuous at x = 1
- (c) continuous but not differentiable at x = 1
- (d) neither continuous nor differentiable at x = 1
- 6. Let f be a function defined and continuous on [2, 5]. If f(x) takes rational values for all x and f(4) = 8 then the value of f(3.7) is (a) 0 (b) 8 (c) - 1(d) None of these 7. If f(x) = |3 - x| + (3 + x) where (x) denotes the least integer greater than or equal to x, then (a) f(x) is continuous as well as differentiable at x = 3(b) f(x) is continuous but not differentiable at x = 3(c) f(x) is differentiable but not continuous at x = 3(d) f(x) is neither differentiable nor continuous at x = 3If $f(\mathbf{x}) = \begin{cases} x, \text{ when } \mathbf{x} \text{ is rational} \\ 1 - \mathbf{x}, \text{ when } \mathbf{x} \text{ is irrational, then} \end{cases}$ 8. (a) f(x) is continuous for all real x (b) f(x) is discontinuous for all real x (c) f(x) is continuous only at x = 1/2(d) f(x) is discontinuous only at x = 1/2If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then f(x) is 9. (a) continuous as well as differentiable at x = 0(b) continuous but not differentiable at x = 0(c) differentiable but not cotinuous at x = 0(d) None of these The function $f(x) = (\sin 2x)^{\tan^2 2x}$ is not defined at 10. $x = \pi/4$. The value of $f(\pi/4)$ so that f is continuous at $x = \pi/4$ is (a) \sqrt{e} (b) $1/\sqrt{e}$ (d) None of these (c) 211. If f is a periodic function, then (a) f' and f'' are also periodic (b) f' is periodic but f'' is not periodic
 - (c) f'' is periodic but f' is not periodic
 - (d) None of these

Vedantie Learn LIVE Online

12.	Let $f(x) = [n + p \sin x], x \in (0, \pi), n \in I, p \text{ is a prime number}$
	and $[x]$ denotes the greatest integer less than or equal to x.
	The number of points at which $f(\mathbf{x})$ is not differentiable is

- (a) p-1 (b) p(c) 2 p+1 (d) 2 p-1
- 13. If $f(x) = (-1)^{\lfloor x^3 \rfloor}$, where [.] denotes the greatest integer function, then

(a) f(x) is discontinuous for $x = n^{1/3}$, where $n \in I$ (b) f(3/2) = 1

- (c) f'(x) = 0 for -1 < x < 1
- (d) None of these
- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that

$$f\left(\frac{x+y}{3}\right) = \frac{f(x)+f(y)}{3}, f(0) = 0 \text{ and } f'(0) = 3.$$
 Then

- (a) $f(\mathbf{x})$ is a quadratic function
- (b) f(x) is continuous but not differentiable
- (c) f(x) is differentiable in R
- (d) $f(\mathbf{x})$ is bounded in R

15. If f is an even function such that
$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h}$$
 has

some finite non-zero value, then

- (a) f is continuous and derivable at x = 0
- (b) f is continuous but not derivable at x = 0
- (c) f may be discontinuous at x = 0
- (d) None of these
- 16. If a function $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x+y) = f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}$ where $f(x) = 1 + x \phi(x)$ and $\lim_{x \to 0} \phi(x) = 1$, then
 - (a) f'(x) does not exist (b) f'(x) = 2f(x) for all x
 - (c) f'(x) = f(x) for all x (d) None of these
- 17. Let $f(x) = a + b |x| + c |x|^4$, where a, b and c are real constants. Then f(x) is differentiable at x = 0 if

(a) $a = 0$	(b) $b = 0$
(c) c = 0	(d) None of these

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATIO

NOII	I, DIFFEREN HADILII	I & DIFFERENTIATION			
18.	Let $f(x+y) = f(x)$. $f(y)$ and $f(x) = 1 + x g(x) G(x)$ where				
	$\lim_{x\to 0} g(x) = a$ and $\lim_{x\to 0} G(x) = b$. Then $f'(x) = kf(x)$, where				
	k is equal to				
	(a) a/b	(b) 1 + ab			
	(c) ab	(d) None of these			
19.	Let $f(x) = Sgn(x)$ and $g(x)$ f(g(x)) is discontinuous a	$= x(x^2 - 5x + 6)$. The function t			
	(a) infinitely many points	(b) exactly one point			
	(c) exactly three points	(d) no point			
20.	The function $f(\mathbf{x}) = \left[\mathbf{x}^2 \left[\frac{1}{\mathbf{x}}\right]\right]$	$\left[\frac{1}{2}\right]$, $x \neq 0$, is ([x] represents the			
	greatest integer $\leq x$)				
	(a) continuous at $x = 1$				
	(b) continuous at $x = -1$				
	(c) discontinuous at infinit	tely many points			
	(d) continuous everywhere	e			
21.	The function $f(\mathbf{x}) = \mathbf{m}$	aximum $\left\{\sqrt{x(2-x)}, 2-x\right\}$ is			
	non-differentiable at x equal to :				
	(a) 1	(b) 0, 2			
	(c) 0,1	(d) 1, 2			
22.	Let $f(x) = [n + p \sin x]$, $x \in (0, \pi)$, $n \in Z$, p is a prime number and [x] is greatest integer less than or equal to x. The number of points at which $f(x)$ is not differentiable is				
	(a) p	(b) p -1			
	(c) $2p + 1$	(d) $2p - 1$			
23.	The derivative of $f(\tan x)$	w.r.t. g (sec x) at x = $\frac{\pi}{4}$, where			
	$f'(1) = 2$ and $g'(\sqrt{2}) = 4$, is				
	(a) $\frac{1}{\sqrt{2}}$	(b) $\sqrt{2}$			
	(c) 1	(d) None of these			
24.	If $y = \tan^{-1} \sqrt{\left(\frac{1+\sin x}{1-\sin x}\right)}, \frac{\pi}{2}$	$\frac{\pi}{2} < x < \pi$, then $\frac{dy}{dx}$ equals			
	(a) - 1/2	(b) – 1			
	(c) 1/2	(d) 1			

25. The differential coefficient of
$$\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$$
 w.r.t.
sec⁻¹ $\frac{1}{2x^2-1}$ at $x = \frac{1}{2}$ is equal to
(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$
(c) -1 (d) None of these
26. If $y = e^{\tan x}$, then $\cos^2 x \frac{d^2 y}{dx^2} =$
(a) $(1 - \sin 2x) \frac{dy}{dx}$ (b) $-(1 + \sin 2x) \frac{dy}{dx}$
(c) $(1 + \sin 2x) \frac{dy}{dx}$ (d) None of these
27. Let $f(x)$ be a polynomial function of second degree. If
 $f(1) = f(-1)$ and a, b, c are in AP, then $f'(a)$, $f'(b)$ and
 $f'(c)$ are in
(a) AP
(b) GP
(c) HP
(d) Arithmetico-Geometric progression
28. If $f(x) = \frac{x^2 - x}{x^2 + 2x}$ with codomain = R - {1}, then $\frac{df^{-1}(x)}{dx}$
is equal to
(a) $-\frac{3}{(1-x)^2}$ (b) $\frac{3}{(1-x)^2}$
(c) $\frac{1}{(1-x)^2}$ (d) None of these
29. If $y = f(x)$ is an odd differentiable function defined on
 $(-\infty, \infty)$ such that $f'(3) = -2$, then $f'(-3)$ equals
(a) 4 (b) 2
(c) -2 (d) 0
30. If $f(x) = \log |2x|, x \neq 0$, then $f'(x)$ is equal to
(a) $\frac{1}{x}$ (b) $-\frac{1}{x}$
(c) $\frac{1}{|x|}$ (d) None of these

1. Let
$$y = x^3 - 8x + 7$$
 and $x = f(t)$. If $\frac{dy}{dt} = 2$ and $x = 3$ at
 $t = 0$, then $\frac{dx}{dt}$ at $t = 0$ is given by
(a) 1 (b) $\frac{19}{2}$
(c) $\frac{2}{19}$ (d) None of these
2. If $f(x) = |x-3|$ and $\phi(x) = (fof)(x)$, then for $x > 10$,
 $\phi'(x)$ is equal to
(a) 1 (b) 0
(c) -1 (d) None of these
3. Let $f(x) = \sin x, g(x) = 2x$ and $h(x) = \cos x$.
If $\phi(x) = [go(fh)](x)$, then $\phi''\left(\frac{\pi}{4}\right)$ is equal to
(a) 4 (b) 0
(c) -4 (d) None of these
3. If $f(x) = \sin\left(\frac{\pi}{2}[x] - x^5\right), 1 < x < 2$ and $[x]$ denotes the
greatest integer less than or equal to x, then $f'(\sqrt[4]{\frac{\pi}{2}})$ is
equal to
(a) $5\left(\frac{\pi}{2}\right)^{4/5}$ (b) $-5\left(\frac{\pi}{2}\right)^{4/5}$
(c) 0 (d) None of these
5. If $f(x) = |x-1|$ and $g(x) = f[f\{f(x)\}]$, then for $x > 2, g'(x)$ is
equal to
(a) -1 if $2 < x < 3$ (b) 1 if $2 \le x < 3$
(c) 1 for all $x > 2$ (d) None of these
5. Let $f(x)$ be a polynomial of degree 3 such that $f(3) = 1$,
 $f'(3) = -1, f''(3) = 0$ and $f'''(3) = 12$. Then the value of
 $f'(1)$ is
(a) 12 (b) 23
(c) -13 (d) None of these

Online

Vedantu

Learn LIVE

50

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

Iodantu

Online

37. If
$$z_{1} f k g b e differentiable functions satisfying equal to
(a) 2 (b) $\frac{2}{3}$
(c) $\frac{1}{2}$ (d) None
(c) $\frac{1}{2}$ (d) None of these
(c) $\frac{1}{2}$ (c)$$

