DPP - Daily Practice Problems | Date : | Start Time : | End Time : | | |--------|--------------|------------|--| # CHEMISTRY (CC26) SYLLABUS: Aldehydes, Ketones and Carboxylic acids Max. Marks: 120 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min. INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page. 1. IUPAC name of following will be - (a) 4-formyl 3-methyl 1-hydroxy benzene - (b) 4-formyl 3-methyl phenol - (c) 4-hydroxy 2-methyl benzaldehyde - (d) 4-hydroxy 2-methyl carbaldehyde - 2. In which of the following, the number of carbon atoms does not remain same when carboxylic acid is obtained by oxidation - (a) CH₃COCH₃ - (b) CCl₃CH₂CHO - (c) CH₃CH₂CH₂OH - (d) CH₃CH₂CHO - 3. Acetone oxime is obtained by reacting acetone with - (a) NH₃ - (b) NH₂OH - (c) NH₂Na - (d) NH₂.NH₂ - 4. Which alkene on ozonolysis gives CH₃CH₂CHO and CH₃CCH₃ - (a) $CH_3CH_2CH = CCH_3$ (b) - (b) CH₃CH₂CH=CHCH₂CH₃ - (c) $CH_3CH_2CH = CHCH_3$ (d) $CH_3 C = CHCH_3$ - (d) $CH_3 C = CHCH_3$ CH_3 RESPONSE GRID - 1. (a) b) c) d) - 2. abcd - 3. abcd - **4.** (a)(b)(c)(d) Predict the product in the given reaction. - The carboxyl functional group (-COOH) is present in - (a) picric acid - (b) barbituric acid - (c) ascorbic acid - (d) aspirin - Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon? - (a) Acetamide - (b) Acetic acid - (c) Ethyl acetate - (d) Butan-2-one - Carboxylic acid group does not give the usual addition and elimination reactions of aldehydes and ketones because - (a) O-H bond is more polar than C = O group - (b) carboxylate ion gets ionised - (c) carboxylate ion gets stabilised by resonance - (d) it exists as COOH and there is no carbonyl group - Phenylmethyl ketone can be converted into ethylbenzene in one step by which of the following reagents? - (a) LiAlH₄ - (b) Zn-Hg/HCl - (c) NaBH₄ - (d) CH₂MgI 10. In a set of the given reactions, acetic acid yielded a product C. $$CH_{3}COOH + PCl_{5} \longrightarrow A \xrightarrow{C_{6}H_{6}} B$$ $$\xrightarrow{C_{2}H_{5}MgBr} C$$ Ether Product C would be - $$\begin{array}{c} C_2H_5\\ |\\ \text{(a)}\quad CH_3-C\,\text{(OH)}C_6H_5 & \text{(b)}\,\text{CH}_3\text{CH}\text{(OH)}C_2H_5 \end{array}$$ - (c) CH₃COC₆H₅ - $(d) CH_3CH(OH)C_6H_5$ - 11. An organic compound 'A' on treatment with NH₂ gives 'B' which on heating gives 'C', 'C' when treated with Br₂ in the presence of KOH produces ethylamine. Compound 'A' is: - (a) CH₂COOH - (b) CH₃ CH₂ CH₂ COOH (c) $$CH_3^2 - CHCOOH$$ (d) $CH_3^2CH_2^2COOH$ CH_3 12. Match the compounds given in List-I with | List-II and select the suit | able option using the code giver | 1 | |-----------------------------|----------------------------------|---| | below: | | | | List I | List-II | | | (A) D 111 1 | (*) DI 11411 | | - (A) Benzaldehyde (B) Phthalic anhydride - (i) Phenolphthalein - (ii) Benzoin condensation - (C) Phenyl benzoate - (iii) Oil of wintergreen - (D) Methyl salicylate - (iv) Fries rearrangement - Code: - (A) **(B)** (C) (D) - (a) (iv) (i) (ii) - (iii) (ii) (iii) (i) - (b) (iv) - (i) - (ii) (iii) (iv) (c) - (ii) (iii) (d) (i) (iv) - X 