

Chapter 8

The d and f-Block Elements

Solutions

SECTION - A Objective Type Questions (The d-Block elements) Coinage metals are 1. (1) Normal metals (2) Transition metals (3) Active metals (4) Highly electropositive Sol. Answer (2) Generally, we consider Cu, Ag, Au as coinage metals and they come under transition metals. Pyrolusite is used to prepare potassium permanganate $MnO_2 \xrightarrow{X} MnO_4^{-2} \xrightarrow{Y} MnO_4^{-2}$ 2. X and Y are (2) Fuse with KOH/air, electrolytic oxidation (1) Fuse with KOH/air, electrolytic reduction (3) Fuse with con. HNO₃/air, electrolytic reduction (4) All are correct Sol. Answer (2) $MnO_2 \xrightarrow{KOH / Air} MnO_4^{2-} \xrightarrow{Electrolytic} MnO_4^{-}$ Which one of the following exhibits highest oxidation state? 3. (2) V / (1) Zr (3) Mn (4) Ni **Sol.** Answer (3) Among the given, Mn exhibit highest oxidation state, i.e. +7. 4. A purple coloured solution is made alkaline with KOH and is treated with KI forming potassium iodate. The same solution is acidified with H₂SO₄ and again it is treated with KI. However this time instead of potassium iodate, iodine gas is released. The purple coloured solution is of

(1) $K_2 Cr_2 O_7$ (2) $K_2 Cr_2 O_4$ (3) $KMnO_4$ (4) $K_2 MnO_4$ Sol. Answer (3) $2KMnO_4 + H_2O + I^- \xrightarrow{Alkaline} 2MnO_2 + 2OH^- + KIO_3$ $KMnO_4 + H_2SO_4 + KI \longrightarrow Mn^{2+} + 8H_2O + 5I_2$

 \Rightarrow KMnO₄ is the required solution.

(4) CrO₃, CrO₄⁻²

Acidified solution of chromic acid on treatment with H2O2 gives blue colour which is due to 5. (1) $CrO_3 + H_2O + O_2$ (2) $Cr_2O_3 + H_2O + O_2$ (4) $H_2Cr_2O_7 + H_2O + CO_2$ (3) $CrO_5 + H_2O$ Sol. Answer (3)

 $\mathsf{K_2Cr_2O_7} + \mathsf{H_2SO_4} + 4\mathsf{H_2O_2} \longrightarrow 2\mathsf{CrO_5} + 5\mathsf{H_2O} + \mathsf{K_2SO_4}$

- FeSO₄ on heating gives 6.
 - (1) SO_2 and SO_3 (2) SO₂ only (3) SO_3 only (4) SO_2 and O_2

(3) H_2CrO_4 , $H_2Cr_2O_7$

Sol. Answer (1)

$$FeSO_4 \longrightarrow Fe_3O_4 + 2SO_3 + SO_2$$

What are the species X and Y in the following? 7.

$$X + H_2O \longrightarrow H_2Cr_2O_7 \longrightarrow Y$$

- (1) CrO_4^{-2} , $Cr_2O_7^{-2}$ (2) CrO_3 , Cr_2O_3
- **Sol.** Answer (4)

$$\begin{array}{ccc} \text{CrO}_3 \ \textbf{+} \ \textbf{H}_2 O \ & \longrightarrow \ \textbf{H}_2 \text{Cr}_2 O_7 \ & \xrightarrow{OH^-} \ & \text{CrO}_4^- \end{array}$$

- The correct statement 8.
 - (1) Green vitriol and blue vitriol are isomorphus
 - (2) KMnO₄ and $K_2Cr_2O_7$ are coloured due to d-d transitions
 - (3) Cu₂Cl₂ and Ag₂S are coloured
- Fround Services Limited (4) Upon strong heating paramagnetic gases are evolved by NaNO₃ and AgNO₃

Sol. Answer (4)

Fact.

- Which oxide of manganese is acidic in nature? 9.
 - (2) Mn₂O₇ (1) MnO (3) Mn_2O_3 (4) MnO₂
- Sol. Answer (2)

 Mn_2O_7 is acidic in nature (fact).