48.	If $y = ksinpx$, then the value of the determinant							
	$\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix}$ is equal to							
	(a) 1	(b) 0						
	(c) –1 (d) None of these.							
	where y _n deno	otes nth derivative of y w.r.t. x.						
49.	If $f(\mathbf{x}) =$	$\begin{vmatrix} x^{n} & n! & 2\\ \cos x & \cos \frac{n\pi}{2} & 4\\ \sin x & \sin \frac{n\pi}{2} & 8 \end{vmatrix}$ then the value of						
	₀ is							
(a) 0 (b) 1								
	(c) -1 (d) None of these							
	sin x	$\cos x \sin x$ dy						

50. If
$$y = \begin{vmatrix} \sin x & \cos x & \sin x \\ \cos x & -\sin x & \cos x \\ x & 1 & 1 \end{vmatrix}$$
, then $\frac{dy}{dx}$ is equal to
(a) 1 (b) -1

51. If $\Delta_1 = \begin{vmatrix} x & b & b \\ a & x & b \\ a & a & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & b \\ a & x \end{vmatrix}$ are given, then

(a)
$$\Delta_1 = 3(\Delta_2)^2$$
 (b) $\frac{d}{dx}\Delta_1 = 3\Delta_2$
(c) $\frac{d}{dx}\Delta_1 = 3(\Delta_2)^2$ (d) $\Delta_1 = 3(\Delta_2)^{3/2}$

52. Let
$$U(x)$$
 and $V(x)$ are differentiable functions such that

$$\frac{U(x)}{V(x)} = 7 \text{. If } \frac{U'(x)}{V'(x)} = p \text{ and } \left(\frac{V(x)}{U(x)}\right)' = q \text{, then } \frac{p+q}{p-q}$$

has the value equal to

(a) 1	(b) 0
(c) 7	(d)-7

53.		e^{bx} , where $a \neq b$, and that for all x. Then the product ab is		
	(a) 25	(b)-15		
	(c) 9	(d)-9		
54.	Let $f(x) = e^x - e^{-x} - 2\sin^2 x$	$1x - \frac{2}{3}x^3$, then the least value		
	of n for which $\left \frac{d^n}{dx^n} f(x) \right x$	= 0 is non-zero		
	(a) 4	(b) 5		
	(c) 7	(d) 3		
55.	Let $f(x) = x[x], x \notin I$	where [.] denotes the greatest		
	integer function, then $f'(\mathbf{x})$ is equal to			
	(a)2x	(b) [x]		
	(c)2[x]	(d) None of these		
56.	Let $f(x) = (2x - \pi)^3 + 2x - c$	os x. The value of $\left \frac{d}{dx} f^{-1}(x) \right _{x=\pi}$		
	is			
	(a) $3\pi^2 + 2$	(b) - 2		
	(c) $\frac{1}{3\pi^2 + 2}$	(d) $\frac{1}{3}$		
57.	57. Let $f(x) = x^n$, $n \in W$. The number of values			
	which $f'(p+q) = f'(p) + f'(p)$	f'(q) is valid for all +ve p & q is		
	(a) 0	(b) 1		
	(c) 2	(d) None of these		
1				

51

58. f(x), g(x), h(x) are functions having non-zero derivatives. The derivative of f(x) w.r.t g(x) is $\alpha(x)$ and derivative of g(x) w.r.t h(x) is $\beta(x)$. Then derivative of h(x) w.r.t f(x) =

(a)
$$\alpha$$
 (x) . β (x) (b) $\frac{\alpha(x)}{\beta(x)}$

(c)
$$\frac{1}{\alpha(x)\beta(x)}$$
 (d) $\frac{\beta(x)}{\alpha(x)}$

Let $f(x) = e^{x} - e^{-x} - 2 \sin x - \frac{2}{3}x^{3}$, then the least value of n 59. for which $\left| \frac{d^n}{dx^n} f(x) \right|_{x=0}$ is non-zero is (a)4 (b) 5 (c) 7 (d) 3 Let f (x) = 2/(x+1) and g(x) = 3x. It is given that 60. $(fog)(x_0) = (gof)(x_0)$. Then $(gof)'(x_0)$ equals (b) $\frac{32}{3}$ (a) - 32(c) $\frac{-32}{9}$ (d) $\frac{-32}{3}$ If $(\sin y)^{\sin(\pi x/2)} + \frac{\sqrt{3}}{2} \operatorname{Sec}^{-1}(2x) + 2^{x} \tan(\log(x+2)) = 0$ then 61. dy/dx at x = -1 is (a) $\frac{3}{\sqrt{\pi^2 - 3}}$ (b) $\frac{1}{\pi \sqrt{\pi^2 - 3}}$ (c) $\frac{3}{\pi\sqrt{\pi^2-3}}$ (d) $\frac{3\pi}{\sqrt{\pi^2-3}}$

62. If
$$y = \frac{ax^2}{(x-a)(x-b)(x-c)} + \frac{bx}{(x-b)(x-c)} + \frac{c}{x-c} + 1$$

then dy/dx is equal to

(a)
$$\frac{-y}{x} \left(\frac{a}{x-a} + \frac{b}{x-b} + \frac{c}{x-c} \right)$$

(b)
$$\frac{1}{x} \left(\frac{a}{x-a} + \frac{b}{x-b} + \frac{c}{x-c} \right)$$

(c)
$$\frac{y}{x} \left(\frac{a}{x-a} + \frac{b}{x-b} + \frac{c}{x-c} \right)$$

(d)
$$-\frac{1}{x} \left(\frac{a}{x-a} + \frac{b}{x-b} + \frac{c}{x-c} \right)$$

63. Function $f: R \to R$ satisfies the functional equation

$$f(x-y) = \frac{f(x)}{f(y)}$$

If f'(0) = p and f'(a) = q, then f'(-a) is

(a)
$$\frac{p^2}{q}$$
 (b) $\frac{q}{p}$

(c)
$$\frac{p}{q}$$
 (d) q

Let
$$f(x) = 2^{x(x-1)}$$
 for all $x \ge 1$. Then $(f^{-1})'(4)$ is
(1/k) $\log_2 e$ where the value of k is
(a) 4 (b) 8
(c) 9 (d) 12

65. If
$$0 < x < 1$$
, then

64.

$$\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots \infty =$$

(a)
$$\frac{1}{1-x}$$
 (b) $\frac{x}{1-x}$

(c)
$$\frac{x}{1+x}$$
 (d) $\frac{1-x}{1+x}$

66. If a function f(x) is continuous, f(1) > 0 and satisfies the relation f(x) < f(y) whenever x < y for all positive x and y, then for $x \ge 1$, f(x) = 0 has

(a) exactly one root (b) exactly two roots

(c) more than two roots (d) no roots

67. Let g is the inverse function of f and $f'(x) = \frac{x^{10}}{(1+x^2)}$. If

g(2) = a then g'(2) is equal to

(a)
$$\frac{5}{2^{10}}$$
 (b) $\frac{1+a^2}{a^{10}}$

(c)
$$\frac{a^{10}}{1+a^2}$$
 (d) $\frac{1+a^{10}}{a^2}$

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

68. A non zero polynomial with real coefficients has the property that $f(x) = f'(x) \cdot f''(x)$. The leading coefficient of f(x) is

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{9}$
(c) $\frac{1}{12}$ (d) $\frac{1}{18}$

69. People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, D*f(x) by the formula

 $D * f(x) = \lim_{h \to 0} \frac{f^2(x+h) - f^2(x)}{h} \text{ where } f^2(x) \text{ means } [f(x)]^2.$ If f(x) = x/nx then

 $D^*f(x)|_{x=e}$ has the value

(a) e	(b) 2e
(c) 4e	(d) 8 e

- 70. Suppose the function f(x) f(2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The derivative of the function f(x) f(4x) at x = 1, has the value equal to
 - (a) 19 (b) 9 (c) 17 (d) 14
- 71. If $y = \cos^{-1} \cos(|x| f(x))$, where

$$f(x) = \begin{cases} 1, & \text{if } x > 0\\ -1, & \text{if } x < 0, \text{ then } \frac{dy}{dx} \Big|_{x = \frac{5\pi}{4}} \text{ is } \\ 0, & \text{if } x = 0 \end{cases}$$

72. Let
$$f(x) = \lim_{h \to 0} \frac{(\sin (x+h))^{ln(x+h)} - (\sin x)^{lnx}}{h}$$

then $f\left(\frac{\pi}{2}\right)$ is

(a) equal to 0 (b) equal to 1

(c) $ln\frac{\pi}{2}$ (d) non existent

Multiple Type Questions

73. If
$$f(x) = \sum_{k=0}^{n} a_k |x-1|^k$$
, where $a_i \in \mathbb{R}$ then
(a) $f(x)$ is continuous at $x = 1$ for all $a_k \in \mathbb{R}$
(b) $f(x)$ is differentiable at $x = 1$, if $a_1 = 0$
(c) $f(x)$ is differentiable at $x = 1$, if $a_{2k+1} = 0$
(d) $f(x)$ is continuous at $x = 1$, if & only if $a_{2k} = 0$

74. If
$$f(x) = \frac{1}{[\sin x]}$$
, where [.] denotes the greatest function,

then

(a) Domain of $f(\mathbf{x})$ is $(2n\pi + \pi, 2n\pi + 2\pi) \cup \left\{2n\pi + \frac{\pi}{2}\right\}$

where $n \in I$

- (b) f(x) is continuous when $x \in (2n\pi + \pi, 2n\pi + 2\pi)$
- (c) f(x) is differentiable at $x = \pi/2$

(d) None of these

75. Let [x] denotes the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is

- (a) continuous at x = 0 (b) continuous in (-1, 0)
- (c) differentiable at x = 1 (d) differentiable in (-1, 1)

76. The function $f(x) = \max \{(1-x), (1+x), 2\}, x \in (-\infty, \infty)$, is

- (a) continuous at all points
- (b) differentiable at all points
- (c) differentiable at all points except at x = 1 and x = -1.
- (d) continuous at all points except at x = 1 and x = -1, where it is discontinuous.

