

GRP 1.0 MATHEMATICS											
REVISION ASSINGMENT # 04 (CONIC SECTION) TIME : 90 MIN											
SECTION-I(i)											
Straight Objective Type (3 Marks each, –1 for wrong answer)											
1.	Let L is distance between two parallel normals of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b, then maximum value of L is -										
	(A) 2a	(B) 2b	(C) a + b	(D) $2(a-b)$							
2.	Let P is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. S ₁ and S ₂ its foci then maximum area of ΔPS_1S_2 is (i square units)										
	(A) b^2e	(B) a ² e	(C) ab	(D) abe							
3.	Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{x^2}{4} + \frac{y^2}{1} = 1$ is										
	$(A) \frac{16}{\sqrt{3}}$	(B) $\frac{8}{\sqrt{3}}$	40	(D) $4\sqrt{3}$							
4.	Locus of a point which divides a chord of slope 2 of parabola $y^2 = 4x$ internally in the ratio 1 : 2 is										
	another parabola having vertex as-										
			$(\mathbf{C})\left(\frac{2}{9},\frac{8}{9}\right)$	$(\boldsymbol{v},\boldsymbol{v})$							
5.	Locus of a point mutually perpend		h that tangents drawn from i	t to $y^2 = 4x + 4$ and $y^2 = 8x + 16$ are							
	(A) $y = x + 2$	(B) $y = x +$	3 (C) $x + 3 = 0$	(D) $x + 2 = 0$							
6.				trix at the point $B(-1,2)$. If the focus							
	-	-	axis then square of distance (C) 80	_							
7.	(A) 180 Let a second de	(B) 37 egree curve $x^2 + x^2$	(C) 89 $4v^2 - 4 = 0$ is intersected 1	(D) 270 by a variable pair of straight lines							
	Let a second degree curve $x^2 + 4y^2 - 4 = 0$ is intersected by a variable pair of straight lines $x^2+4y^2+\lambda xy = 0$ (where ' λ ' is a real parameter), at two points A and B respectively, then the locus of the point of intersection of tangents at A and B is (A) $4x^2 + 2y^2 + 3xy = 0$ (B) $2x^2 + y^2 + 6xy = 0$ (C) $(2x - y) (2x + y) = 0$ (D) $x^2 - 4y^2 = 0$										
8.	Consider the hyperbola H : $x^2 - 4y^2 = 4$ and a point P(x_1, y_1) on it with $x_1 > 2$ & $y_1 > 0$. The normal a										
	tangent to H at P	meet x-axis at Q a	nd R respectively. If (ℓ, m) is	s the centroid of $\triangle PQR$, then $\frac{d\ell}{dx_1}$ is							
	(A) $\frac{3x_1}{4} + \frac{4}{3x_1}$	(B) $\frac{3}{4} - \frac{4}{3x^2}$	$\frac{1}{2}$ (C) $\frac{5}{4} - \frac{4}{x_1^2}$	(D) negative							

- 9. Let PQ be the double ordinate of the ellipse and AA' be the major axis of this ellipse. If PA and QA' produced meets at a point R, then locus of R is a
- (A) circle (B) parabola (C) ellipse (D) hyperbola **10.** The equation of common tangent to the curves $y^2 = 8x$ and xy = -1 is-(A) 3y = 9x + 2 (B) y = 2x + 1 (C) y = x + 2 (D) 2y = x + 8**SECTION–I(ii)**

Multiple Correct Answer Type (4 Marks each, -1 for wrong answer)

11. If two distinct tangents to the parabola $y^2 = 4ax$ can become normals to the circle $x^2 + y^2 - 2ax - 2by + c = 0$, then

(A)
$$a^2 > 4b^2$$
 (B) $b^2 > 4a^2$ (C) $a \in \left(-\frac{|b|}{2}, \frac{|b|}{2}\right)$ (D) $b \in \left(-\frac{|a|}{2}, \frac{|a|}{2}\right)$