- 10. The blue colour produced on adding H_2O_2 to acidified $K_2Cr_2O_7$ is due to the formation of
 - (3) CrO₄²— (1) CrO₅ (2) Cr_2O_3 (4) CrO_{3}
- Sol. Answer (1)

$$\mathsf{K_2Cr_2O_7} + \mathsf{H_2SO_4} + 4\mathsf{H_2O_2} \longrightarrow 2\mathsf{CrO_5}_{\mathsf{Blue}} + \mathsf{K_2SO_4} + 5\mathsf{H_2O_5}_{\mathsf{Blue}}$$

11.	$4K_2Cr_2O_7 \longrightarrow 4K_2CrO_4 $	+ $3O_2$ + X, in this reaction X	K is			
	(1) CrO ₃	(2) Cr ₂ O ₇	(3)	Cr ₂ O ₃	(4)	CrO ₅
Sol.	Answer (3)					
	$4K_2Cr_2O_7 \longrightarrow 4K_2CrO_4 \rightarrow K_2CrO_4$	+ 30 ₂ + 2Cr ₂ O ₃				
12.	Which of the following is no	ot coloured?				
	(1) Mn ²⁺	(2) Cr ³⁺	(3)	Zn ²⁺	(4)	Cu ²⁺
Sol.	Answer (3)					
	Zn ²⁺ does not show any co	plour because no any trans	ition	is possible there due	to 30	d ¹⁰ configuration.
13	Ammonium dichromate is u	used in fireworks The areen	coloi	ured powder blown ir	the a	air is
	(1) CrO ₂	(2) Cr ₂ O ₂	(3)	Cr	(4)	CrO(O)
Sol.	Answer (2)	(-) 0.203	(0)	-	(.)	
		+N + 4H O				
	$(\mathbf{M}\mathbf{I}_4)_2 \mathbf{O}\mathbf{I}_2 \mathbf{O}_7 \longrightarrow \mathbf{O}\mathbf{I}_2 \mathbf{O}$ Green	$_{3}$, N_{2} , $4N_{2}$				
1/	Which of the following stat	ement is correct for 3d-tran	eitior	a element?	/	
17.	(1) All the metals excent !	Sc forms 'MO' oxide	(2)	All the metals exce	nt 7n	forms 'MO' oxide
	(3) All the metals except 2	Zn and Sc form 'MO' oxide	(<u></u>)	All the metals exce	pt <u>L</u> II	forms 'MO' oxide
Sol.	Answer (1)		(1)		Gos.	
•••	Fact.				IUII	
				CO NICES		
15.	Which of the following belo	ongs to group '8'?		A A A		
	(1) Ni, Pd, Pt	(2) F, Cl, Br	(3)	Fe, Ru, Os	(4)	Xe, Ar, Kr
Sol.	Answer (3)		\bigcirc	Flan		
	Fe, Ru, Os belong to grou	p 8 due to their electronic o	config	juration.		
16.	Which one of the following	pairs of ions have same el	ectro	nic configuration?		
	(1) Cr ³⁺ Fe ³⁺	(2) Mn ²⁺ , Fe ³⁺	(3)	Fe ³⁺ Co ³⁺	(4)	Sc ³⁺ , Cr ³⁺
Sol.	Answer (2)	Z. C.				
	Mn ²⁺ : 3d ⁵					
	Fe ³⁺ : 3d ⁵					
17	The equivalent weight of M	InSO is equal to its molecu	ılar w	reight when it is conv	erted	to
	(1) Mn.O.	(2) MnO_4	(3)	MnO	(4)	$Mn\Omega^{2-}$
Sol.	Answer (1)	(_)	(0)		(.)	
	2+ 3+					
	$2MnSO_4 \longrightarrow Mn_2O_4$	D ₃				
	n-factor = 1					
	Molecular weight = Equ	uivalent weight.				