13. C₆H₅CH=CHCHO -→ C₆H₅CH=CHCH₂OH In the above sequence X can be: - (a) H_2/N_i - (b) NaBH₄ - (c) $K_2 Cr_2 O_7/H^+$ - (d) Both (a) and (b) - Acetaldehyde reacts with semicarbazide and forms semicarbazone. Its structure is - (a) CH₂CH=NNHCON=CHCH₂ - (b) CH₃CH=NNHCONH₂ - (c) $CH_3CH = N N CONH_2$ - (d) $CH_3CH = N CONHNH_3$ | RESPONSE | 5. abcd | 6. abcd | 7. abcd | 8. abcd | 9. abcd | |----------|-------------|----------|---------------------|----------|--------------------| | GRID | 10. a b c d | 11. abcd | 12. (a) (b) (c) (d) | 13. abcd | 14. ⓐ ⓑ ⓒ ⓓ | - **15.** Which one of the following can be oxidised to the corresponding carbonyl compund? - (a) 2-hydroxy-propane - (b) Ortho-nitro-phenol - (c) Phenol - (d) 2-methyl-2 hydroxy-propane - **16.** Benzoic acid may be converted to ethyl benzoate by reaction with: - (a) Sodium ethoxide - (b) Ethyl chloride - (c) Dry HCl—C₂H₅OH - (d) Ethanol - 17. Heating mixture of sodium benzoate and soda-lime gives - (a) benzene - (b) methane - (c) sodium phenoxide - (d) calcium benzoate - **18.** Which of the following compounds is most reactive towards nucleophilic addition reactions? (b) $CH_3 - C - CH_2$ - 19. The increasing order of the rate of HCN addition to compound A D is - (A) HCHO - (B) CH₃COCH₃ - (C) PhCOCH₂ - (D) PhCOPh - (a) D < C < B < A - (b) C < D < B < A - (c) A < B < C < D - (d) D < B < C < A - 20. Sodium formate on heating yields - (a) Oxalic acid and H₂ - (b) Sodium oxalate and H₂ - (c) CO₂ and NaOH - (d) Sodium oxalate - **21.** 5 methyl -2 -hexanone can be synthesised from acetoacetic ester and RX. Which of the following RX is used? - (a) (CH₃)₂CHBr - (b) (CH₃)₂CHCH₂Br - (c) CH₃CH₂CHBrCH₃ - (d) (CH₃)₂CHCH₂CH₂Br - 22. The following tetrahedral intermediate breaks down to $$\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CI} \\ \mid \\ \text{OCH}_3 \end{array}$$ - (a) propanal and HCl - (b) methyl propanoate and HCl - (c) propanoic acid and CH₃Cl - (d) propyl chloride and CH₃OH - 23. The correct order of increasing acid strength of the compounds - (A) CH₂CO₂H - (B) MeOCH2CO2H - (C) CF₃CO₂H - (D) $\stackrel{\text{Me}}{\longrightarrow}$ CO_2H is - (a) D < A < B < C - (b) A < D < B < C - (c) B < D < A < C - (d) D < A < C < B - **24.** The compound that neither forms semicarbazone nor oxime is - (a) HCHO - (b) CH₃COCH₂Cl - (c) CH₃CHO - (d) CH₃CONHCH₃ | RESPONSE | 15.abcd | 16. a b c d | 17. a b c d | 18. a b c d | 19. ⓐ ⓑ ⓒ ⓓ | |----------|--------------------|-------------|-------------|-------------|--------------------| | GRID | 20. ⓐ ⓑ ⓒ ⓓ | 21.abcd | 22. a b c d | 23. a b c d | 24. ⓐ ⓑ ⓒ ⓓ | 25. Which of the following cannot reduce Fehling solution? (a) Formic acid (b) Acetic acid (c) Formaldehyde (d) Acetaldehyde 26. Pinacolone is (a) 2, 3-Dimethyl-2, 3-butanediol (b) 3,3-Dimethyl-2-butanone (c) 1-Phenyl-2-propanone (d) 1, 1-Diphenyl-1, 2-ethandiol **27.** Conversion of acetaldehyde into ethyl acetate in presence of aluminium ethoxide is called (a) Aldol condensation (b) Cope reaction (c) Tischenko reaction (d) Benzoin condensation **28.