77. If
$$f(x) = \sqrt{|x-1|}$$
 and $g(x) = \sin x$, then

(a) $(fog)(x) = \sqrt{1-\sin x}$ for all x

(b)
$$(gof)(x) = \begin{cases} \sin(\sqrt{x-1}), & \text{if } x \ge 1\\ \sin(\sqrt{1-x}), & \text{if } x < 1 \end{cases}$$

(c) gof is differentiable at x = 1

(d) gof is not differentiable at x = 1

Learn LIVE Online

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

78. A function
$$f(x)$$
 satisfies the relation
 $f(x+y) = f(x) + f(y) + xy(x+y) \quad \forall x, y \in \mathbb{R}.$
If $f'(0) = -1$, then
(a) $f(x)$ is a polynomial function
(b) $f(x)$ is an exponential function
(c) $f(x)$ is twice differentiable for all $x \in \mathbb{R}$
(d) $f'(3) = 8$
79. Let $f(x) = \frac{1}{[\sin x]}, \quad ([.] \text{ denotes the greatest integer
function) then
(a) domain of $f(x)$ is $(2n \pi + \pi, 2n \pi + 2\pi) \cup \{2n \pi + \pi/2\},$
where $n \in I$
(b) $f(x)$ is continuous, when $x \in (2n \pi + \pi, 2n \pi + 2\pi),$
where $n \in I$
(c) $f(x)$ is differentiable at $x = \pi/2$
(d) none of the above
80. If $f(x) = \tan^{-1} \cot x$, then
(a) $f(x)$ is periodic with period π
(b) $f(x)$ is discontinuous at $x = \pi/2, 3\pi/2$
(c) $f(x)$ is not differentiable at $x = \pi, 99\pi, 100\pi$
(d) $f(x) = -1, \text{ for } 2n\pi \le x \le (2n+1)\pi$
81. If $y = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1}\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right), a > b > 0,$
then
(a) $\frac{dy}{dx} = \frac{1}{a+b\cos x}$ (b) $\frac{d^2y}{dx^2} = \frac{b\sin x}{(a+b\cos x)^2}$
(c) $\frac{dy}{dx} = \frac{1}{a-b\cos x}$ (d) $\frac{d^2y}{dx^2} = \frac{-b\sin x}{(a-b\cos x)^2}$
82. If $f(x) + f(y) + f(z) + f(x) \cdot f(y) \cdot f(z) = 14$ for all $x, y, z \in \mathbb{R}$, then$

(a) f(0) = 2(b) f'(x) = 0, for all $x \in \mathbb{R}$

$$(c)f'(x) > 0$$
, for all $x \in \mathbb{R}$

(d) None of these

83. If F(x) = f(x)g(x) and f'(x)g'(x) = c, then

(a)
$$F' = c \left[\frac{f}{f'} + \frac{g}{g'} \right]$$
 (b) $\frac{F''}{F} = \frac{f''}{f} + \frac{g''}{g} + \frac{2c}{fg}$
(c) $\frac{F'''}{F} = \frac{f'''}{f} + \frac{g'''}{g}$ (d) $\frac{F'''}{F''} = \frac{f'''}{f''} + \frac{g'''}{g''}$

84. If
$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, then

(a) f is derivable for all x, with |x| < 1
(b) f is not derivable at x =1
(c) f is not derivable at x = -1
(d) f is derivable for all x, with |x| > 1

85. If $f_n(x) = e^{f_{n-1}(x)}$ for all $n \in N$ and $f_0(x) = x$, then $\frac{d}{dx} \{f_n(x)\}$ is equal to

(a)
$$f_{n}(x) \cdot \frac{d}{dx} \{f_{n-1}(x)\}$$
 (b) $f_{n}(x) \cdot f_{n-1}(x)$
(c) $f_{n}(x) \cdot f_{n-1}(x) \cdot f_{2}(x) \cdot f_{1}(x)$ (d) $\prod_{i=1}^{n} f_{i}(x)$

86. Let
$$f(x) = e^{ax} \sin(bx + c)$$
 and $f''(x) = r^2 e^{ax} \sin(bx + \theta)$ then

(a)
$$r = a^{2} + b^{2}$$
 (b) $r = \sqrt{a^{2} + b^{2}}$
(c) $\theta = c + 2 \tan^{-1}(b/a)$ (d) $\theta = 2a \tan^{-1}(b/a)$

87. Suppose f and g are functions having second derivatives f'' and g'' everywhere, if $f(x) \cdot g(x) = 1$ for all x and f' and g'

are never zero, then
$$\frac{f''(x)}{f'(x)} - \frac{g''(x)}{g'(x)}$$
 equals

(a)
$$-2\frac{f'(x)}{f(x)}$$
 (b) $-\frac{2g'(x)}{g(x)}$

(c)
$$-\frac{f'(x)}{f(x)}$$
 (d) $2\frac{f'(x)}{f(x)}$

88. If
$$x = \varphi(t)$$
 and $y = \psi(t)$ then $\frac{d^2y}{dx^2}$ is equal to

(c)

(a)
$$\frac{\phi'\psi'' - \psi'\phi''}{{\phi'}^2}$$
 (b)
$$\frac{\phi'\psi'' - \psi'\phi'}{{\phi'}^3}$$

$$\frac{\varphi''}{\varphi''} \qquad (d) \ \frac{\psi''}{{\varphi'}^2} - \frac{\psi' \cdot \varphi'}{{\varphi'}^3}$$

89. If $x^3 - 2x^2y^2 + 5x + y - 5 = 0$ and y(1) = 1 then (a) y'(1) = 4/3 (b) y''(1) = -4/3(c) $y''(1) = -8 \frac{22}{27}$ (d) y'(1) = 2/3

90. If
$$f_n(x) = e^{f_{n-1}(x)}$$
 for all $n \in N$ and $f_n(x) = x$, then

 $\frac{d}{dx} \{f_n(x)\} \text{ is equal to}$ (a) $f_n(x) \cdot \frac{d}{dx} \{f_{n-1}(x)\}$ (b) $f_n(x) \cdot f_{n-1}(x)$

$$(c)f_{n}(x).f_{n-1}(x)...f_{2}(x).f_{1}(x) \qquad (d) \ \prod_{i=1}^{n}f_{i}(x)$$

91. Choose the correct statement :

(a) If u(x) is differentiable then
$$\frac{d}{dx} |u| = \frac{uu'}{|u|}, u \neq 0$$

(b) If u(x) = sin bx then u''(x) + b²u(x) = 0

(c) If
$$g(x) = \sqrt{x(x+n)}$$
 and $a = \frac{2x+n}{2}$, then $\frac{dg}{dx} = \frac{a}{g}$

(d) none of these

92. Which of the following statements are true ? (a) If $xe^{xy} = y + \sin^2 x$, then at y'(0) = 1(b) If $f(x) = a_0 x^{2m+1} + a_1 x^{2m} + a_3 x^{2m-1} + \dots + a_{2m+1} = 0$ ($a_0 \neq 0$)

is a polynomial equation with rational coefficients then the equation f'(x) = 0 must have a real root. (m \in N)

(c) If (x - r) is a factor of the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0$ repeated m times where $1 \le m \le n$ then r is a root of the equation f'(x) = 0 repeated (m-1) times

(d) If
$$y = \sin^{-1}(\cos \sin^{-1} x) + \cos^{-1}(\sin \cos^{-1} x)$$
 then $\frac{dy}{dx}$ is

independent on x.

93. Let
$$y = \sqrt{\frac{(\sin x + \sin 2x + \sin 3x)^2}{(\cos x + \cos 2x + \cos 3x)^2}}$$
 then which of the following is correct ?

(a)
$$\frac{dy}{dx}$$
 when $x = \frac{\pi}{2}$ is -2

(b) value of y when
$$x = \frac{\pi}{5}$$
 is $\frac{3 + \sqrt{5}}{2}$

(c) value of y when
$$x = \frac{\pi}{12}$$
 is $\frac{\sqrt{1} + \sqrt{2} + \sqrt{3}}{2}$

(d) y simplifies to $(1 + 2 \cos x)$ in $[0, \pi]$

94. Let
$$f(x) = \frac{1 - x^{n+1}}{1 - x}$$
 and $g(x) = 1 - \frac{2}{x} + \frac{3}{x^2} - \dots + (-1)^n \frac{n+1}{x^n}$.
Then the constant term in $f'(x) \times g(x)$ is equal to

(a)
$$\frac{n(n^2-1)}{6}$$
 when n is even

(b)
$$\frac{n(n+1)}{2}$$
 when n is odd

(c)
$$-\frac{n}{2}(n+1)$$
 when n is even

(d)
$$\frac{n(n-1)}{2}$$
 when n is odd

Paragraph Type Questions

Passage-1

A curve is represented parametrically by the equations

$$x = f(t) = a^{/n (b^{t})}$$
 and $y = g(t) = b^{-/n (a^{t})} a, b > 0$ and $a \neq 1$,
 $b \neq 1$ where $t \in R$.

95. Which of the following is not a correct expression for

$$\frac{dy}{dx}$$
?

