
flYnn’s classification
In parallel processing, the system is able to perform concurrent
data processing to achieve faster execution time. A classifi cation
introduced by M.J. Flynn considers the organization of a com-
puter system by the number of instructions and data items that are
manipulated simultaneously. According to this classifi cation, there
are four major groups of computers:

 1. Single instruction stream, single data stream (SISD):

 • Single computer containing a control unit, a processor unit
and a memory unit

 • Instructions executed sequentially; parallel processing may be
achieved by multiple functional units or by pipeline processing.

 2. Single instruction stream, Multiple data stream (SIMD):

 • Include many processing units under the supervision of a
common control unit.

 • All processors receive the same instruction from the con-
trol unit but operate on different items of data.

 3. Multiple instruction stream, Single data stream (MISD):

 • No practical system has been constructed.

4. Multiple instruction stream, Multiple data stream (MIMD):

 • Capable of processing several programs at the same time.

One type of parallel processing that does not fi t Flynn’s clas-
sifi cation is pipelining.

PiPelininG
Pipelining is a technique of decomposing a sequential process into
sub operations, with each subprocess being executed in special
dedicated segment that operates with all other segments.

In pipelining, new inputs are accepted at one end before previ-
ously accepted inputs appear as outputs at the other end.

Two-stage Pipeline
As a simple approach, consider subdividing instruction processing
into two stages:

 1. Fetch instruction
 2. Execute instruction

 • There are times during the execution of an instruction when
main memory is not being accessed. This time can be used to
fetch the next instruction in parallel with the execution of the
current one. This is called instruction prefetch or fetch overlap.

 • This process will speed up instruction execution. If the
fetch and execute stages were of equal duration, the
instruction cycle time would be halved.

 • But there are some problems in this technique:
(i) The execution time is generally longer than the fetch time.
(ii) A conditional branch instruction makes the address of

the next instruction to be fetched unknown.
 • These two factors reduce the potential effectiveness of the

two-stage pipeline, but some speed up occurs. To gain fur-
ther speed up, the pipeline must have more stage(s).

Six-stage Pipeline
Let the six stages be

F: Fetch Instruction
 D: Decode Instruction
 C: Calculate Operand Address
 O: Operand Fetch

Chapter 4

Instruction Pipelining

  Flynn’s classifi cation

  Pipelining

  Six-stages of pipelining

  Pipeline performance

  Pipeline hazards

  Structural hazards

  Data hazards

  Control hazards

  Conditional branch

  Dealing with branches

LEARNING OBJECTIVES

2.48 | Unit 2 • Computer Organization and Architecture

 E: Execute instruction
 W: Write operand

Then the time line diagram for seven instructions is shown
below:

Clock cycle

Instruction i

i + 1

i + 2

i + 3

i + 4

i + 5

i + 6

1

F

F

F

F

F

F

F

D

D

D

D

D

D

D

C

C

C

C

C

C

C

O

O

O

O

O

O

O

E

E

E

E

E

E

E

W

W

W

W

W

W

W

2 3 4 5 6 7 8 9 10 11 12

Execution Time for the seven instructions with pipelining

= 







× = ∗

t
tex

ex6
12 2 . Where t

ex
 in the execution time required

for each instruction.

 • A deeper pipeline means that there are more stages in the
pipeline. This generally means that the processor’s fre-
quency can be increased as the cycle time is lowered. This
happen because there are fewer components in each stage
of the pipeline, so the propagation delay is decreased for
the overall stage.

 • An instruction pipeline is said to be fully pipelined if it
can accept a new instruction in every clock cycle.

 • A pipeline that is not fully pipelined has wait cycle that
delays the progress of the pipeline.

Advantages of pipelining:
 • The cycle time of the processor is reduced, thus increas-

ing instruction issue rate in most cases.
 • Some combinational circuits such as adders or multipliers

can be made faster by adding more circuitry. If pipelining
is used instead it can save circuitry versus a more com-
plex combinational circuit.

Limitations of pipelining:
 1. If the stages are not of equal duration, there will be

some waiting involved at various stages.
 2. Conditional branch instruction may invalidate several

instruction fetches.
 3. The contents of one stage may depend on the contents

of other stages of previous instructions, which is still
in pipeline.

PiPeline Performance
The cycle time t of an instruction pipeline is the time
needed to advance a set of instructions one stage through
the pipeline.

Cycle time = max[t
i
]+ d = t

m
 + d, 1 ≤ i ≤ K

where t
i
 = Time delay of the circuitry in the ith stage of the

pipeline.

t
m
 = maximum stage delay.

 K = number of stages in instruction pipeline
 d = time delay of a latch, needed to advance signals and

data from one stage to the next.

Suppose that n instructions are processed without any
branches. Let T

k,n
 be the total time required for a pipeline

with K stages to execute n instructions. Then

T
k,n

 = [K+(n−1)]t

Example 1: Let n = 7, K = 6, t = 1. Then T
k,n

 = [6 + (7 − 1)]
× 1 = 12 cycles.

Now consider a processor with equivalent functions but
no pipeline and assume that the instruction cycle time is kt.
The speed up factor for the instruction pipeline compared to
execution without the pipeline is defined as

S
T

T

nk

k n

nk

k nk
n

k n

= =
+ −

=
+ −

1

1 1
,

, [(()] ()

τ
τ

Note: Larger the number of stages, greater the potential for
speed up. But practically, the potential gains of additional
pipeline stages are countered by increase in cost, delays be-
tween stages, and the fact that braches will be encountered
requiring the flushing of the pipeline.

Arithmetic pipeline:
 • Pipeline arithmetic units are usually found in very high-

speed computers.
 • These are used to implement floating point operations,

multiplication of fixed point numbers and similar compu-
tations encountered in scientific problems.