18.	Gun metal contains		
	(1) Cu, Sn, Zn	(2)	Cu, Ni
	(3) Cu, Ni, Fe	(4)	Cu, Sn, P
Sol.	Answer (1)		
	Gun metal contains (Cu, Sn, Zn) casting alloy.		
	The main alloying constituent is beside copper, tin wi	th 1.5	5 to 11%, Zn 1 – 9%
	Note : Cu, Ni, Fe are monel metal, not gun metal.		
19.	The colour of $\rm K_2Cr_2O_7$ and $\rm Fe^{2+}$ ions are respectively du	e to	
	(1) <i>d-d</i> transition and charge transfer spectra	(2)	Charge transfer spectra and <i>d</i> - <i>d</i> transition
	(3) Crystal defects and charge transfer spectra	(4)	Charge transfer spectra and crystal defects
Sol.	Answer (2)		
	$K_2 Cr_2 O_7 \Rightarrow$ Colour due to charge transfer.		
	Fe^{2+} ions \Rightarrow Colour due to <i>d</i> - <i>d</i> transition.		
20.	The element which does not show d ⁰ configuration in	n its h	nighest oxidation state
	(1) V (2) Mn	(3)	Cr (4) Fe
Sol.	Answer (4)		
	Highest oxidation state of Fe is +6 and $Fe^{6+} \Rightarrow 3d^2$.	9	nd amileon
21.	CrO ₃ is coloured due to		LOU NESS
	(1) Crystal defect	(2)	Unpaired electrons
	(3) Charge transfer spectra	(4)	Low I.E.
Sol.	Answer (3)	\leq	Fland
	In CrO ₃ colour is due to charge transfer (fact).	1	2 ¹³
22.	Which of the following occur when AgNO ₂ becomes, r	ed ho	ot?
	(1) $2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$	(2)	$AgNO_3 \longrightarrow Ag + NO + O_2$
	(3) $2AgNO_3 \longrightarrow AgNO_2 + O_2$	(4)	$2AgNO_3 \longrightarrow 2Ag + N_2 + 3O_2$
Sol.	Answer (1)		
	If AgNO ₃ is red hot, it gets decomposed as		
	$2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$		
23.	Which one alloy does not contain copper?		
	(1) Bronze	(2)	Brass
	(3) German silver	(4)	Mischmetal
Sol.	Answer (4)		

Misch metal : 50% Ce, 25% La, small amount of Nd and Pr blended with FeO.

24.	The metal which can form cation having metal - metal bond					
	(1) Mercury	(2) Copper	(3)	Osmium	(4)	Iron
Sol.	Answer (1)					
	Hg forms Hg_2^{2+}					
25.	Value of magnetic momen be	t of a divalent metal ion is	5.92	2 BM. Total number	of ele	ectron in its atom would
	(1) 24	(2) 25	(3)	26	(4)	27
Sol.	Answer (2)					
	In divalent state, <i>i.e.</i> M ²⁺					
	Given that μ = 5.92 BM					
	\Rightarrow Number of unpaired ele	ectrons = 5				
	\Rightarrow 3d ⁵ configuration	14 H H H O 5				
26	Among the given optio	ns it should be 25.	fived	by weeping with		
20.	(1) AgBr solution	(2) Hype colution			1	
Sal	(1) AgBI Solution		(3)	Na ₂ S ₄ O ₆ solution	(4)	Sec ₂ O ₄ solution
301.	Answer (2)	anhy hype colution is used			6,	
	In black and white photogra	apity hypo solution is used			Gox.	
27.	Gold dissolves in aqua regi	ia to give			MUIL	
	(1) H[AuCl ₄]	(2) AuNO ₃	(3)	H ₂ [AuCl ₆]	(4)	Au(NO ₃) ₃
Sol.	Answer (1)			A A A A		
	Au + Aqua regia —— H	[AuCl ₄].		Aucailo.		
(The	<i>f</i> -Block elements)			NHU AND		
	,		R	to.		
28.	Ce(Z = 58) and $Yb(Z = 70)$) exhibits stable +4 and +2	oxida	ition states respectiv	ely. T	his is because
	(1) Ce^{4+} and Yb^{2+} acquire	f ⁷ configuration	(2)	Ce ⁴⁺ and Yb ²⁺ acqu	iire f ⁰	configuration
	(3) Ce^{4+} and Yb^{2+} acquire	f ⁰ and f ¹⁴ configuration	(4)	Ce ⁴⁺ and Yb ²⁺ acqu	iire f ⁷	and f ¹⁴ configuration
Sol.	Answer (3)					
	Fact.					
29.	Transuranic elements begir	ו with				
	(1) Np	(2) Cm	(3)	Pu	(4)	U
Sol.	Answer (1)					
	Transuranic elements are t	he elements, having atomic	c num	nber greater than 92.		
	Atomic number of Np = 93					
	\Rightarrow Transuranic elements t	pegin with Np.				