- 12. Consider parabola $y^2 = 4x$. Then locus of centroid of a triangle formed by vertex of parabola and a variable focal chord is a conic
 - (A) whose eccentricity is $\sqrt{2}$ (B) whose eccentricity is 1
 - (C) whose length of latus rectum is $\frac{3}{4}$
- (D) whose length of latus rectum is $\frac{4}{3}$
- 13. Let 'P' be a point on $y^2 = 4x$ which is at shortest distance from centre of circle $x^2 + y^2 4x 16y + 64 = 0$ and Q is point of intersection of circle and line segment joining point P and centre of circle then
 - (A) slope of tangent of circle at point Q is equal to $\left(\frac{1}{2}\right)$.
 - (B) distance between centre of circle and point P is $2\sqrt{5}$.
 - (C) co-ordinates of point P is (4, 4).
 - (D) x-intercept made by normal at point P is 4.
- 14. A hyperbola intersects an ellipse $x^2 + 9y^2 = 9$ orthogonally. The eccentricity of the hyperbola is reciprocal of that of ellipse. If the axes of the hyperbola are along coordinate axes, then-
 - (A) vertices of hyperbola are $\left(\pm \frac{8}{3}, 0\right)$
 - (B) y coordinate of point of intersection of ellipse and hyperbola is either $\frac{1}{3}$ or $-\frac{1}{3}$
 - (C) latus rectum of hyperbola is $\frac{2}{3}$

 - (D) latus rectum of hyperbola is $\frac{4}{3}$

Let from the point with abscissa 25, two tangents are drawn to the ellipse $24x^2 + 25y^2 = 600$ with foci at 15. S_1 and S_2 . The points of contact of tangents are A and B. If the distance of A from S_1 is $\frac{60}{13}$ units, then (A) The distance of A from S_2 is $\frac{80}{13}$ units (B) The distance of B from S_1 is 5 units (C) The distance of B from S_2 is 5 units (D) The distance of A from the directrix corresponding to S_2 is $\frac{350}{13}$ units. A line through origin O meets the circles $x^2 + y^2 = 16$ and $x^2 + y^2 = 25$ at P and Q respectively on same 16. side of origin. PR is drawn parallel to y-axis and QR is drawn parallel to x-axis. Locus of R will be a conic S = 0 such that (A) S = 0 will touch both the given circles (B) eccentiricity of S = 0 will be 3/5(D) Foci of S = 0 lies on $x^2 + y^2 = 16$ (C) eccentinicity of S = 0 will be 5/3 Let distance between parallel tangents of ellipse $x^2 + 2y^2 = 2$ is $\sqrt{5}$. If quadrilateral ABCD is formed by 17. these tangents, then (B) area of quadrilateral ABCD is $\frac{10}{\sqrt{2}}$ (A) ABCD is a parallelogram. (C) slope of tangents are $\pm \frac{1}{\sqrt{2}}$ (D) slope of tangents are ± 3 If (2, 0) is one end of transverse axis, $x^2 + y^2 - 4y = 0$ is the director circle and (α, β) be the one focus 18. of a hyperbola then $\alpha + \beta$ is less than (A) - 2(B) 1 (C) 4(D) 6 **SECTION-I(iii)** Linked Comprehension Type (Single Correct Answer Type) (3 Marks each, -1 for wrong answer) Paragraph for Question 19 to 20 If the locus of the circumcentre of a variable triangle having sides y-axis, y = 2 and $\ell x + my = 1$, where (ℓ, m) lies on the parabola $y^2 = 4x$, is curve C, then On the basis of above information, answer the following questions : Vertex of curve C is -19. $(\mathbf{B})\left(-2,-\frac{3}{2}\right) \qquad \qquad (\mathbf{C})\left(2,\frac{3}{2}\right)$ $(A)\left(-2,\frac{3}{2}\right)$ (D) $\left(2, -\frac{3}{2}\right)$ Length of smallest focal chord of the curve C is -20. (D) $\frac{1}{16}$ (A) $\frac{1}{4}$ (C) $\frac{1}{8}$ (B) $\frac{1}{12}$ **Space for Rough Work**

Paragraph for Question 21 & 22

Let slope of normal at point P in first quadrant on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $-\frac{1}{2}$. Tangent and normal at point P meet x-axis at points T & N respectively such that $\frac{SN}{ST} = 2$ (S is focus nearest to point P) 21. Eccentricity of hyperbola, is -

(A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{\frac{7}{2}}$ (D) $\sqrt{\frac{5}{2}}$ 22. $\left(\frac{SP}{a}\right)$ is equal to -(A) 1 (B) 2 (C) $\sqrt{7}$ (D) $\sqrt{5}$ Paragraph for Question 23 & 24

Let $S(x_1,0)$ for $x_1 > 0$ is foci of the ellipse $E: \frac{x^2}{9} + \frac{y^2}{4} = 1$. Suppose a parabola whose vertex is $V(x_1\sqrt{5},0)$ touches the ellipse at points A and B in I and IV quadrant respectively. Axis of parabola

is x-axis.