PiPeline Hazards
 • Pipeline hazards are situations that prevent the next

instruction in the instruction stream from executing dur-
ing its designated clock cycle. The instruction is said to
be stalled. When an instruction is stalled, all instructions
later in the pipeline than the stalled instructions are also
stalled. Instructions earlier than the stalled one can con-
tinue. No new instructions are fetched during the stall.

Note: Keeping a pipeline at its maximal rate is prevented
by pipeline hazard.

Different types of Hazards:

 1. Structural Hazards
 2. Data Hazards
 3. Control Hazards

Structural Hazards
Structural hazards occur when a certain resource is requested
by more than one instruction at the same time.

Example 2: Instruction MVI B, X fetches in the O stage
operand X from memory. The memory does not accept
another access during that cycle.

Chapter 4 • Instruction Pipelining | 2.49

Clock
cycle

stall

Instruction
i + 1

i + 2

1

F

F

F

F

D

D

D

D

D

C

C

C

F C

C

O

O

O

O

O

E

E

E

E

E

W

W

W

W

W

2 3 4 5 6 7 8 9 10 11

MVI B , X

i + 3

i + 4

Penalty: 1 cycle
Certain resources are duplicated in order to avoid structural
hazards (ALU, floating-point unit) can be pipelined them-
selves in order to support several instructions at a time. A
classical way to avoid hazards at memory access is by pro-
viding separate data and instruction caches.

Note: Structural hazards are due to resource conflict.

Data Hazards
In a pipeline execution of two instructions I

1
and I

2
 a certain

stage of the pipeline I
2
 needs the result produced by I

1
, but

this result has not yet been generated, then we have a data
hazard.

Example 3: I
1
: ADD R

3
, R

2
 R

3
 ← R

3
 + R

2

 I
2
: MUL R

1
, R

3
R

1
← R

1
 * R

3

Clock
cycle

stall stall

Instruction
i + 2

1 2 3 4 5 6 7 8 9 10 11 12

F D C O E W

F D C O E W

F D C O E W

ADD R3, R2

MUL R1, R3

Penalty: 2 cycles Before executing the O stage (operand
fetch stage), the MUL instruction is stalled until the ADD
instruction has written the result into R

3
.

Data dependencies
Data dependency exists between two instructions if the data
data used by an instruction depends on the data created by
other instructions.

Two type of dependencies exist between instructions:

 1. True data dependency
 2. Name dependencies
 (i) Anti-dependency
 (ii) Output dependency

True data dependency
 • This is also called as Read-After-Write Hazard

(RAW).
 • This type of dependency occurs when the value pro-

duced by an instruction is required by a subsequent
instruction.

 • This is also known as a flow dependency because
dependency is due to flow of data in a program.

Example: ADD R
3
, R

2
, R

1
; R

3
 ← R

2
+ R

1

 SUB R
4
, R

3
, 1; R

4
 ← R

3
 – 1

 • Here R
3
 is read before it is written by ‘ADD’ instruction.

 • In RAW hazard (i + 1)st instruction tries to read a source
before it is written by ‘ith’ instruction. So (i + 1)st instruc-
tion incorrectly gets the old value.

 • This kind of hazard can be reduced by using forwarding
(or Bypassing).

Name dependencies

 1. Anti-dependency:
 • This is also called as Write-After-Read hazard
 • This kind of dependency occurs when an instruction

writes to a location which has been read by a previ-
ous instruction.

 • Here (i + 1)st instruction tries to write an operand
before it is read by i th instruction. So i th instruction
incorrectly gets the new value.

Example: I
1
: ADD R

3
, R

2
, R

1
;R

3
 ← R

2
 + R

1

 I
2
: SUB R

2
, R

5
, 1; R

2
← R

5
– 1

I
2
 must not produce its result in R

2
 before I

1
 read R

2
, other-

wise I
1
 would use the value produced by I

2
 rather than the

previous value of R
2
.

 2. Output dependency:
 • This is also called as Write - After - Write (WAW) hazard.
 • This dependency occurs when a location is written

by two instructions.
 • i.e., (i + 1)th instruction tries to write an operand

before it is written by ith instruction.

The writes end up being performed in the wrong order.

Example: I
1
: ADD R

3
, R

2
, R

1
;

R

3
← R

2
 + R

1

 I
2
: SUB R

2
, R

3
, 1; R

2
 ← R

3
 −1

 I
3
: R

3
, R

2
, R

5
; R

3
 ← R

2
 + R

5

There is a possibility of WAW hazard between I
1
 and I

3
.

Handling data dependency There are ways to handle date
dependency.

 1. Hardware interlocks
 2. Operand forwarding
 3. Delayed load

 1. Hardware interlocks:
 • To avoid data dependency, insert hardware interlock.
 • An interlock is a circuit that detects instructions

whose source operands are destinations of instruc-
tions farther up in the pipeline.

 2. Operand forwarding:
 • Uses special hardware to detect a conflict and then

avoid it by routing the data through special paths
between pipeline segments.

2.50 | Unit 2 • Computer Organization and Architecture

 • Some of the penalty produced by data hazards can
be avoided using a technique called forwarding
(Bypassing).

 • The ALU result is always fed back to the ALU input.
If the hardware detects that the value needed for the
current operation is the one produced by the previ-
ous operation (but which has not yet been written
back). It selects the forwarded result as the ALU
input, instead of the value read from register or
memory.

MUL MUL

ALU

From register
or

memory

From register
or

memory

to register memory

Clock cycle 1 2 3 4 5 6 7 8

F D C O E W

F D C stall O E W

ADD R3, R2

MUL R1, R3

Penalty: 1 cycle After the E stage of the MUL instruction
the result is available by forwarding. Therefore the penalty
is reduced to one cycle.