(a)
$$\frac{-1}{f(t)^2}$$
 (b) - (g(t))^2

c)
$$\frac{-g(t)}{f(t)}$$
 (d) $\frac{-f(t)}{g(t)}$

CONTINUITY,	DIFFERENTIABILITY	& DIFFERENTIATIO

96.	The value of $\frac{d^2y}{dx^2}$ at the point where f (t) = g (t) is
-----	--

(a) 0 (c) 1

97. The value of
$$\frac{f(t)}{f'(t)} \cdot \frac{f''(-t)}{f'(-t)} + \frac{f(-t)}{f'(-t)} \cdot \frac{f''(t)}{f'(t)} \forall t \in \mathbb{R}$$
, is

(b) $\frac{1}{2}$

(d) 2

equal to

(a) –2	(b) 2
(c)-4	(d) 4

Passage - 2

A curve is represented parametrically by the equations $x = e^{t} \cos t$ and $y = e^{t} \sin t$ where t is a parameter. Then

98. The relation between the parameter 't' and the angle $\boldsymbol{\alpha}$ between the tangent to the given curve and the x-axis is given by, 't' equals.

(a)
$$\frac{\pi}{2} - \alpha$$
 (b) $\frac{\pi}{4} + \alpha$
(c) $\alpha - \frac{\pi}{4}$ (d) $\frac{\pi}{4} - \alpha$

The value of $\frac{d^2 y}{dx^2}$ at the point where t = 0 is 99.

(a) 1	(b) 2
(c)-2	(d) 3

100. If F (t) = $\int (x + y) dt$ then the value of $F\left(\frac{\pi}{2}\right) - F(0)$ is

(b) - 1(a) 1 (c) $e^{\pi/2}$ (d) 0

ASSERTION REASON

4

- (A) ASSERTION is true, REASON is true, REASON is a correct explanation for ASSERTION.
- **(B)** ASSERTION is true, REASON is true, REASON is not a correct explanation for ASSERTION.
- ASSERTION is true, REASON is false. (C)
- (D) ASSERTION is false, REASON is true.
- Both ASSERTION and REASON are false. **(E)**

101.	Assertion	: Let $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$.
		If $ p(x) \le e^{x-1}-1 $ for all $x \ge 0$ then
		$ a_1 + 2a_2 + \dots + na_n \le 1.$
	Reason	: $ p(\mathbf{x}) \le e^{\mathbf{x}-1}-1 $
		$\Rightarrow p(1)=0$ and
		$p'(1) = \lim_{h \to 0} \frac{p(1+h) - p(1)}{h}$
	(a) A	(b) B
	(c) C	(d) D
	(e) E	
		$1 - \cos(1 - \cos t)$
102.	Assertion	: The function $f(t) = \frac{1 - \cos(1 - \cos t)}{t^4}$
		is continuous every where if $f(0) = \frac{1}{8}$.
	Reason	: For continuous function
		$f(0) = \operatorname{Lt}_{t \to 0} f(t)$
	(a) A	(b) B
	(c) C	(d) D
	(e) E	
103.	Assertion	 Let f(x) = [cos x + sin x], 0 < x < 2π, where [x] denotes the integral part of x then f(x) is discontinuous at 5 points.
		π 3π 7π 3π

: for $x = \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}, \frac{3\pi}{2}$, right hand Reason limit not equal to left hand limit. (b) B (a)A (c) C (d) D

104. Assertion:
$$\frac{d}{dx} \{ \tan^{-1}(\sec x + \tan x) \}$$

(e) E

$$= \frac{d}{dx} \{\cot^{-1}(\csc x + \cot x)\}, x \in \left(0, \frac{\pi}{4}\right).$$

Reason : $\sec^2 x - \tan^2 x = 1 = \csc^2 x - \cot^2 x.$
(a) A (b) B (c) C
(d) D (e) E

Assertion: $f(x) = \cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) - \cos x \cos \left(x + \frac{\pi}{3}\right)$ 105. then $f'(\mathbf{x}) = 0$ Reason : Derivative of constant function is zero. (c) C (a) A (b) B (d) D (e) E Assertion : Derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to 106. $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is 1 for 0 < x < 1. **Reason :** $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ for $-1 \le x \le 1$ (a)A (b) B (c) C (d) D (e) E

107. Assertion: If e^{xy} + In(xy) + cos(xy) + 5 = 0, then $\frac{dy}{dx} = -\frac{y}{x}$.

Reason:
$$\frac{d}{dx}(xy) = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

(a) A (b) B (c) C
(d) D (e) E

Match The Column

Column-II 108. Column-I (P) 6 (A) If the function

$$f(\mathbf{x}) = \begin{cases} \frac{\sin 3\mathbf{x}}{\mathbf{x}}, & \mathbf{x} \neq \mathbf{0} \\ \frac{\mathbf{K}}{2}, & \mathbf{x} = \mathbf{0} \end{cases}$$

is continuous at x = 0, then k =

(B) If
$$f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$$
 for $x \neq 5$ (Q) $2 \log |a|$

& it is continuous at
$$x = 5$$
 then $f(5) =$
(C) If $f \mathbb{R} \to \mathbb{R}$ defined by (R) 3

$$f(x) = \begin{cases} a^{2} \cos^{2} x + b^{2} \sin^{2} x (x \le 0) \\ e^{ax+b} (x > 0) \end{cases}$$

is continuous function then b =

(S)
$$log |a|$$

(T) 0
Column - I
(A) If $f'(x) = \sqrt{3x^2 + 6} \& y = f(x^3)$ (P) -2
then at $x = 1$, $\frac{dy}{dx} =$
(B) If f be a diffr. fun. such that (Q) -1
 $f(xy) = f(x) + f(y); \forall x, y \in \mathbb{R}$
then $f(e) + f(1/e) =$
(C) If f be a twice diffr. fun. such that (R) 0
 $f''(x) = -f(x) \& f'(x) = g(x);$
If $h(x) = (f(x))^2 + (g(x))^2 \& h(s) = 9$
then $h(10) = ?$
(D) $y = \tan^{-1}(\cot x) + \cot^{-1}(\tan x),$ (S) 9

$$\frac{\pi}{2} < x < \pi$$
 then $\frac{dy}{dx}$

Subjective Type Questions

109.

(A)

(B)

(C)

110. The function given by

$$f(\mathbf{x}) = \begin{cases} \frac{\sqrt{\pi} - \sqrt{\cos^{-1} \mathbf{x}}}{\sqrt{\mathbf{x} + 1}}, & \mathbf{x} \neq -1\\ \frac{1}{\sqrt{\lambda \pi}}, & \mathbf{x} = -1 \end{cases}$$

The value of λ for which the function f(x) is continuous at x = -1 from the right, must be

111. If
$$f(x) = \begin{cases} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{(1 + \cos x)}}, & x \neq 0\\ \lambda, & x = 0 \end{cases}$$
 is continuous at

x = 0, then $\lambda = \sqrt{\mu} \ln 2$. ln 3 then the value of μ must be

112. If
$$f(x) = \begin{cases} \frac{8^x - 4^x - 2^x + 1^x}{x^2}, & x > 0\\ e^x \sin x + \pi x + \lambda \ln 4, & x \le 0 \end{cases}$$
 is continuous at

x = 0, then the value of 1000 e^{λ} must be

113. Let
$$f(x) = \frac{\cos^{-1}(1 - \{x\}) \cdot \sin^{-1}(1 - \{x\})}{\sqrt{2\{x\}} \cdot (1 - \{x\})}$$
, then the value of

 $\frac{2008\sqrt{2}}{\pi} \lim_{x\to 0^{-}} f(x) \text{ must be (where } \{x\} \text{ denotes the fractional part of } x).$

114. If the third derivative of
$$\frac{x^4}{(x-1)(x-2)}$$
 is $\frac{-k}{(x-2)^4} + \frac{6}{(x-1)^4}$

then the numerical quantity k must be equal to

115. If
$$f(x) = \frac{1}{\sin x - \sin a} - \frac{1}{(x-a)\cos x}$$
 then

 $\frac{d}{da}\lim_{x\to a} f(x) = \frac{-1}{k} \sec a - \sec a \tan^2 a.$

The numerical quantity k should be equal to

116. If
$$y = \tan(x + y)$$
, then $\frac{d^n y}{dx^n} = -\frac{6y^4 + 16y^2 + 10}{y^8}n$ must be

equal to

117. Let f, g and h are differentiable functions. If f(0) = 1; g (0) = 2; h (0) = 3 and the derivatives of their pair wise products at x = 0 are

(fg)'(0) = 6; (gh)'(0) = 4 and (hf)'(0) = 5

then compute the value of (fgh)'(0).

118. Let P (x) be a polynomial of degree 4 such that P(1) = P(3) = P(5) = P'(7) = 0. If the real number $x \neq 1, 3, 5$ is such that P (x) = 0 can be expressed as x = p/q where 'p' and 'q' are relatively prime, then find (p + q).

EXERCISE - 4 : PREVIOUS YEAR JEE ADVANCED QUESTIONS

Single Answer Type Questions

For real number y, let [y] denotes the greatest integer less 1. than or equal to y. Then the function.

$$f(\mathbf{x}) = \frac{\tan \pi \lfloor (\mathbf{x} - \pi) \rfloor}{1 + \lfloor \mathbf{x} \rfloor^2} \text{ is.}$$
(1981)

- (a) discontinuous at some x
- (b) continuous at all x, but the derivative f'(x) does not exist for some x.
- (c) f'(x) exist for all x but the derivative f''(x) does not exist for some x.
- (d) f''(x) exists for all x.