On the basis of above information, answer the following questions :

- 23. Equation of normal to the ellipse E at A is-
 - (A) $9x\sqrt{2} + 3y + 5\sqrt{2} = 0$ (B) $9x\sqrt{2} - 3y + 5\sqrt{2} = 0$ (C) $9x\sqrt{2} - 3y = 5\sqrt{2}$ (D) $9x\sqrt{2} - 3y = 5$
- 24. Tangent to the ellipse E at A and B meet at C, then area of $\triangle ABC$ is-

(A)
$$32\sqrt{2}$$
 (B) $\frac{32\sqrt{2}}{3}$ (C) $12\sqrt{2}$ (D) $\frac{16\sqrt{2}}{3}$

SECTION-I(v)

Matching list type (4×4) (Single option correct) (3 Marks each, -1 for y

25. Let tangent of parabola $y^2 = 4x$ at point $P(x_1, y_1)$ and $Q(x_2, y_2)$ intersect each other at R(-15, -2). If S is area of $\triangle PQR$ and (x_0, y_0) is circumcentre of $\triangle PQR$, (where $y_2 > y_1$).

Match List-I with List-II and select the correct answer using the code given below the list.

	1,140			vv 1 t 11 1		and select th							
		Lis	st-I								List-	II	
	(P)	x ₁ x	$x_2 x_0 -$	- 2S						(1)	208		
	(Q)	y_1y_2	$y_0 + \sqrt{2}$	$\overline{S}x_0$						(2)	147		
	(R)	<u>x</u> 1	$\frac{+x_{2}+x_{2}}{x_{0}}$	- 2S						(3)	163		
	(S)	\sqrt{S}	$x_2 + 1$	x ₀						(4)	182		
	Cod	es :											
		Р	Q	R	S								
	(A)	3	1	4	2								
	(B)	1	2	3	4								
	(C)	1	3	4	2								
	(D)	4	2	3	1								
26.	Mat	ch L	ist-I v	with]	g the code	code given below the list.							
		Lis	st-I									List-II	
	(P)	En	d poi	nts of	a stic	k 'AB' of leng	th 10m slic	les on the			(1)	$\sqrt{6}$	
		coordinate axes (Point A on x-axis) then locus of the											
				divid									
		whose eccentricity is e, then 3e is AA' is the major axis of the ellipse $3x^2 + 2y^2 + 6x - 4y - 1 = 0$											
	(Q)	AA	' is th	ne maj	jor axi	s of the ellipse	$e 3x^2 + 2y^2$	+6x-4y-1	=0		(2)	$2\sqrt{7}$	
		and P is a variable point on ellipse, then greatest area											
		of $\triangle APA'$ is											
	(R)	The distance between the foci of the curve represented									(3)	$\frac{128}{3}$	
		by the equation $x = 1 + 4\cos\theta$, $y = 2 + 3\sin\theta$ is											
	(S)	Tangents are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{7} = 1$ at									(4)	$\sqrt{5}$	
		the	end	point	s of tl	he latusrectun	n, the area	of					
		the quadrilateral so formed is											
	Cod	es :											
		Р	Q	R	S								
	(A)	1	2	3	4								
	(B)	4	1	3	2								
	(C)	4	2	1	3								
	(D)	4	1	2	3								

SECTION-II (iii)

Numerical Grid Type (Upto Second Decimal place) (4 Marks each, -1 for wrong answer)

1. PQ and PR are two tangents to a parabola $y^2 = 4ax$ and tangent to parabola at a third point S cuts these tangents at A and B respectively then value of $\frac{PA}{PQ} + \frac{PB}{PR}$ is

2. If the hyperbola $x^2 - \frac{y^2}{4} = 1$ passes through the foci of the ellipse $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$, (b < 2) then length of semi

latus rectum of ellipse is

3. If circles $C_1 \& C_2$ are drawn by taking foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ as centres, and a common tangent

L is drawn to touch all three curves, then product of the radii of $C_1 \& C_2$ is given by

4. If set of all values of k for which curves $y^2 = 4x$ and $y^2 = (x - k)$ have a common normal other than x-axis, is (α, ∞) , then α is

REVISION ASSINGMENT # 03 (GRP 1.0)						(PROB	ABILITY	MATHEMATICS			
	Q.	1	2	3	4	5	6	7	8	9	10
	Α.	Α	С	С	С	С	D	Α	Α	В	D
SECTION-I	Q.	11	12	13	14	15	16	17	18	19	20
SECTION-I	Α.	A,C	A,C	A,B,C	A,C,D	A,B	Α	С	В	Α	В
	Q.	21	22						-		
	Α.	Α	В								
SECTION-II	Q.	1	2	3	4	5					
SECTION-II	A.	3.00	7.20	2.50	3.00	2.00					