Delayed Load: Here the compiler of a computer will detect
the data conflicts and reorder the instructions as necessary
to delay the loading of the conflicting data by inserting no-
operation instruction.

Control Hazards
Control hazards are produced by Branch Instructions.

Unconditional branch
 • Jump loop
 • Loop

stallstall

Loop

Loop

Clock
cycle

stall

1

F D C O E W

F D C O E W

F D C O E W

2 3 4 5 6 7 8 9 10 11

Loop + 1

Penalty: 3 cycles
 • The instruction following the branch is fetched before

the D stage is finished in 2nd clock. It is not known that
a branch is executed. Later the fetched instruction is
discarded.

 • After the O stage of the branch instruction the address of
the target is known and it can be fetched.

Conditional branch

Example: ADD B; A ← A + B
 JZ Loop
Loop: If condition satisfies and branch is taken:

stallstall

ADD B

JZ Loop

Clock
cycle

stall

1

F D C O E W

F

F

D C O E W

D C O E W

2 3 4 5 6 7 8 9 10 11 12

Loop

Penalty:3 cycles

At this moment both the condition (set by ADD) and the
target address are known.

If condition not satisfied and branch not taken:

stallF

ADD B

JZ Loop

Clock
cycle

stall

1

F D C O E W

F

D

D C O E W

C O E W

2 3 4 5 6 7 8 9 10 11 12

Penalty:2 cycles

Instruction
i + 1

At this moment the condition is known and instruction
i + 1 can go on.
 • With conditional branch, we have a penalty even if the

branch has not been taken. This is because we have to
wait until the branch condition is available.

Dealing with branches
One of the major problems in designing an instruction pipe-
line is the occurrence of branch instructions. A variety of
approaches have been taken for dealing with braches

 1. Multiple streams
 2. Prefetch branch target
 3. Branch target buffer
 4. Loop buffer
 5. Branch prediction
 6. Delayed branch

Chapter 4 • Instruction Pipelining | 2.51

Multiple streams A branch instruction may cause to
choose one of two instructions to fetch next, then allow
the pipeline to fetch both instructions, making use of
streams.

There are two problems with this approach:

 1. With multiple pipelines there are contention delays for
access to the registers and to memory.

 2. Additional branch instructions may enter the pipeline
before the original branch decision is resolved.

Prefetch branch target When a conditional branch is rec-
ognized, the target of the branches is prefetched, in addition
to the instruction following the branch. This target is then
saved until the branch instruction is executed.

Branch targets buffer (BTB) BTB is an associative mem-
ory included in the fetch segment of the pipeline. Each
entry in the BTB consists of the address of a previously
executed branch instruction and target instructions for that
branch.
 It also stores the next few instructions after the

branch target instruction.
 When the pipeline decodes a branch instruction, it

searches the associative memory BTB for the address
of the instruction. If it is in BTB, the instruction is
available directly and prefetch continues from the
new path. If the instruction is not in BTB, the pipeline
shifts to a new instruction stream and stores the target
instruction in the BTB.

Advantage: Branch instructions that occurred previously
are readily available in the pipeline without interruption.

Loop Buffer A loop buffer is a small, very high speed
memory maintained by the instruction fetch stage of the
pipeline and containing the n most recently fetched instruc-
tions in sequence. If a branch is to be taken, the hardware
first checks whether the branch target is within the buffer.
If so, the next instruction is fetched from the buffer. The
Advantages of loop buffer are

 1. Loop buffer will contain some instructions
sequentially ahead of the current instruction fetch
address. Thus instructions fetched in sequence
will be available without the usual memory access
time.

 2. If the branch occurs to a target just a few locations
ahead of the address of the branch instruction, the
target will already be in the buffer.

 3. This strategy is well suited in dealing with loops.

Branch prediction Various techniques can be used to pre-
dict whether a branch will be taken or not. The common
techniques are

1. Predict never taken Static
2. Predict always taken
3. Predict by opcode{Static

4. Taken/not taken switch
5. Brach history table{Dynamic

 • The first two approaches are static, i.e., no dependency
on execution history. Here always assume that the branch
will not be taken and continue to fetch instructions in
sequence, or always assume that the branch will be taken
and always fetch from the branch target.

 • The third approach is also static. Takes the decision
based on the opcode of the branch instruction in a
program.

 • Dynamic branch strategies attempt to improve the accu-
racy of prediction by recording the history of conditional
branch instructions in a program.

 (a) Taken/not taken switch:

 • Use two bits to record the result of the last two instances
of the execution of the associated instruction or record a
state in some other fashion.

Not taken

Not taken

N
ot taken

Taken

Taken

Ta
ke

n

Not taken

Taken
Predict
taken

Predict
not

taken

Predict
not

taken

Predict
taken

Figure 1 Branch prediction state diagram

 • As long as each succeeding conditional branch instruc-
tion that is encountered is taken, the decision process pre-
dicts that the next branch will be taken.

 • If a single prediction is wrong, the algorithm continues to
predict that the next branch is taken.

 • Only if two successive branches are not taken does the
algorithm shift to not taken branch.

Drawback: If the decision is made to take the branch, the tar-
get instruction cannot be fetched until the target address, which
is an operand in the conditional branch instruction is decoded.

 (b) Branch history table: It is a small cache memory
associated with the instruction fetch stage of the
pipeline.

2.52 | Unit 2 • Computer Organization and Architecture

 • Each entry in the table consist of three elements:

 1. The address of branch instruction.
 2. Some number of history bits that record the state of

use of that instruction.
 3. Information about target instruction.