2. If G (x) =
$$-\sqrt{25-x^2}$$
, then $\lim_{x \to 1} \frac{G(x) - G(1)}{x-1}$ has the value

(a)
$$\frac{1}{\sqrt{24}}$$
 (b) $\frac{1}{5}$

(c)
$$-\sqrt{24}$$
 (d) None of these

- The function $f(x) = \frac{\log (1+ax) \log (1-bx)}{x}$ is not 3. defined at x = 0. The value which should be assigned to f at x = 0, so that it is continuous at x = 0, is (1983) (a) a - b(b) a + b(c) $\log a + \log b$ (d) None of these
- If $f(x) = x (\sqrt{x} + \sqrt{(x+1)})$, then 4. (1985)
 - (a) f(x) is continuous but not differentiable at x = 0
 - (b) f(x) is differentiable at x = 0(c) f(x) is not differentiable at x = 0
 - (d) None of the above

(

The set of all points where the function, 5.

$$f(\mathbf{x}) = \frac{\mathbf{x}}{\left(1 + |\mathbf{x}|\right)} \text{ is differentaible, is}$$
(1987)
(a) $(-\infty, \infty)$ (b) $[0, \infty)$

$$(c) (-\infty, 0) \cup (0, \infty) \qquad (d) (0, \infty)$$

If $f(x) = \frac{1}{2}x - 1$, then on the interval $[0, \pi]$ 6. (1989) (a) $\tan [f(x)]$ and 1/f(x) are both continuous (b) $\tan [f(x)]$ and 1/f(x) are both discontinuous (c) $\tan [f(x)]$ and $f^{-1}(x)$ are both continuous (d) $\tan [f(x)]$ is continuous but 1/f(x) is not continuous The function $f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$, [.] denotes the 7. greatest integer function, is discontinuous at (1993)(a) all x (b) all integer points (c) no x (d) x which is not an integer 8. Let [.] denotes the greatest integer function and (1993) $f(\mathbf{x}) = [\tan^2 \mathbf{x}]$, then : (a) $\lim_{x \to 0} f(x)$ does not exist $x \to 0$ (b) f(x) is continuous at x = 0(c) f(x) is not differentiable at x = 0(d) f'(0) = 1If $y = (\sin x)^{\tan x}$, then $\frac{dy}{dx}$ is equal to 9. (1994)(a) $(\sin x)^{\tan x} (1 + \sec^2 x \log \sin x)$ (b) $\tan x (\sin x)^{\tan x - 1} \cos x$ (c) $(\sin x)^{\tan x} \sec^2 x \log \sin x$ (d) $\tan x (\sin x)^{\tan x - 1}$ Let $f(\mathbf{x}) = \begin{vmatrix} \mathbf{x}^3 & \sin \mathbf{x} & \cos \mathbf{x} \\ \mathbf{6} & -1 & \mathbf{0} \\ \mathbf{p} & \mathbf{p}^2 & \mathbf{p}^3 \end{vmatrix}$ where **p** is a constant. Then 10.

$$\frac{d^{3}}{dx^{3}} (f(x)) at x = 0 is$$
(a) p
(b) p + p²
(c) p + p³
(d) Independent of p

00		CONT	INUIT	I, DIFFEREN HABII	AII I & DIFFERENI	IATION
11.		$]^2 - [x^2]$ (where [x] is the greatest al to x), is discontinuous at	18.	The domain of the deri	vative of the functions	
	C 1	(1999)		$\int \tan^{-1} x$, i	$f \mid x \mid \leq 1$	
	(a) all integers	()		$f(x) = \begin{cases} \tan^{-1} x, & it \\ \frac{1}{2} (x - 1), & i \end{cases}$	is	(2002)
	(b) all integers except 0	and 1		$\left(\frac{1}{2}\right)^{ \mathbf{X} -1}$	I X ~ I	
	(c) all integers except 0			(a) $R - \{0\}$	(b) $R - \{1\}$	
	(d) all integers except 1			(c) $R - \{-1\}$	(d) $\mathbf{R} - \{-1, 1\}$	
12.	() U	$(-1) x^2 - 3x + 2 + \cos(x)$ is not				
	differentiable at x :	(1999)	19.	$f\left(2\mathbf{h}+2+\mathbf{h}^2\right)-f$	⁽²⁾	
	(a)-1	(b) 0	19.	$\lim_{h \to 0} \frac{f(2h+2+h^2) - f}{f(h-h^2+1) - f}$	(1) , given that $f \in (2)$) = 6 and
	(c) 1	(d) 2				
13.	Let $f(\mathbf{x})$ be defined for	r all $x > 0$ and be differentiable.		f'(1) = 4:		(2003)
	(\mathbf{v})			(a) does not exist	(b) is equal to $-3/2$	
	$f(\mathbf{x})$ satisfy $f\left(\frac{\mathbf{x}}{\mathbf{v}}\right) = f(\mathbf{x})$	$(x) - f(y) \forall x, y \in \mathbb{R}^+ \text{ and } f(e) = 1,$		(c) is equal to $3/2$	(d) is equal to 3	
	then	(1999)	20.	If y is a function of x a value of $y'(0)$ is equal		0, then the (2004)
	then			(a) 1	(b) – 1	(2001)
	(a) $f(\mathbf{x})$ is bounded	(b) $f\left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$		(c) 2	(d) 0	
		(x)	21.	× /		
	(c) $x f(x) \rightarrow 1$ as $x \rightarrow 0$	$(\mathbf{d})f(\mathbf{x}) = \ln \mathbf{x}$	21.	21. If $y = y(x)$ and it follows the relation $x \cos y + y \cos x = \pi$, then $y''(0)$		
14.		function. Define $g: \mathbb{R} \to \mathbb{R}$ by		(a) - 1	(b) π	(2005)
	$g(\mathbf{x}) = f(\mathbf{x}) $ for all \mathbf{x} . T	hen g is : (2000)		$(c) - \pi$	(d) 1	
	(a) onto if f is onto		22.	Let $f(\mathbf{x}) = \mathbf{x} - 1 $, then p		fferentiable
	(b) one-one if f is one-			is/(are):	$\int (x) (x) (x) (x) (x) (x) (x) (x) (x) (x)$	(2005)
	(c) continuous if f is cont			(a) 0	(b) 1	
	(d) differentiable if f is			$(c) \pm 1$	$(d) 0, \pm 1$	
15.	-	in defined by $f(x) = \max \{x, x^3\}$. The				
	set of all points where <i>J</i> ((x) is not differentiable is :	23.	If $F(\mathbf{x}) = \left(f\left(\frac{\mathbf{x}}{2}\right)\right)^2 + \left(f\left(\frac{\mathbf{x}}{2}\right)\right)^2$	$\left[g\left(\frac{\mathbf{x}}{-}\right)\right]^2$ where $f''(\mathbf{x}) =$	$-f(\mathbf{x})$ and
	(-) (-1, 1)	(2001)			(2))	5 () ~ ~
	(a) $\{-1, 1\}$	(b) $\{-1, 0\}$		$g(\mathbf{x}) = f'(\mathbf{x})$ and given the	hat $F(5) = 5$, then $F(10)$	-
14	(c) $\{0, 1\}$	(d) $\{-1, 0, 1\}$				(2006)
16.	integer is	of $f(x) = [x] \sin(\pi x)$ at $x = k, k$ is an (2001)		(a) 5	(b) 10	
	(a) $(-1)^{k}(k-1)\pi$	(b) $(-1)^{k-1}(k-1)\pi$		(c) 0	(d) 15	
	(c) $(-1)^k k\pi$	(d) $(-1)^{k-1} k\pi$		sec ² x		
17.		Sunctions is differentiable at $x = 0$?		$\int f(t) dt$		
• / •	which of the following f	(2001)	24.	$\lim_{x \to \frac{\pi}{4}} \frac{\frac{y}{2}}{x^2 - \frac{\pi^2}{16}}$ equals	;	(2007)
	(a) $(\cos x) + x $	(b) $\cos(\mathbf{x}) - \mathbf{x} $		$x^{4} x^{2} - \frac{1}{16}$		
	(c) $\sin(\mathbf{x}) + \mathbf{x} $	(d) $\sin(\mathbf{x}) - \mathbf{x} $				
				(a) $\frac{8}{\pi}$ f(2)	(b) $\frac{2}{\pi} f(2)$	
				π	π	
				(c) $\frac{2}{\pi} f\left(\frac{1}{2}\right)$	(d) 4 f(2)	
				$\left(0\right) \frac{\pi}{\pi} \left(\frac{\pi}{2} \right)$	(u) + 1(2)	
			1			

ledantu

line

25.
$$\frac{d^{2}x}{dy^{2}} \text{ equals}$$
(2007)
(a) $\left(\frac{d^{2}y}{dx^{2}}\right)^{-1}$
(b) $-\left(\frac{d^{2}y}{dx^{2}}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$
(c) $\left(\frac{d^{2}y}{dx^{2}}\right)\left(\frac{dy}{dx}\right)^{-2}$
(d) $-\left(\frac{d^{2}y}{dx^{2}}\right)\left(\frac{dy}{dx}\right)^{-3}$

26. Let $g(x) = \log f(x)$ where f(x) is a twice differentiable positive function on $(0, \infty)$ such that f(x + 1) = x f(x). Then, for N = 1, 2, 3,, (2008)

$$g''\left(N+\frac{1}{2}\right)-g''\left(\frac{1}{2}\right) =$$
(a) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2N-1)^2}\right\}$
(b) $4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2N-1)^2}\right\}$
(c) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2N+1)^2}\right\}$
(d) $4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2N+1)^2}\right\}$

27. Let *f* be a real-valued function defined on the interval (-1,1) such that $e^{-x}f(x) = 2 + \int_{0}^{x} \sqrt{t^{4} + 1} dt$, for all $x \in (-1, 1)$ and let *f*⁻¹ be the inverse function of *f*. Then $(f^{-1})'(2)$ is equal to (2010)

(a) 1 (b)
$$\frac{1}{3}$$

(c)
$$\frac{1}{2}$$
 (d) $\frac{1}{e}$

28. Let
$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right|, & x \neq 0, x \in \mathbb{R}, \\ 0, & x = 0 \end{cases}$$
 then f is (2012)