** Self condensation of two moles of ethyl acetate in presence of sodium ethoxide yields (a) acetoacetic ester (b) methyl acetoacetate (c) ethyl propionate (d) ethyl butyrate **29.** The reagent which can be used to distinguish acetophenone from benzophenone is (a) 2,4-dinitrophenylhydrazine (b) aqueous solution of NaHSO₃ (c) benedict reagent (d) I₂and Na₂CO₃ **30.** The compound formed when malonic ester is heated with urea is (a) Cinnamic acid (b) Butyric acid (c) Barbituric acid (d) Crotonic acid. RESPONSE 25. a b c d 26. a b c d 27. a b c d 28. a b c d 29. a b c d 30. a b c d | DAILY PRACTICE PROBLEM DPP CHAPTERWISE 26 - CHEMISTRY | | | | | | |---|----------------|------------------|-----|--|--| | Total Questions | 30 Total Marks | | 120 | | | | Attempted Correct | | | | | | | Incorrect | | Net Score | | | | | Cut-off Score 35 | | Qualifying Score | 51 | | | | Success Gap = Net Score - Qualifying Score | | | | | | | Net Score = (Correct × 4) – (Incorrect × 1) | | | | | | ### DAILY PRACTICE PROBLEMS ## CHEMISTRY SOLUTIONS #### DPP/CC26 COCH₃ - 1. (c) - **2. (a)** Ketones on oxidation give carboxylic acids with lesser number of carbon atoms, i.e., $$CH_3COCH_3 \xrightarrow{[O]} CH_3COOH$$ + $CO_2 + H_2O$ 3. (b) 5. (c) Cannizzaro reaction - when an aldehyde containing no α – H undergo reaction in presence of 50% KOH. It disproportionates to form a molecule of carboxylic acid and a molecule of alcohol. 6. (d) O_2N NO_2 NO_2 (Picric acid) (Barbituric acid) 7. (d) It is Clemmensen's reduction $$CH_3 - C - CH_2 - CH_3 = \frac{Zn - Hg}{Conc. HCl} CH_3 CH_2 - CH_2 CH_3$$ **8. (c)** Due to resonance in carboxylate ion, the double bond character of C = O bond in carboxylic acids is greatly reduced as compared to that in aldehydes and ketones. $$-c \Big\langle \begin{array}{c} O_- \\ \end{array} & \longleftrightarrow & -c \Big\langle \begin{array}{c} O_- \\ \end{array} & \equiv & -c \Big\langle \begin{array}{c} O_- \\ \end{array} \Big\rangle \Big]$$ This reaction is known as Clemmensen's reduction. 10. (a) $$CH_{3}COOH + PCl_{5} \rightarrow CH_{3}COCl \xrightarrow{C_{6}H_{6}}$$ $$[A] \qquad Friedel Craft$$ reaction $$OH \qquad OMgBr$$ $$C_{2}H_{5} - C - CH_{3} \xleftarrow{H^{+}}_{ether} C_{2}H_{5} - C - CH_{3} \xleftarrow{MgBrC_{2}H_{5}}$$ 11. (d) Since, C when heated with Br₂ in presence of KOH produces ethylamine, hence it must be propanamide and hence the organic compound (A) will be propanoic acid. The reactions follows. $$CH_3 - CH_2 - COOH \xrightarrow{NH_3}$$ $$CH_3 - CH_2 - COONH_4 \xrightarrow{\Delta}$$ (B) $$\begin{array}{c} \text{CH}_{3}-\text{CH}_{2}-\text{CONH}_{2} \xrightarrow{\text{KOH+Br}_{2}} \\ \text{(C)} & \text{Hoffmann} \\ \text{bromamide} \\ \text{reaction} \end{array}$$ $$CH_3 - CH_2 - NH_2$$ (Ethylamine) 12. (d) (a) $$2C_6H_5CHO \xrightarrow{KCN} C_2H_5OH C_6H_5-CH-C-C_6H_5$$ (Benzoin) Phenolphthalein **13. (b)** NaBH₄ selectively reduces the aldehyde group to alcohol without affecting double bond in a organic compound. So, X is NaBH₄. $$C_6H_5CH = CHCHO \xrightarrow{NaBH_4} C_6H_5CH = CHCH_2OH$$ 14. **(b)** $$CH_3$$ – C =O + H_2 N–NH– C –NH $_2$ CH_3 – C H=N–NH– C -NH $_2$ CH_3 – C H=N–NH– C -NH $_2$ acetaldehyde semicarbazone 15. (a) 16. (c) $$\begin{array}{c} COOH \\ + C_2H_5OH \\ Ethanol \\ \end{array} \begin{array}{c} COOC_2H_5 \\ + H_2OC \\ \end{array}$$ This process is known as esterification. 