Delayed branch A complier detects the branch instructions
and rearranges the machine language code sequence by
inserting useful instructions that keep a pipeline operating
without interruptions.

Exercises

Practice Problems 1
Directions for questions 1 to 21: Select the correct alterna-
tive from the given choices.
Common data for questions 1 and 2: An unpipelined pro-
cessor with eight number cycle time and pipeline batches
with 1 ns latency is given.

 1. Find the cycle times of pipelined versions of the pro-
cessor with 2, 4, 8 and 16 stages if the Data path logic
is evenly divided among the pipeline stages.

 (A) 5, 3, 2, 1.5 (B) 4, 2, 1, 0.5
 (C) 8, 4, 2, 1 (D) 10, 6, 4, 3

 2. What is the latency of each of the pipelined versions of
the processor?

 (A) 4, 2, 1, 0.5 (B) 10, 6, 4, 3
 (C) 5, 3, 2, 1.5 (D) 10, 12, 16, 24

 3. A 4-stage pipeline has the stage delays as 110, 120,
130, and 140 nanoseconds respectively. Registers that
are used between the stages have a delay of 2 nano-
seconds each. Assuming constant clocking rate. Find

the total time taken to process 1000 instructions on this
pipeline.

 (A) 7.1 ms (B) 14.24 ms
 (C) 28 ms (D) 2000 ms

 4. Consider a pipelined processor with the following four
stages:

 IF: instruction fetch
 ID: Instruction decode
 EX: Execute
 WB: Write back
 The IF, ID and WB stages takes one clock cycle each

to complete the operation. The number of clock cycles
for EX stage depends on the instruction; for I

1
 and I

3

one clock cycle is needed and for I
2
 three clock cycles

are needed. Find the number of clock cycles taken to
complete the following sequence of instructions?

I1: ADD R0, R1, R2 R0 ← R1 + R2

I2: MUL R2, R3, R4 R2 ← R3 × R4

I3: SUB R4, R5, R6 R4 ← R5 – R6

Figure 2 Branch history table

Select

Branch miss handling

Branch
instruction
address

Target
address State

Next sequential
address

IPFAR : Instruction
prefix address register

Memory
Lookup

Add new
entry

Update
state

E

IPFAR

Chapter 4 • Instruction Pipelining | 2.53

 (A) 7 (B) 8
 (C) 6 (D) 9

 5. A CPU has five stage pipelines and runs at 1 GHz fre-
quency. Instruction fetch happens in the first stage of
the pipeline. A conditional branch instruction com-
putes the target address and evaluates the condition
in the third stage of the pipeline. The processor stops
fetching new instructions following a conditional
branch until the branch outcome is known. A program
executes 109 instructions. Out of which 10% are condi-
tional branches. If each instruction takes one cycle to
complete on average then find the total execution time
of the program?

 (A) 1 sec (B) 1.2 sec
 (C) 1.4 sec (D) 1.8 sec

 6. Consider a four stage pipeline processor, number of
cycles needed by the four instructions I

1
, I

2
, I

3
 and I

4
 in

stages S
1
, S

2,
S

3
 and S

4
 are shown below:

S1 S2 S3 S4

I1 2 1 1 1

I2 1 3 2 2

I3 2 1 1 3

I4 1 2 2 2

 What is the number of cycles needed to execute the
instructions in the order:

 I
1
 : I

2
 : I

3
 : I

4

 (A) 8 (B) 12
 (C) 14 (D) 15

 7. A non-pipelined system takes 50 ns to process a task;
the same task can be processed in a six-segment pipe-
line with a clock cycle of 10 ns. Speedup ratio of
100 tasks for pipeline is

 (A) 1.62 (B) 3.21
 (C) 4.76 (D) 8.21

 8. Consider a pipelined processor with the following four
stages:

 IF: Instruction fetch
 ID: Instruction decode
 EX: Execute
 WB: Write back

 The IF, ID and WB stages takes one clock cycle each to
complete the operation. The number of clock cycles for
EX stage depends on the instruction; for I

1
 and I

3
 one

clock cycle is needed and for I
2
 three clock cycles are

needed. The number of clock cycles taken to complete
the following sequence of instructions is

I1: ADD R0, R1, R2, R0 ← R1 + R2

I2: MUL R2, R0, R4, R2 ← R0 × R4

I3: SUB R4, R5, R2, R4 ← R5 − R2

 (A) 7 (B) 8
 (C) 9 (D) 10

 9. Following are the sequence of stages in a pipeline CPU:
 (1) IF: Instruction fetch from instruction memory
 (2) RD: Instruction decode and register read
 (3) EX: Execute ALU operation for data and address

computation
 (4) MA: Data memory access, for write access, the

register read at RD stage is used.
 (5) WB: Register write back

 Consider the following sequence of instructions:
 LOAD R

1
, M[loc]

 ADD R
1
, R

1
, R

1

 ADD R
2
, R

1
,

R

2

 Let each stage take one clock cycle.
 What is the number of clock cycles taken to com-

plete the above sequence of instructions starting from
the fetch of first instruction?

 (A) 18 (B) 15
 (C) 13 (D) 10

 10. Which of the following can cause a hazard for a pipe-
lined CPU with a single ALU?

 (i) The (j + 1)st instruction uses the result of the j th
instruction as an operand.

 (ii) The j th and (j + 1)st instructions require the ALU at
the same time.

 (iii) The execution of a conditional jump instruction.
 (iv) The execution of non-conditional jump instruc-

tion.
 (A) (i) and (ii) (B) (ii) and (iii)
 (C) (i), (ii) and (iii) (D) (i), (ii), (iii) and (iv)

 11. Given an unpipelined processor with a 10 ns cycle time
and pipeline latches with 0.5 ns latency, how many
stages of pipelining are required to achieve cycle time
of 2 ns?

