Organic Name Reactions ## **Aldol Condensation** $$\begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_2 \\ \hline \\ H \end{array} \begin{array}{c} O \\ H-C-CH_3 \\ \hline \\ \end{array} \begin{array}{c} O \\ H-C-CH_3 \\ \hline \begin{array}{$$ #### **Claisen Condensation** $$\begin{array}{c} O \\ H_3C-C-OEt \end{array} \xrightarrow{EtO^-} EtO-C-\bar{C}H_2 \xrightarrow{C-CH_3} \xrightarrow{H^+} EtO-C-CH_2 \xrightarrow{C-C-CH_3} \xrightarrow{O} H H$$ #### **Perkin Condensation** #### **Benzoin Condensation** #### **Haloform Reaction** $$\begin{matrix} OH & O & O \\ H_3C-CH-R^1 \xrightarrow{NaOI} & H_3C-C-R^1 \xrightarrow{NaOH} & CHI_3+R^1-C-\bar{O}Na^{\oplus} \end{matrix}$$ #### **Carbylamine Test** #### **Reimer Tiemman Reaction** #### **Kolbe's Schimdt Reaction** #### **Hoffmann Bromamide Degradation** $$\begin{array}{c|c} O \\ R-C-NH_2 \xrightarrow{Br_2} R-NH_2+K_2CO_3 \end{array}$$ #### **Curtius Reaction** $$\begin{array}{c} O \\ \parallel \\ R-C-C1 \xrightarrow{NaN_3} R-NH_2 \end{array}$$ #### **Schimdt Reaction** $$\begin{array}{c} O \\ \parallel \\ R-C - OH \xrightarrow{HN_3} R-N=C=O \xrightarrow{H_3O^{\oplus}} R-NH_2 \end{array}$$ #### **Cannizzaro Reaction** # Bayer villiger oxidation $$\begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} (i) \ F_3C - C - OO - H \\ (peracid) \\ (ii) \ H' \end{array} \longrightarrow H_3C - C - O \end{array} \longrightarrow \begin{array}{c} O \\ H \end{array}$$ ## Cumene # Pinacol-Pincolone rearrangement $$\begin{array}{c|c} Cl & & & \\ \hline Cl & & & \\ \hline Cl Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl & & \\ Cl & & \\ \hline Cl & & \\ Cl$$ ## **Birch Reduction** $$\begin{array}{c|c} OR(+M) & O-R & COOH \\ \hline \hline Na' & \hline liq. NH_3 & \hline \end{array}; \begin{array}{c|c} Na' & \hline Na' & \hline liq. NH_3 & \hline \end{array};$$ # **Gabriel Synthesis** | Name | Reactant | Reagent | Product | |-------------------------------------|---|--|--| | Clemmensen
Reduction | Aldehyde & Ketone | Zn-Hg/conc. HCl | Alkane | | Coupling
Reaction | N ₂ Cl ^T OH NH ₂ | NaOH (phenol)
HCl (Aniline) | Azo Dye
(Detectionof OH or
NH ₂ gr) | | Diazotization | ÑH₂ | NaNO ₂ + HCl
(0° – 5°C) | | | Etard reaction | H ₃ C- | CrO ₂ Cl ₂ /CS ₂ | O
H
(Benzalde hyde) | | Fitting Reaction | Halo benzene | Na/Dry ether | Diphenyl | | Friedel Craft
alkylation | + R-X | Anhydrous AlCl ₃ | Alkyl Benzene | | Friedel Craft acylation | O
+ R-C-Cl or (RCO) ₂ O | Anhydrous AlCl ₃ | Acyl Benzene | | Gattermann
aldehyde
synthesis | $\mathrm{C_6H_6}$ | HCN+HCl/ZnCl ₂ /
H ₃ O ⁺ | Benzaldehyde | | Gattermann-
Koch reaction | C ₆ H ₆ (CO + HCl) | anhy AlCl ₃ | Benzaldehyde | | Hell-Volhard-
Zelinsky reaction | carboxylic acid having α-hydrogen atom | Br ₂ /red P | α-halogenated
carboxylic acid | | Hoffmann
mustard oil
reaction | primary aliphatic amine + CS ₂ | $\mathrm{HgCl_2/}\Delta$ | CH ₃ CH ₂ -N=C=S+HgS (black) | | Hunsdiecker
reaction | Ag salt of carboxylic acid | Br ₂ /CCl ₄ ,80°C | alkyl or aryl bromide | | Kolbe electrolytic reaction | alkali metal salt of
carboxylic acid | electrolysis | alkane, alkene and
alkyne | | Mendius reaction | alkyl or aryl cyanide | Na/C ₂ H ₅ OH | primary amine | | Name | Reactant | Reagent | Product | |------------------------------------|-----------------------------------|--|---| | Rosenmund reduction | acid chloride | H ₂ ,Pd/BaSO ₄
boiling xylene | aldehyde | | Sabatier-
Senderens
reaction | Unsaturated
hydrocarbon | Ranye Ni/H ₂ ,
200–300°C | Alkane | | Sandmeyer reaction | $C_6H_5N_2CI^-$ | CuCl/HCl or CuBr/
HBr or CuCN/KCN,
heat | Halo or cyanobenzene | | Gattermann
Reaction | $C_6H_5N_2^+CI^-$ | Cu/HX(HBr/HCl) | Halobenzene | | Schotten-
Baumann
reaction | (phenol or aniline or
alcohol) | NaOH + C ₆ H <mark>₅COCl</mark> | benzolytated product O O O O O O O O O O O O O O O O O O | | Stephen reaction | alkyl cyanide | (i) SnCl ₂ /HCl (ii) H ₂ O | Aldehyde | | Williamson
synthesis | alkyl halide | sodium alko <mark>xide or</mark>
sodium phe <mark>noxide</mark> | Ether | | Wurtz-Fitting
reaction | alkyl halide + aryl halide | Na/dry et <mark>her</mark> | alkyl benzene |