Organic Name Reactions

Aldol Condensation

$$\begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_3 \\ \hline \\ \end{array} \begin{array}{c} O \\ H-C-CH_3 \\ \hline \end{array} \begin{array}{$$

Claisen Condensation

$$\begin{array}{c} O \\ H_3C-C-OEt \end{array} \xrightarrow{EtO^-} EtO-C-\bar{C}H_2 \xrightarrow{C-CH_3} \xrightarrow{H^+} EtO-C-CH_2 \xrightarrow{C-C-CH_3} \xrightarrow{O} H \xrightarrow{O} H$$

Perkin Condensation

Benzoin Condensation

Haloform Reaction

$$\begin{matrix} OH & O & O \\ H_3C-CH-R^1 \xrightarrow{NaOI} & H_3C-C-R^1 \xrightarrow{NaOH} & CHI_3+R^1-C-\bar{O}Na^{\oplus} \end{matrix}$$

Carbylamine Test

Reimer Tiemman Reaction

Kolbe's Schimdt Reaction

Hoffmann Bromamide Degradation

$$\begin{array}{c|c}
O \\
R-C-NH_2 \xrightarrow{Br_2} R-NH_2+K_2CO_3
\end{array}$$

Curtius Reaction

$$\begin{array}{c}
O \\
\parallel \\
R-C-C1 \xrightarrow{NaN_3} R-NH_2
\end{array}$$

Schimdt Reaction

$$\begin{array}{c} O \\ \parallel \\ R-C - OH \xrightarrow{HN_3} R-N=C=O \xrightarrow{H_3O^{\oplus}} R-NH_2 \end{array}$$

Cannizzaro Reaction

Bayer villiger oxidation

$$\begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} (i) \ F_3C - C - OO - H \\ (peracid) \\ (ii) \ H' \end{array} \longrightarrow H_3C - C - O \end{array} \longrightarrow \begin{array}{c} O \\ H \end{array}$$

Cumene

Pinacol-Pincolone rearrangement

$$\begin{array}{c|c} Cl & & & \\ \hline Cl & & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl$$

Birch Reduction

$$\begin{array}{c|c} OR(+M) & O-R & COOH \\ \hline \hline Na' & \hline liq. NH_3 & \hline \end{array}; \begin{array}{c|c} Na' & \hline Na' & \hline liq. NH_3 & \hline \end{array};$$

Gabriel Synthesis

Name	Reactant	Reagent	Product
Clemmensen Reduction	Aldehyde & Ketone	Zn-Hg/conc. HCl	Alkane
Coupling Reaction	N ₂ Cl ^T OH NH ₂	NaOH (phenol) HCl (Aniline)	Azo Dye (Detectionof OH or NH ₂ gr)
Diazotization	ÑH₂	NaNO ₂ + HCl (0° – 5°C)	
Etard reaction	H ₃ C-	CrO ₂ Cl ₂ /CS ₂	O H (Benzalde hyde)
Fitting Reaction	Halo benzene	Na/Dry ether	Diphenyl
Friedel Craft alkylation	+ R-X	Anhydrous AlCl ₃	Alkyl Benzene
Friedel Craft acylation	O + R-C-Cl or (RCO) ₂ O	Anhydrous AlCl ₃	Acyl Benzene
Gattermann aldehyde synthesis	$\mathrm{C_6H_6}$	HCN+HCl/ZnCl ₂ / H ₃ O ⁺	Benzaldehyde
Gattermann- Koch reaction	C ₆ H ₆ (CO + HCl)	anhy AlCl ₃	Benzaldehyde
Hell-Volhard- Zelinsky reaction	carboxylic acid having α-hydrogen atom	Br ₂ /red P	α-halogenated carboxylic acid
Hoffmann mustard oil reaction	primary aliphatic amine + CS ₂	$\mathrm{HgCl_2/}\Delta$	CH ₃ CH ₂ -N=C=S+HgS (black)
Hunsdiecker reaction	Ag salt of carboxylic acid	Br ₂ /CCl ₄ ,80°C	alkyl or aryl bromide
Kolbe electrolytic reaction	alkali metal salt of carboxylic acid	electrolysis	alkane, alkene and alkyne
Mendius reaction	alkyl or aryl cyanide	Na/C ₂ H ₅ OH	primary amine

Name	Reactant	Reagent	Product
Rosenmund reduction	acid chloride	H ₂ ,Pd/BaSO ₄ boiling xylene	aldehyde
Sabatier- Senderens reaction	Unsaturated hydrocarbon	Ranye Ni/H ₂ , 200–300°C	Alkane
Sandmeyer reaction	$C_6H_5N_2CI^-$	CuCl/HCl or CuBr/ HBr or CuCN/KCN, heat	Halo or cyanobenzene
Gattermann Reaction	$C_6H_5N_2^+CI^-$	Cu/HX(HBr/HCl)	Halobenzene
Schotten- Baumann reaction	(phenol or aniline or alcohol)	NaOH + C ₆ H <mark>₅COCl</mark>	benzolytated product O O O O O O O O O O O O O O O O O O
Stephen reaction	alkyl cyanide	(i) SnCl ₂ /HCl (ii) H ₂ O	Aldehyde
Williamson synthesis	alkyl halide	sodium alko <mark>xide or</mark> sodium phe <mark>noxide</mark>	Ether
Wurtz-Fitting reaction	alkyl halide + aryl halide	Na/dry et <mark>her</mark>	alkyl benzene