 (A) 5.5 (B) 6.67
 (C) 7 (D) 6

 12. In a 4-stage pipeline,
 IF – instruction fetches
 ID – instruction decode and fetch operands
 EX – Execute
 WB – write back
 ADD, SUB take one clock cycle, MUL take three clock

cycles. Then for
 ADD R

2
, R

1
, R

0
 R

2
 ← R

1
+ R

0

 MUL R
4
, R

3
, R

2
 R

4
 ← R

3
 * R

2

 SUB R
6
, R

5
, R

4
 R

6
 ← R

5
 – R

4

 Number of clock cycles required using operand for-
warding technique are

 (A) 8 (B) 12
 (C) 10 (D) 14

 13. Consider an instruction sequence of length ‘n’ that is
streaming through a K-stage instructions pipeline. Let
P be the probability of encountering a conditional or

2.54 | Unit 2 • Computer Organization and Architecture

unconditional branch instruction and let q be the prob-
ability that execution of a branch instruction I

B
 causes

a jump to a non-consecutive address. Assume that each
such jump requires the pipeline to be cleared, destroy-
ing all ongoing instruction processing, when I

B
 emerges

from the last stage. Also assume that T is the cycle
time. Then which of the following expression correctly
specifies the time required for this pipeline?

 (A) pqnkt + (1 – pq) [K + (n – 1)]t
 (B) (1 – pq) [k + (n – 1)]t + pqnt
 (C) pqnkt + (1 – pq) n[k + (n – 1)]t
 (D) pqn + (1 – pq)n [k + (n – 1)]t
 14. If T

m
 is maximum stage delay of an m-stage pipeline

with time delay of the latch is d then cycle time is
 (A) T

m
/d (B) T

m
 + d

 (C) 2T
m
 + d (D) T

m
 × d

 15. Pipelining is a general technique for increasing pro-
cessor ____ without requiring large amounts of extra
hardware.

 (A) turnaround time (B) waiting time
 (C) latency (D) throughput

 16. A 4-stage instruction pipeline executes a 100
instruction program. The probability of occurrence
of a conditional or unconditional branch is 0.4 and
the probability of execution of a branch instruction
I

B
 causing a jump to a non-consecutive address is

0.1. Then the speed up factor for the instruction
pipeline compared to execution without pipeline is

 (A) 2.14 (B) 6.23
 (C) 3.21 (D) 3.48

 17. A non-pipelined processor has a clock rate of 2.5GHz
and an average cycles per instruction of 4. An upgrade to
the processor introduces a five stage pipeline. However,
due to internal pipeline delays, such as latch delay, the
clock rate of the new processor has to be reduced to
2GHz. What is the MIPS rate for each of these proces-
sors respectively.

 (A) 625, 400 MIPS (B) 625, 2000 MIPS
 (C) 3125, 2000 MIPS (D) 3125, 400 MIPS

 18. Consider the following sequence of instructions:
 I

1
: MUL R

1
, R

2
 R

1
 ← R

1
 * R

2

 I
2
: SUB R

3
, 1 R

3
 ← R

3
 − 1

 I
3
: ADD R

3
, R

4
 R

3
 ← R

3
 + R

4

 I
4
: BEZ Target Branch if zero

 I
5
: MOVE R

3
,10 R

3
 ← 10

…

 Target:

 Which of the following instruction will be placed in de-
layed slot to reduce penalty in a 6-stage pipeline? (Assume
that the branch outcome will be known during 5th stage)

 (A) I
1
 (B) I

2

 (C) I
3
 (D) I

5

 19. Consider the following sequence of instructions:
 ADD R

1
, R

2
 R

1
← R

1
 + R

2

 BEZ Target Branch if Zero
 MUL R

3
, R

4
 R

3
← R

3
 * R

4

 MOVE R
1
,10 R

1
 ← 10

…

 Target:
 Assume that this program executed on a 6-stage pipe-

lined processor and each stage required 1 clock cycle.
 Let us suppose that “branch not taken” Prediction is

used but the prediction is not fulfilled, then the penalty
will be (branch outcome is known at 5th stage)

 (A) 1 clock cycle (B) 2 clock cycles
 (C) 3 clock cycles (D) 4 clock cycles

 20. Suppose 40% of the instructions are loads and half the
time they are followed by instruction that depends on
value loaded. If this hazard causes single cycle delay,
how must faster is ideal pipelined machine (CPI = 1)
than real one? (Ignore other stalls)

 (A) 1 time (B) 1.2 times
 (C) 1.5 times (D) 1.15 times

 21. Assume that a pipelined processor has three categories
of instructions: Branch, load/store, other. If it is a branch
instruction it will take 3 clock cycles, if it is a load/
store instruction it will take 4 clock cycles and all other
instructions require 6 clock cycles. A program consisting
of 10% Branch instructions, 10% of load/store instruc-
tions is executed on this processor. Then the number of
clock cycles required for the execution of the program is

 (A) 2.45 (B) 3.61
 (C) 4.66 (D) 5.5

Practice Problems 2
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.
 1. The time required for the five functional units, which

operated in each of the five cycles are 10 ns, 7 ns, 10 ns,
10 ns and 8 ns. Assume that pipelining add 1 ns of over-
head. The speed up of pipeline compared to unpipeline is

 (A) 4.5 times (B) 1.1 times
 (C) 4.1 times (D) 2.4 times

 2. Which of the following is a technique of decomposing
a sequential process into sub operations with each sub-
process being executed in a special dedicated segment
that operates concurrently with each other?