- (a) differentiable both at x = 0 and x = 2
 (b) differentiable at x = 0 but not differentiable at x = 2
- (c) not differentiable at x = 0 but differentiable at x = 2
- (d) differentiable neither at x = 0 nor at x = 2

if $x \ge 0$

29. Let $f_1 : R \to R$, $f_2 : [0, \infty) \to R$, $f_3 : R \to R$ and $f_4 : R \to [0, \infty)$ be defined by

$$f_{1}(\mathbf{x}) = \begin{cases} |\mathbf{x}| & \text{if } \mathbf{x} < 0, \\ e^{\mathbf{x}} & \text{if } \mathbf{x} \ge 0; \end{cases}$$
$$f_{2}(\mathbf{x}) = \mathbf{x}^{2};$$
$$(\sin \mathbf{x} & \text{if } \mathbf{x} < 0)$$

х

and

 $f_{3}(x) =$

$$f_4(x) = \begin{cases} f_2(f_1(x)) & \text{if } x < 0, \\ f_2(f_1(x)) - 1 & \text{if } x \ge 0. \end{cases}$$
(2014)

	List I			List II		
P.	f ₄ is		1.	onto but	not one-o	ne
Q.	f_3 is 2.			neither continuous nor one-one		
R.	$f_2 of_1 is$ 3.			differentiable but not one-one		
S.	f_2 is 4.			continuous and one-one		
		Р		Q	R	S
	(A)	3		1	4	2
	(B)	1		3	4	2
	(C)	3		1	2	4
	(D)	1		3	2	4

Multiple Answers Questions

30. If x + |y| = 2y, then y as a function of x is (1984)
(a) defined for all real x
(b) continuous at x = 0
(c) differentiable for all x

(d) such that
$$\frac{dy}{dx} = \frac{1}{3}$$
 for $x < 0$

n LIVE Online

62	CONT	INUIT	Y, DIFFERENTIABILITY & DIFFERENTIATION				
31.	The function $f(x) = 1 + \sin x $ is (1986)						
	(a) continuous no where	36.	Let $g(x) = x f(x)$, where $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.				
	(b) continuous everywhere	00.	$\begin{bmatrix} x \\ 0, \\ x \\ 0 \end{bmatrix}$				
	(c) differentiable at $x = 0$		Atr = 0 (1004)				
	(d) not differentiable at infinite number of points		At x = 0 (1994)				
32.	Let $[x]$ denote the greatest integer less than or equal to x.		(a) g is differentiable but g' is not continuous(b) g is differentiable while f is not				
	If $f(x) = [x \sin \pi x]$, then $f(x)$ is (1986)		(c) both <i>f</i> and <i>g</i> are differentiable				
	(a) continuous at $x = 0$ (b) continuous in (-1, 0) (c) differentiable at $y = 1$ (d) differentiable in (-1, 1)		(d) g is differentiable and g' is continuous				
	(c) differentiable at $x = 1$ (d) differentiable in $(-1, 1)$	37.	The function				
	$(x-3 , x\geq 1)$		$f(\mathbf{x}) = \max \{(1-\mathbf{x}), (1+\mathbf{x}), 2\}, \mathbf{x} \in (-\infty, \infty) \text{ is } (1995)$				
33.	The function $f(x) = \begin{cases} x-3 , & x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & x < 1 \end{cases}$ is (1988)		(a) continuous at all points				
			(b) differentiable at all points				
	(a) continuous at $x = 1$ (b) differentiable at $x = 1$		(c) differentiable at all points except at $x = 1$ and $x = -1$				
	(c) discontinuous at $x = 1$ (d) differentiable at $x = 3$		(d) continuous at all points except at $x = 1$ and $x = -1$,				
34.	The following functions are continuous on $(0, \pi)$ (1991)		where it is discontinuous				
	(a) tan x	38.	38. Let $h(x) = \min \{x, x^2\}$ for every real number of x. Then				
	$\mathbf{r} \in \mathbf{f}^{\mathbf{x}}$, \mathbf{l} ,		(1998)				
	(b) $\int_0^x t \sin \frac{1}{t} dt$		(a) h is continuous for all x				
			(b) h is differentiable for all x				
	$\int 1,0 \le x \le \frac{3\pi}{4}$		(c) $h'(x) = 1$, for all $x > 1$				
	(c) $\begin{cases} 1, 0 \le x \le \frac{5\pi}{4} \\ 2\sin\frac{2}{9}x, \frac{3\pi}{4} < x < \pi \end{cases}$		(d) h is not differentiable at two values of x.				
	$\left(2\sin\frac{2}{9}x,\frac{3\pi}{4}< x<\pi\right)$	39.	If $f(\mathbf{x}) = \min\{1, \mathbf{x}^2, \mathbf{x}^3\}$, then (2006)				
			(a) $f(\mathbf{x})$ is continuous $\forall \mathbf{x} \in \mathbf{R}$				
	$\int \pi \sin \pi = 0 \text{and} \pi$		(b) $f(x) > 0, \forall x > 1$				
	(d) $\begin{cases} x \sin x, \ 0 < x \le \frac{1}{2} \\ \pi, & \pi \end{cases}$		(c) $f(x)$ is continuous but not differentiable $\forall x \in \mathbb{R}$				
	(d) $\begin{cases} x \sin x, 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi + x), \frac{\pi}{2} < x < \pi \end{cases}$		(d) $f(x)$ is not differentiable at two points.				
		40.	Let $f: R \to R$ be a function such that $f(x+y) = f(x) + f(y)$ $\forall x, y \in R$. If $f(x)$ is differentiable at $x = 0$, then (2011)				
35.	$\operatorname{Let} f(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} < 0\\ \mathbf{x}^2, & \mathbf{x} \ge 0 \end{cases} $ then for all \mathbf{x} (1994)		(a) $f(x)$ is differentiable only in a finite interval containing zero				
	(a) f' is differentiable (b) f is differentiable		(b) $f(x)$ is continuous $\forall x \in R$				
	 (a) f' is differentiable (b) f is differentiable (c) f' is continuous (d) f is continuous 		(c) $f'(x)$ is constant $\forall x \in R$				
	(c) j is continuous (u) j is continuous		(d) $f(x)$ is differentiable except at finitely many points				
			(,, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Vedantie Learn LIVE Online

41. If
$$f(x) = \begin{cases} -x - \frac{\pi}{2}, & x \le -\frac{\pi}{2} \\ -\cos x, & -\frac{\pi}{2} < x \le 0, \text{ then} \\ x - 1, & 0 < x \le 1 \\ \ln x, & x > 1 \end{cases}$$
 (2011)

- (a) f (x) is continuous at $x = -\frac{\pi}{2}$
- (b) f(x) is not differentiable at x = 0
- (c) f(x) is differentiable at x = 1

(d) f(x) is differentiable at $x = -\frac{3}{2}$

42. For every integer n, let a_n and b_n be real numbers. Let function $f: R \to R$ be given by

 $f(x) = \begin{cases} a_n + \sin \pi x, & \text{for } x \in [2n, 2n+1] \\ b_n + \cos \pi x, & \text{for } x \in (2n-1, 2n) \end{cases} \text{ for } all$

integers n.

If f is continuous, then which of the following hold(s) for all n? (2012) (a) $a_{-}, -b_{-} = 0$ (b) $a_{-}b_{-} = 1$

(c)
$$a_n - b_{n+1} = 1$$
 (d) $a_{n-1} - b_n = -1$

43. For every pair of continuous functions f, g: [0,1] → R such that max{f(x):x ∈ [0,1]} = max{g(x):x ∈ [0,1]},

the correct statement(s) is(are): (2014) (a) $(f(c))^2 + 3 f(c) = (g(c))^2 + 3 g(c)$ for some $c \in [0,1]$ (b) $(f(c))^2 + f(c) = (g(c))^2 + 3 g(c)$ for some $c \in [0,1]$ (c) $(f(c))^2 + 3 f(c) = (g(c))^2 + g(c)$ for some $c \in [0,1]$ (d) $(f(c))^2 = (g(c))^2$ for some $c \in [0,1]$

Let f: [a, b] → [1, ∞) be a continuous function and let g:
 R → R be defined as

$$g(x) = \begin{cases} 0 & \text{if } x < a, \\ \int_{a}^{x} f(t) dt & \text{if } a \le x \le b, \\ \int_{a}^{b} f(t) dt & \text{if } x > b \end{cases}$$

Then

- (a) g(x) is continuous but not differentiable at a
- (b) g(x) is differentiable on R

(c) g(x) is continuous but not differentiable at b

(d) g (x) is continuous and differentiable at either a or b but not both.

45.

46.

Let $g : R \to R$ be a differentiable function with g(0) = 0, g'(0) = 0 and $g'(1) \neq 0$.

Let
$$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}}{|\mathbf{x}|} g(\mathbf{x}), & \mathbf{x} \neq 0\\ 0, & \mathbf{x} = 0 \end{cases}$$
 (2015)

(a) f is differentiable at x = 0

(b) h is differentiable at x = 0

(c) *foh* is differentiable at x = 0

(d) *hof* is differentiable at x = 0

Let
$$f:\left[-\frac{1}{2},2\right] \rightarrow \mathbb{R}$$
 and $g:\left[-\frac{1}{2},2\right] \rightarrow \mathbb{R}$ be functions
defined by $f(x) = [x^2 - 3]$ and $g(x) = |x| f(x) + |4x - 7| f(x)$,

where [y] denotes the greatest integer less than or equal to y for $y \in \mathbb{R}$. Then (2016)

(a) f is discontinuous exactly at three points in $\left[-\frac{1}{2},2\right]$

(b) f is discontinuous exactly at four points in

(c) g is **NOT** discontinuous exactly at four points in

(d) g is NOT discontinuous exactly at five points in

47. Let a, b ∈ R and f: R → R, be defined by f(x) = a cos (|x³ - x|) + b |x| sin (|x³ + x|). Then f is (2016)
(a) differentiable at x = 0 if a = 0 and b = 1
(b) differentiable at x = 1 if a = 1 and b = 0
(c) NOT differentiable at x = 0 if a = 1 and b = 1
48. Let f: R → R, g: R → R, and h: R → R, be

differentiable functions such that

 $f(\mathbf{x}) = \mathbf{x}^3 + 3\mathbf{x} + 2, g(\mathbf{f}(\mathbf{x})) = \mathbf{x} \text{ and } \mathbf{h}(g(\mathbf{g}(\mathbf{x}))) = \mathbf{x} \text{ for all } \mathbf{x} \in \mathbb{R}.$ Then (2016)