17. (a) 18. (a) 19. (a) Addition of HCN to carbonyl compounds is nucleophilic addition reaction. The order of reactivity of carbonyl compounds is Aldehydes (smaller to higher) Ketones (smaller to higher), Then #### PhCOPh < Ph.COCH₃ < CH₃COCH₃ < HCHO The lower reactivity of ketones is due to presence of two alkyl group which shows +I effect. The reactivity of ketones decreases as the size of alkyl group increases. **20. (b)** $$2\text{HCOONa} \xrightarrow{\Delta} \begin{array}{c} \text{COONa} \\ | \\ \text{COONa} \\ \text{sod.oxalate} \end{array} + \text{H}_2$$ 1. (b) $$CH_3 - C - CH_2 - C - OEt \xrightarrow{EtONa}$$ $CH_3 - C - CH_2 - C - OEt \xrightarrow{EtONa}$ $CH_3 - C - CH - C - OEt \xrightarrow{CH_3)_2 CHCH_2 Br}$ $CH_3 - C - CH - C - OEt \xrightarrow{H - C - CH - CH_3}$ $CH_3 - C - CH - CH_3 - CH_3$ $CH_3 - C - CH_2 - CH_2 - CH_3 + CO_2 + EtOH_3$ OH $$\begin{array}{ccc} & OH \\ & & | \\ & & | \\ & & | \\ & OCH_3 \end{array}$$ OCH₃ - CH₂ - C - OCH₃ + HCl **23.** (a) The correct order of increasing acid strength (Me)₂CH.COOH < CH₃COOH < MeOCH₂COOH < CF₃COOH Electron withdrawing groups increase the acid strength and electron donating groups decrease the acid strength. 24. (d) **25. (b)** Acetic acid does not have –CHO grouping, while all others (HCOOH, HCHO and CH₃CHO) have –CHO grouping **26. (b)** Pinacolone is oxidation product of pinacol. $$\begin{array}{c|cccc} & OH & OH & & & & CH_3 & O \\ CH_3 - C & - CH_3 - CH_3 & & & & & CH_3 & C \\ CH_3 & CH_3 & & & & & & CH_3 & CH_3 \\ & & & & & & & & CH_3 & CH_3 \\ & & & & & & & & & CH_3 & CH_3 \\ & & & & & & & & & & CH_3 & CH_3 \\ & & & & & & & & & & & CH_3 & CH_3 \\ & & & & & & & & & & & & & CH_3 & CH_3 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$ 3, 3-dimethyl-2-butanone 27. (c) Aldehydes having α- H atom, when treated with aluminium ethoxide (in place of NaOH or KOH), undergo Cannizzaro type of reaction with a difference that the product isolated is an ester rather than salt of acid or alcohol. Such reaction in called Tischenko reaction. $$\begin{array}{c} 2CH_3CHO \xrightarrow{\quad Al(OC_2H_5)_3 \quad } \\ \text{Acetaldehyde} \end{array}$$ **28.** (a) It is an example of Claisen condensation. The product is acetoacetic ester. $$\begin{array}{c} O \\ CH_3 C - \boxed{OC_2H_5 + H} - CH_2 - C - OC_2H_5 \longrightarrow \\ O \\ CH_3 - C - CH_2 - C - OC_2H_5 & \bigcirc \\ (\text{ethyl acetoaceta te}) \end{array}$$ 29. (d) I₂ and Na₂CO₃ react with acetophenone (C₆H₅COCH₃) to give yellow ppt. of CHI₃ but benzophenone (C₆H₅COC₆H₅) does not and hence can be used to distinguish between them. 30. (c) $$CH_2 \stackrel{COOC_2H_5}{\longleftarrow} H_2N \stackrel{H_2N}{\longleftarrow} CO$$ Malonic ester