 (A) Straight line sequencing

 (B) Random sequencing

 (C) Pipelining

 (D) Serial execution

Chapter 4 • Instruction Pipelining | 2.55

 3. Which of the following statements is incorrect?
 (A) Latency is the number of time units between two

initiations in a pipelined architecture.
 (B) If initiations are of different but fixed reservation

tables, the architecture is known as static pipelined
configuration.

 (C) A collision in a pipelined architecture is an at-
tempt by two different initiations to use the same
stage at the same time.

 (D) None of the above

 4. Which of the following technique is used in a pipelined
processor, when there is a conditional branch?

 (A) Loop butter (B) Branch prediction
 (C) Delayed Branch (D) All of the above

 5. Which of the following cases, leads to a pipelined com-
puter architecture?

 (A) The evaluation of each basic function is relatively
independent of the previous one.

 (B) The sub-functions are closely related to each
other.

 (C) The evaluation of each sub function requires ap-
proximately the same sequence.

 (D) All of the above

 6. The performance of a pipelined processors is degraded
if

 (A) the pipeline stages have different delays.
 (B) consecutive instructions are dependent on each

other.
 (C) the pipeline stages share hardware resources.
 (D) All of the above

 7. The following is a limit on how much the performance
of a processor can be improved using pipelining:

 (A) the number of pipeline stages
 (B) data dependencies
 (C) branch delays
 (D) All of the above

 8. A pipeline processor consists of a sequence of ‘m’ data
processing circuits called ____, which collectively per-
form a single operation on a stream of data operands
passing through them.

 (A) stages (B) pipelines
 (C) latches (D) None of the above

 9. A five-stage pipelined CPU has the following sequence
of stages:

 IF – Instruction fetch from memory
 RD – Decode instruction
 EX – Execute
 MA – Data memory access
 WB – Register write back

 Consider the following instruction sequence:
 I

1
: Load R

0
 R

0
 ⇐ M

 I
2
: ADD R

1
, R

1
 R

1
 ⇐ R

1
 + R

1

 I
3
: SUB R

2
, R

3
 R

2
 ⇐ R

2
 – R

3

 Each stage takes one clock cycle.

 Number of clock cycles to execute the program is
 (A) 8 (B) 10
 (C) 7 (D) 15

Common data for questions 10 and 11: Given an unpipe-
lined processor with a 10 number cycle time and pipeline
latches with 0.5 ns latency.

 10. Which are the cycle times of pipelined versions of the
processors with 2, 4, 8 and 16 stages if the data path
logic is evenly divided among the pipeline stages?

 (A) 5.0, 3.0, 1.5, 1.0
 (B) 5.5, 3.0, 1.75, 1.125
 (C) 4.0, 5.0, 6.0, 7.0
 (D) None of the above

 11. What is the latency of each of the pipelined versions of
the processor with 2, 4, 8 and 16 stages?

 (A) 10, 11, 12, 14 ns
 (B) 10, 10, 11, 11 ns
 (C) 11, 12, 14, 18 ns
 (D) None of the above

 12. Assume an unpipelined processor has a 1 ns clock cycle
and it uses 5 cycles for ALU operations and branches.
And 6 clock cycles for memory operations. A program
has 40%, 30%, and 20% of ALU operations, branch
instructions and memory operations respectively.
If we are using pipelining it adds 0.2 ns overhead.
Then what is the speedup of pipelining compared to
unpipelined processor?

 (A) 1.2 (B) 3.91
 (C) 4.7 (D) 2.5

 13. Consider a five-stage pipeline processor in which each
instructions on an average has 2 clock cycle stalls. Then
the speed up of this pipelined processor compared to an
unpipelined processor is

 (A) 2.5 (B) 1.67
 (C) 0.4 (D) 5

 14. Pipelining strategy is called to implement
 (A) instruction execution
 (B) instruction prefetch
 (C) instruction decoding
 (D) instruction manipulation

 15. If an Instruction ‘j’ tries to read a source operand before
instruction ‘i ’ writes it. Then it is a ____ type of hazard.

 (A) WAR (B) RAW
 (C) WAW (D) None of these

 16. What is the average instruction processing time of a
five-stage instruction pipeline for 32 instructions if
conditional branch instructions occur as follows: I

2
, I

5
,

I
7
, I

25
, I

27
.

 (A) 1.97 (B) 1.67
 (C) 1.75 (D) 1.25

2.56 | Unit 2 • Computer Organization and Architecture

 17. Consider the execution of 1000 instructions on a five-
stage pipeline machine. Then the speed-up due to
the use of pipelining given that the probability of an
instruction being a branch is 0.2.

 (A) 1.77 (B) 2.6
 (C) 2.77 (D) 3.2

 18. If an instructions following a branch (taken or not taken)
have a dependency on the branch and cannot be executed
until the branch is executed, then the dependency is

 (A) True data dependency
 (B) Procedural dependency

 (C) Resource conflict
 (D) Output dependency

 19. ‘A two-stage instruction pipeline unlikely to cut the
instruction cycle time in half, compared with the use of
no pipeline.’ The statement is

 (A) Always true (B) Always False
 (C) Can’t predict (D) Some times true

 20. Write after read dependency is also known as
 (A) True dependency (B) Anti-dependency
 (C) Output dependency (D) Inverse dependency

 1. Consider a 6-stage instruction pipeline, where all
stages are perfectly balanced. Assume that there is no
cycle time overhead of pipelining. When an applica-
tion is executing on this 6-stage pipeline, the speedup
achieved with respect to non-pipelined execution if
25% of the instructions incur 2 pipeline stall cycles is
_____. [2014]

 2. Consider the following processors (ns stands for
nano-seconds). Assume that the pipeline registers
have zero latency.

 P1: Four-stage pipeline with stage latencies 1 ns, 2
ns, 2 ns, 1 ns.