(a)
$$g'(2) = \frac{1}{15}$$
 (b) $h'(1) = 666$
(c) $h(0) = 16$ (d) $h(g(3)) = 36$

(2014)

0-		CONI								
Asser	tion and Reason									
(A)	If both assertion and reas correct explanation of as	son are correct and reason is the sertion.								
(B)	If both assertion and reason are true but reason is not the correct explanation of assertion.									
(C)	If assertion is true but re	If assertion is true but reason is false.								
(D)	If assertion is false but re	ason is true.								
49.	Let f and g be real valued functions defined on interval $(-1,1)$ such that $g''(x)$ is continuous, $g(0) \neq 0$, $g'(0) = 0$, $g''(0) \neq 0$, and $f(x) = g(x) \sin x$.									
	Assertion : $\lim_{x\to 0} [g(x) co$	$t x - g(0) \operatorname{cosec} x] = f''(0).$								
	and									
	Reason : $f'(0) = g(0)$.	(2008)								
Matc	h the Columns									
50.	Match the conditions/ statement in Column II.	expressions in Column I with (1992)								
	Column I	Column II								
(A)	$\sin(\pi[x])$	(p) differentiable everywhere								
(B)	$sin \{\pi(x-[x])\}$	(q) nowhere differentiable								
		(r) not differentiable at 1 and -1								
51.	In the following, [x] den or equal to x.	totes the greatest integer less than (2007)								
	Column I	Column II								
(A)	$\mathbf{x} \mathbf{x} $	(p) continuous in $(-1, 1)$								
(B)	$\sqrt{ \mathbf{x} }$	(q) differentiable in (-1, 1)								
(C)	x+[x]	(r) strictly increasing $(-1, 1)$								
		(s) not differentiable at least at								
(D)	x-1 + x+1	one point in $(-1, 1)$								
Fill ir	the Blanks :									

52. Let
$$f(x) = \begin{cases} (x^3 + x^2 - 16x + 20) / (x - 2)^2, & \text{if } x \neq 2 \\ k, & \text{if } x = 2 \end{cases}$$

If, f(x) is continuous for all x, then k = ... (1981)

53. Let
$$f(\mathbf{x}) = \begin{cases} (\mathbf{x}-1)^2 \sin\left(\frac{1}{\mathbf{x}-1}\right) - |\mathbf{x}| & \text{if } \mathbf{x} \neq 1 \\ -1 & \text{if } \mathbf{x} = 1 \end{cases}$$

be a real valued function. Then the set of points where $f(\mathbf{x})$ is not differentiable is........... (1981)

54. A discontinuous function y = f(x) satisfying $x^2 + y^2 = 4$ is given by $f(x) = \dots$ (1982)

55. For the function
$$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}}{1+e^{\mathbf{x}}}, & \mathbf{x} \neq 0\\ 1+e^{\mathbf{x}}, & \mathbf{x} \end{cases}$$

0, $\mathbf{x} = 0$

the derivative from the right $f'(0^+) = \dots$ and the derivative from the left $f'(0^-) = \dots$ (1983)

56. If
$$f(9) = 9$$
, $f'(9) = 4$, then $\lim_{x \to 9} \frac{\sqrt{f(x) - 3}}{\sqrt{x} - 3}$ equals (1988)

57. Let f(x) = x |x|. The set of points, where f (x) is twice differentiable is (1992)

58. Let
$$f(\mathbf{x}) = [\mathbf{x}] \sin\left(\frac{\pi}{[\mathbf{x}+1]}\right)$$
; where [.] denotes the greatest

59.
$$\lim_{x \to 0} \frac{\int_0^{x^2} \cos^2 t \, dt}{x \sin x} =$$
 (1997)

Subjective/Integer Type Questions

60. Find f'(1) if
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & \text{when } x \neq 1 \\ -\frac{1}{3}, & \text{when } x = 1 \end{cases}$$
 (1979)

61. If f(x+y) = f(x) + f(y) for all x and y. If the function f is continuous at x = 0, then show that f is continuous for all x. (1981)

62. Determine the values a, b, c, for which the function

$$f(x) = \begin{cases} \frac{\sin (a+1) x + \sin x}{x}, & \text{for } x < 0\\ c, & \text{for } x = 0\\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}}, & \text{for } x > 0 \end{cases}$$

is continuous at
$$x = 0$$
. (1982)

CONTINUITY, DIFFERENTIABILITY & DIFFERENTIATION

63. Let f be a twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x) $h(x) = [f(x)]^2 + [g(x)]^2$

find
$$h(10)$$
 if $h(5) = 1$ (1982)

64. Let $f(x) = \begin{cases} 1+x, & 0 \le x \le 2\\ 3-x, & 2 < x \le 3 \end{cases}$;

Determine the form of g(x) = f[f(x)] and hence find the points of discontinuity of g, if any. (1983)

65. Let
$$f(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x < 1\\ 2x^2 - 3x + \frac{3}{2}, & 1 \le x \le 2 \end{cases}$$

Discuss the continuity of f, f' and and f'' on [0, 2]. (1983)

66. Let $f(x) = x^3 - x^2 - x + 1$ and

$$g(x) \begin{cases} = \max \{f(t); 0 \le t \le x\} \ 0 \le x \le 1 \\ = 3 - x, 1 < x \le 2 \end{cases}$$

Discuss the continuity and differentiability of the function g(x) in the interval (0, 2). (1985)

67. Let f(x) be defined in the interval [-2, 2] such that

$$f(\mathbf{x}) = \begin{cases} -1, & -2 \le \mathbf{x} \le 0\\ \mathbf{x} - 1, & 0 < \mathbf{x} \le 2 \end{cases}$$

 $g(\mathbf{x}) = f(|\mathbf{x}|) + |f(\mathbf{x})|$

Test the differentiability of
$$g(x)$$
 in $(-2, 2)$ (1986)

68. Let g(x) be a polynomial of degree one and f(x) be defined

by
$$f(\mathbf{x}) = \begin{cases} g(\mathbf{x}) & \mathbf{x} \le 0\\ \left[\frac{(1+\mathbf{x})}{(2+\mathbf{x})}\right]^{1/\mathbf{x}} & \mathbf{x} > 0 \end{cases}$$

Find the continuous functions f(x) satisfying.

$$f'(1) = f(-1)$$
(1987)

69. Let f(x) be a function satisfying the condition $f(-x) = f(x) \forall x$. If f'(0) exists, find the value. (1987)

70. Let R be the set of real numbers and $f: R \to R$ be such that for all x and y in R in $R |f(x) - f(y)| \le (x - y)^3$. Prove that f(x)is a constant. (1988) 71. Draw the graph of the function $y = [x] + |1 - x|, -1 \le x \le 3$. Determine the points, if any, where this function is not differentiable, where [x] denotes greatest integer < x.

72. Find the values of a and b, so that the function

$$f(\mathbf{x}) = \begin{cases} x + a\sqrt{2}\sin x, & 0 \le x < \pi/4 \\ 2x \cot x + b, & \pi/4 \le x \le \pi/2 \\ a \cos 2x - b \sin x, & \pi/2 < x \le \pi \end{cases}$$

is continuous for
$$0 \le x \le \pi$$
. (1989)

73. If
$$x = \sec\theta - \cos\theta$$
 and $y = \sec^n\theta - \cos^n\theta$, then show that

$$(x^{2}+4)\left(\frac{dy}{dx}\right)^{2} = n^{2}(y^{2}+4)$$
 (1989)

74. Let
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} , & x < 0\\ a , & x = 0\\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x}-4}} , & x > 0 \end{cases}$$

Determine the value of a, if possible, so that the function is continuous at x = 0 (1990)

75. Let
$$f(x) = \begin{cases} (1+|\sin x|)^{a/|\sin x|}, & -\frac{\pi}{6} < x < 0 \\ b, & x = 0 \\ e^{\tan 2x/\tan 3x}, & 0 < x < \frac{\pi}{6} \end{cases}$$

,

Determine a & b so that f is continuous at x = 0 (1994)

76. Let
$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 Test whether

(a)
$$f(x)$$
 is continuous at $x = 0$
(b) $f(x)$ is differentiable at $x = 0$ (1997)

$$f(x) = \begin{cases} 1-x, & x < 1\\ (1-x)(2-x), & 1 \le x \le 2 \\ 3-x, & x > 2 \end{cases}$$
 Justify your answer.

(1997)

78. Let $\alpha \in \mathbb{R}$. Prove that a function $f: \mathbb{R} \to \mathbb{R}$ is differentiable at α if and only if there is a function $g: \mathbb{R} \to \mathbb{R}$ which is continuous at α and satisfies $f(x) - f(\alpha) = g(x)(x-\alpha)$ for all $x \in \mathbb{R}$. (2001)

79. Let
$$f(\mathbf{x}) = \begin{cases} \mathbf{x} + \mathbf{a} \text{ if } \mathbf{x} < 0 \\ |\mathbf{x} - \mathbf{l}| \text{ if } \mathbf{x} \ge 0 \end{cases}$$

and
$$g(x) = \begin{cases} x+1 & \text{if } x < 0\\ (x-1)^2 + b & \text{if } x \ge 0 \end{cases}$$

where a and b are non-negative real numbers. Determine the composite function *gof*. If (*gof*) (*x*) is continuous for all real x determine the values of a and b, is *gof* differentiable at x = 0? Justify your answer. (2002)

80. If a function $f: [-2a, 2a] \rightarrow R$ is an odd function such that f(x) = f(2a - x) for $x \in [a, 2a]$ and the left hand derivative at x = a is 0 then find the left hand derivative at x = -a.