 P2: Four-stage pipeline with stage latencies 1 ns, 1.5
ns, 1.5 ns, 1.5 ns.

 P3: Five-stage pipeline with stage latencies 0.5 ns, 1
ns, 1 ns, 0.6 ns, 1 ns.

 P4: Five-stage pipeline with stage latencies 0.5 ns,
0.5 ns, 1 ns, 1 ns, 1.1 ns.

 Which processor has the highest peak clock frequency?
 [2014]
 (A) P1 (B) P2
 (C) P3 (D) P4

 3. An instruction pipeline has five stages, namely, instruc-
tion fetch (IF), instruction decode and register fetch
(ID/RF), instruction execution (EX), memory access
(MEM), and register write back (WB) with stage laten-
cies 1 ns, 2.2 ns, 2 ns, 1 ns, and 0.75 ns, respectively (ns
stands for nano seconds). To gain in terms of frequency,
the designers have decided to split the ID/RF stage into
three stages (ID, RF1, RF2) each of latency 2.2/3 ns.
Also, the EX stage is split into two stages (EX1, EX2)
each of latency 1 ns. The new design has a total of eight
pipeline stages. A program has 20% branch instruc-
tions which execute in the EX stage and produce the
next instruction pointer at the end of the EX stage in
the old design and at the end of the EX2 stage in the
new design. The IF stage stalls after fetching a branch

instruction until the next instruction pointer is com-
puted . All instructions other than the branch instruc-
tion have an average CPI of one in both the designs.
The execution times of this program on the old and the
new design are P and Q nanoseconds, respectively. The
value of P/Q is _____. [2014]

 4. Consider an instruction pipeline with four stages (S
1
,

S
2
, S

3
 and S

4
) each with combinational circuit only.

The pipeline registers are required between each stage
and at the end of the last stage. Delays for the stages
and for the pipeline registers are as given in the figure.

Stage S1 delay 5 ns

Stage S2 delay 6 ns

Stage S3 delay 11 ns

Stage S4 delay 8 ns

Pipeline register (delay 1 ns)

Pipeline register (delay 1 ns)

Pipeline register (delay 1 ns)

Pipeline register (delay 1 ns)

Previous Years’ Questions

Chapter 4 • Instruction Pipelining | 2.57

 What is the approximate speed up of the pipeline in
steady state under ideal conditions when compared
to the corresponding non-pipeline implementation?
 [2011]

 (A) 4.0 (B) 2.5
 (C) 1.1 (D) 3.0

 5. Register renaming is done in pipelined processors
 [2012]

 (A) as an alternative to register allocation at compile
time

 (B) for efficient access to function parameters and
local variables

 (C) to handle certain kinds of hazards
 (D) as part of address translation

 6. Consider an instruction pipeline with five stages with-
out any branch prediction: Fetch Instruction (FI),
Decode Instruction (DI), Fetch Operand (FO), Execute
Instruction (EI) and Write Operand (WO). The stage
delays for FI, DI, FO, EI and WO are 5 ns, 7 ns, 10
ns, 8 ns and 6 ns, respectively. There are intermediate
storage buffers after each stage and the delay of each
buffer is 1 ns. A program consisting of 12 instructions
I

1
, I

2
, I

3
, . . . , I

12
 is executed in this pipelined proces-

sor. Instruction I
4
 is the only branch instruction and

its branch target is I
9
. If the branch is taken during the

execution of this program, the time (in ns) needed to
complete the program is [2013]

 (A) 132 (B) 165
 (C) 176 (D) 328

Common data for Questions 7 and 8: Delayed branch-
ing can help in the handling of control hazards
 7. For all delayed conditional branch instructions, irre-

spective of whether the condition evaluates to true or
false [2008]

 (A) The instruction following the conditional branch
instruction in memory is executed

 (B) The first instruction in the fall through path is
executed

 (C) The first instruction in the taken path is executed
 (D) The branch takes longer to execute than any oth-

er instruction

 8. The following code is to run on a pipelined processor
with one branch delay slot:

 I
1
: ADD R

2
 ← R

7
 + R

8

 I
2
: SUB R

4
 ← R

5
 – R

6

 I
3
: ADD R

1
 ← R

2
 + R

3

 I
4
: STORE Memory [R

4
] ← R

1

 BRANCH to Label if R
1
 = 0

 Which of the instructions I
1
, I

2
, I

3
 or I

4
 can legitimate-

ly occupy the delay slot without any other program
 modification? [2008]

 (A) I
1
 (B) I

2

 (C) I
3
 (D) I

4

 9. A 5 stage pipelined CPU has the following sequence
of stages:

 IF - Instruction fetch from instruction memory

 RD - Instruction decode and register read

 EX - Execute: ALU operation for data and address
computation

 MA - Data memory access - for write access, the reg-
ister read at RD state is used

 WB - Register write back

 Consider the following sequence of instructions.

 I
1
: L R

0
, loc

1
; R

0
 <= M[loc

1
]

 I
2
: A R

0
, R

0
; R

0
 <= R

0
 + R

0

 I
3
: S R

2
, R

0
; R

2
 <= R

2
 − R

0

 Let each stage take one clock cycle.

 What is the number of clock cycles taken to complete
the above sequence of instructions from the fetch of I

1
?