(2003)

81.
$$f(x) = \begin{cases} b \sin^{-1}\left(\frac{x+c}{2}\right), & -\frac{1}{2} < x < 0\\ \frac{1}{2}, & x = 0\\ \frac{e^{ax/2} - 1}{x}, & 0 < x < \frac{1}{2} \end{cases}$$

If f (x) is differentiable at x = 0 and $|c| < \frac{1}{2}$, then find the value of a and prove that $64b^2 = (4 - c^2)$. (2004)

82. If
$$f: [-1, 1] \to \mathbb{R}$$
 and $f(0) = 0$ then $f'(0) = \lim_{n \to \infty} n f\left(\frac{1}{n}\right)$

Find the value of $\lim_{n \to \infty} \frac{2}{\pi} (n+1) \cos^{-1} \left(\frac{1}{n}\right) - n$

Given that
$$0 < \left| \lim_{n \to \infty} \cos^{-1} \left(\frac{1}{n} \right) \right| < \frac{\pi}{2}$$
 (2004)

- 83. If two functions 'f' and 'g' satisfying given conditions for $\forall x, y \in \mathbb{R}, f(x - y) = f(x) g(y) - f(y) \cdot g(x)$ and $g(x-y) = g(x) \cdot g(y) + f(x) \cdot f(y)$. If right hand derivative at x = 0 exists for f(x) then find the derivative of g(x) at x=0 (2005)
- 84. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be respectively given by f(x) = |x| + 1 and g (x) = x² + 1. Define h : $\mathbb{R} \to \mathbb{R}$ by

$$h(\mathbf{x}) = \begin{cases} \max & \{f(\mathbf{x}), g(\mathbf{x})\} & \text{if } \mathbf{x} \le 0, \\ \min & \{f(\mathbf{x}), g(\mathbf{x})\} & \text{if } \mathbf{x} \ge 0. \end{cases}$$
(2014)

The number of points at which h(x) is not differentiable is

ANSWER KEY

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

1. (a)	2. (b)	3. (d)	4. (d)	5.(c)	6. (b)	7. (b)	8. (b)	9. (a)	10. (a)
11.(b)	12. (b)	13. (d)	14. (c)	15. (d)	16.(b)	17. (b)	18. (d)	19. (d)	20. (a)
21. (d)	22. (b)	23. (b)	24. (a)	25. (c)	26. (d)	27. (b)	28. (b)	29. (b)	30. (d)
31. (a)	32. (c)	33. (a)	34. (b)	35. (d)	36. (c)	37. (c)	38. (c)	39. (b)	40. (b)
41. (c)	42. (a)	43. (d)	44. (d)	45. (b)	46. (d)	47. (d)	48. (b)	49. (c)	50. (a)
51. (a)	52. (b)	53.(b)	54. (b)	55. (c)	56. (b)	57. (a)	58.(b)	59. (c)	60. (a)
61. (d)	62. (a)	63. (d)	64. (d)	65. (a)	66. (c)	67. (c)	68. (c)	69. (d)	70. (d)
71.(c)	72. (c)	73. (a)	74. (a)	75. (d)	76. (a)	77. (d)	78.(b)	79. (a)	80.(c)
81. (d)	82. (b)	83. (c)	84. (d)	85. (b)	86. (d)	87. (c)	88.(b)	89. (a)	90.(b)
91.(b)	92. (d)	93.(b)	94. (b)	95. (d)	96. (b)	97. (c)	98. (c)	99.(b)	100. (b)
101.(b)	102. (a)	103. (a)	104.(b)	105.(b)	106. (a)	107. (c)	108. (b)	109. (b)	110. (b)

EXERCISE - 2 : PREVIOUS YEAR JEE MAINS QUESTIONS

1. (a)	2. (a)	3. (b)	4. (d)	5.(c)	6. (b)	7. (a)	8. (a)	9. (b)	10. (c)
11. (c)	12. (b)	13. (c)	14. (d)	15.(b)	16. (c)	17. (d)	18. (d)	19. (d)	20. (a)
21. (b)	22. (c)	23. (b)	24. (d)	25. (a)	26. (c)	27. (d)	28. (c)	29.(b)	30. (b)
31. (d)	32. (b)	33. (c)	34. (c)	35. (a)	36. (d)	37. (b)	38. (b)	39. (c)	40.(b)
41. (c)									

EXERCISE - 3 : ADVANCED OBJECTIVE QUESTIONS

1. (a)	2. (b)	3. (c)	4. (c)	5. (d)	6. (b)	7. (d)	8. (c)	9. (b)	10. (b)
11. (a)	12. (d)	13. (a)	14. (c)	15. (b)	16. (c)	17. (b)	18. (c)	19. (c)	20. (c)
21. (d)	22. (d)	23. (a)	24. (a)	25. (c)	26. (c)	27. (a)	28. (b)	29. (c)	30. (a)
31. (c)	32. (a)	33. (c)	34. (b)	35. (a)	36. (b)	37. (c)	38. (c)	39. (a)	40. (c)
41. (c)	42. (b)	43. (b)	44. (b)	45. (d)	46. (b)	47. (c)	48. (b)	49. (a)	50. (a)
51.(b)	52. (a)	53. (b)	54. (c)	55. (b)	56. (d)	57. (c)	58. (c)	59. (c)	60. (d)
61.(c)	62. (a)	63. (a)	64. (d)	65. (a)	66. (d)	67. (b)	68. (d)	69.(c)	70. (a)
71.(b)	72. (a)	73. (a,b,c)	74. (a, b)	75. (a, b, d)	76. (a, c)	77. (a, b, d)	78. (a,c,d)	79. (a,b)	80. (a,c)
81. (a,b)	82. (a,b)	83. (a,b,c)	84. (a,b,c,d)	85. (a,c,d)	86. (b,c)	87. (b,d)	88. (b,d)	89. (a,c)	90. (a,c,d)
91. (a,b,c)	92. (a,c,d)	93. (a,b)	94. (b,c)	95. (d)	96. (d)	97.(b)	98. (c)	99.(b)	100. (c)
101. (a)	102. (a)	103. (a)	104.(b)	105. (a)	106. (c)	107. (a)	108. $(A \rightarrow P)$	$B \rightarrow T, C -$	→Q)
109. (A–S;	B-R; C-S; D-	-P)	110.0002	111.0512	112.2000	113.1004	114. (0096)	115.(0002)	116.(0003)
117.(0016)	118.(100)								

EXERCISE - 4 : PREVIOUS YEAR JEE ADVANCED QUESTIONS

1. (d)	2. (a)	3. (b)	4. (b)	5. (a)	6. (b)	7. (c)	8. (b)	9. (a)	10. (d)
11. (d)	12. (d)	13. (d)	14. (c)	15. (d)	16. (a)	17. (d)	18. (d)	19. (d)	20. (a)
21. (b)	22. (d)	23. (a)	24. (a)	25. (d)	26. (a)	27. (b)	28. (b)	29. (d)	30. (a,b,d)
31. (b,d)	32. (a,b,d)	33. (a,b)	34. (b,c)	35. (b,c,d)	36. (a,b)	37. (a,c)	38. (a,c,d)	39. (a,b,c)	40. (b,c)
41. (a,b,c,d) 42. (b,d)	43. (a,d)	44. (a,c)	45. (a, d)	46. (b,c)	47. (a,b)	48. (b,c)	49. (a)	50. A–p; B–r
51. A – p,q,r; B–p,s; C–r,s; D–p,q			52. 7	53. {0}					

54. Although many such piecewise discontinuous functions are possible, one of them is $f(x) = \begin{cases} \sqrt{4-x^2} & ; -2 \le x \le 0 \\ -\sqrt{4-x^2} & ; 0 < x \le 2 \end{cases}$

55. 0, 1 **56.** (4) **57.** $x \in R - \{0\}$ **58.** $(-\infty, -1) \cup [0, \infty), I - \{0\}$ where *I* is the set of integer *n* except n = -1

59. (1) **60.**
$$f'(1) = -\frac{2}{9}$$
 62. $a = -\frac{3}{2}, c = \frac{1}{2}$ and $b \in \mathbb{R} - \{0\}$ **63.** 1

 $64. g(x) = \begin{cases} 4-x, & 2 < x \le 3\\ 2+x, & 0 \le x \le 1, \\ 2-x, & 1 < x \le 2 \end{cases}$ $65. f and f' are continuous and f'' is discontinuous at x = \{1, 2\}$

66. Continuous and differentiable on $(0, 2) - \{1\}$ **67.** not differentiable at x = 0, 1

$$68. \ f(\mathbf{x}) = \begin{cases} \left(\frac{2}{3}\ln\frac{2}{3} - \frac{1}{9}\right)\mathbf{x}, & \mathbf{x} \le 0\\ \left(\frac{1+\mathbf{x}}{2+\mathbf{x}}\right)^{1/2}, & \mathbf{x} > 0 \end{cases}$$

$$69. (0) \quad 71. \ \mathbf{x} = 0, 1, 2, 3 \quad 72. \ \mathbf{a} = \frac{\pi}{6}, \ \mathbf{b} = \frac{-\pi}{12}$$

74. not possible 75. $a = \frac{2}{3}$, $b = e^{2/3}$ 76. (a) Yes (b) No

77. f is continuous and differentiable at all points except at x = 2

79.
$$g(f(x)) = \begin{cases} x+a+1 & \text{if } x < -a \\ (x+a-1)^2 + b & \text{if } a \le x < 0 \\ x^2 + b & \text{if } 0 \le x \le 1 \\ (x-2)^2 + b & \text{if } x > 1 \end{cases} a = 1, b = 0, \text{ gof differentiable at } x = 0$$

80. 0 **81.** a = 1 **82.** $1 - \frac{2}{\pi}$ **83.** 0 **84.** (3)