 (A) 8 (B) 10
 (C) 12 (D) 15

 10. Consider a non-pipelined processor with a clock rate
of 2.5 gigahertz and average cycles per instruction of
four. The same processor is upgraded to a pipelined
processor with five stages; but due to the internal
pipeline delay, the clock speed is reduced to 2 giga-
hertz. Assume that there are no stalls in the pipeline.
The speed up achieved in this pipelined processor is
______. [2015]

 11. Consider the sequence of machine instructions given
below:

 MUL R
5
, R

0
, R

1

 DIV R
6
, R

2
, R

3

 ADD R
7
, R

5
, R

6

 SUB R
8
, R

7
, R

4

 In the above sequence, R
0
 to R

8
 are general purpose

registers. In the instructions shown, the first regis-
ter stores the result of the operation performed on
the second and the third registers. This sequence of
instructions is to be executed in a pipelined instruction
processor with the following 4 stages: (1) Instruction
Fetch and Decode (IF), (2) Operand Fetch (OF), (3)
Perform Operation (PO) and (4) Write back the result
(WB). The IF, OF and WB stages take 1 clock cycle
each for any instruction. The PO stage takes 1 clock
cycle for ADD or SUB instruction, 3 clock cycles for
MUL instruction and 5 clock cycles for DIV instruc-
tion. The pipelined processor uses operand forward-
ing from the PO stage to the OF stage. The number
of clock cycles taken for the execution of the above
sequence of instructions is _______. [2015]

2.58 | Unit 2 • Computer Organization and Architecture

 12. Consider the following reservation table for a pipeline
having the stages S

1
, S

2
 and S

3
.

 Time →
1 2 3 4 5

S1 X X

S2 X X

S3 X

 The minimum average latency (MAL) is ______
 [2015]

 13. Consider the following code sequence having five
instructions l

1
 to l

5
. Each of these instructions has the

following format. [2015]

 OP Ri, Rj, Rk

 Where operation OP is performed on contents of reg-
isters Rj and Rk and the result is stored in register Ri.

 l
1
: ADD R

1
, R

2
, R

3

 l
2
: MUL R

7
, R

1
, R

3

 l
3
: SUB R

4
, R

1
, R

5

 l
4
: ADD R

3
, R

2
, R

4

 l
5
: MUL R

7
, R

8
, R

9

 Consider the following three statements.

 S
1
: There is an anti-dependence instructions between
instructions l

2
 and l

5

 S
2
: There is an anti-dependence between Instructions
l
2
 and l

4

 S
3
: |Within an instruction pipeline an anti-dependence

always creates one or more stalls

 Which one of the above statements is/are correct?
 (A) Only S

1
 is true

 (B) Only S
2
 is true

 (C) Only S
1
 and S

3
 are true

 (D) Only S
2
 and S

3
 are true

 14. The stage delays in a 4 - stage pipeline are 800, 500,
400 and 300 picoseconds. The first stage (with delay
800 picoseconds) is replaced with a functionally
equivalent design involving two stages with respective

delays 600 and 350 picoseconds. The throughput
increase of the pipeline is ___ percent. [2016]

 15. Consider a 3 GHz (gigahertz) processor with a three -
stage pipeline and stage latencies t

1
,t

2
 and t

3
 such that

t
1
 = 3t

2
 /4 = 2t

3
. If the longest pipelines stage is split

into two pipeline stages of equal latency, the new fre-
quency is ____ GHz, ignoring delays in the pipeline
registers. [2016]

 16. Instruction execution in a processor is divided into
5 stages, Instruction Fetch (IF), Instruction Decode
(ID), Operand Fetch (OF), Execute (EX), and Write
Back (WB). These stages take 5, 4, 20, 10, and 3
nanoseconds (ns) respective. A pipelined implement
action of the processor requires buffering between
each pair of consecutive stages with a delay of 2 ns.
Two pipelined implementations of the processor are
contemplated:

 (i) A navie pipeline implementation (NP) with 5
stages and

 (ii) An efficient pipeline (EP) where the OF stage is
divided into stages OF1 and OF2 with execution
times of 12 ns and 8 ns respectively.

 The speedup (correct to two decimal places) achieved
by EP over NP in executing 20 independent instruc-
tions with no hazards is . [2017]

 17. The instruction pipeline of a RISC processor has the
following stages: Instruction Fetch (IF), Instruction
Decode (ID), Operand Fetch (OF), Perform Operation
(PO) and Write back (WB). The IF, ID, OF and WB
stages take 1 clock cycle each for every instruction.
Consider a sequence of 100 instructions. In the PO
stage, 40 instructions take 3 clock cycles each, 35
instructions take 2 clock cycles each, and the remain-
ing 25 instructions take 1 clock cycle each. Assume
that there are no data hazards and no control hazards.

 The number of clock cycles required for comple-
tion of execution of the sequence of instructions is
______. [2018]

Chapter 4 • Instruction Pipelining | 2.59

answer KeYs

exercises

Practice Problems 1
 1. A 2. D 3. B 4. B 5. B 6. D 7. C 8. D 9. C 10. D
 11. A 12. A 13. A 14. B 15. D 16. D 17. B 18. A 19. B 20. B
 21. D

Practice Problems 2
1. C 2. C 3. B 4. D 5. D 6. D 7. D 8. A 9. C 10. B
 11. C 12. B 13. B 14. B 15. B 16. C 17. C 18. B 19. A 20. B

Previous Years’ Questions
 1. 4 2. C 3. 1.54 4. B 5. C 6. B 7. A 8. D 9. A 10. 3.2
 11. 13 12. 3 13 B 14. 33.0 : 34.0 15. 4 16. 1.51 17. 219

	Unit 2: Computer Organization and Architecture
	Chapter 4: Instruction Pipelining
	Flynn’s Classification
	Pipelining
	Pipeline Performance
	Pipeline Hazards
	Exercises
	Previous Years’ Questions
	Answer Keys