SECTION - B

Previous Years Questions

1. The manganate and permanganate ions are tetrahedral, due to :

 \cap

∞Mn=

(1) The
$$\pi$$
-bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese

- (2) There is no π -bonding
- (3) The π -bonding involves overlap of p-orbitals of oxygen with p-orbitals of manganese

(4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Sol. Answer (1)

- \Rightarrow π -bonds are of $d\pi$ -p π type
- Permanganate (MnO₄⁻) :
 - \Rightarrow π -bonds are of $d\pi$ -p π type
- 2. Which one of the following ions exhibits d-d transition and paramagnetism as well? [NEET-2018]

(1) CrO_4^{2-} (2) $Cr_2O_7^{2-}$ (3) MnO_4^{2-} (4) MnO_4^{-}

Sol. Answer (3)

$$CrO_4^{2-} \Rightarrow Cr^{6+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

$$Cr_2O_7^{2-} \Rightarrow Cr^{6+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

$$MnO_4^{2-} = Mn^{6+} = [Ar] 3d^{2-}$$

Unpaired electron (n) = 1; Paramagnetic

$$MnO_{4}^{-} = Mn^{7+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

- 3. The reason for greater range of oxidation states in actinoids is attributed to
 - (1) The radioactive nature of actinoids
 - (2) Actinoid contraction
 - (3) 5f, 6d and 7s levels having comparable energies
 - (4) 4f and 5d levels being close in energies

Sol. Answer (3)

It is a fact.

[NEET-2019]

[NEET-2017]

Solu	tions of Assignment (Level-II)			The d and	d <i>f</i> -Blocl	k Elements	103	
4.	Which one of the following statements related to lantha	s is incorrect ?	, [NEET(Phase-2)-2016]					
	(1) Europium shows +2 oxidation state							
	(2) The basicity decreases as the ionic radius decreases	ses f	rom Pr to Lu					
	(3) All the lanthanons are much more reactive than all	umini	um					
	(4) Ce(+4) solutions are widely used as oxidizing age	nt in	volumetric analys	sis				
Sol.	Answer (3)							
	Fact.							
5.	Jahn-Teller effect is not observed in high spin complexed	es of			[NEE	T(Phase-2)-	2016]	
	(1) d^7 (2) d^8	(3)	d ⁴		(4)	d ⁹		
Sol.	Answer (2)							
	Fact.							
6.	Which one of the following statements is corrected whe	en S	O_2 is passed thro	ough acid	lified K ₂	Cr ₂ O ₇ solut	ion?	
					_	[NEET	-2016]	
	(1) Green $Cr_2(SO_4)$, is formed	(2)	The solution tur	ns blue	c			
	(3) The solution is decolourized	(4)	SO ₂ is reduced	1.5	2			
Sol.	Answer (1)			il				
	Fact	9) onited				
7.	The electronic configurations of Eu (Atomic no. 63), Ge	d (At	omic No. 64) and	Tb (Ato	mic No.	65) are		
			58			[NEET	-2016]	
	(1) [Xe] $4f^76s^2$, [Xe] $4f^75d^{1}6s^2$ and [Xe] $4f^{9}6s^2$	(2)	[Xe]4 <i>f</i> ⁷ 6s ² , [Xe]4	f ⁸ 6s ² and	d [Xe]4 <i>f</i>	³ 5d ¹ 6s ²		
	(3) $[Xe]4f^{6}5d^{1}6s^{2}$, $[Xe]4f^{7}5f^{1}$ and $[Xe]4f^{9}6s^{2}$	(4)	[Xe]4 <i>f</i> ⁶ 5d ¹ 6s ² , [λ	(e]4 <i>f</i> ⁷ 5d ¹	3 <i>s</i> ² and	[Xe]4f ⁸ 5d ¹ 6	s ²	
Sol.	Answer (1)		Last I					
	Fact							
8.	Gadolinium belongs to 4 <i>f</i> series. Its atomic number i configuration of gadolinium?	is 64	. Which of the f	ollowing	is the c	correct elec [Re-AIPMT -	tronic 2015]	
	(1) $[Xe]4f^{7}5d^{1}6s^{2}$ (2) $[Xe]4f^{6}5d^{2}6s^{2}$	(3)	[Xe]4 <i>f</i> ⁸ 6 <i>d</i> ²	(4)	[Xe]4 <i>f</i>	⁹ 5s ¹		
Sol.	Answer (1)							
	Fact.							
9.	Because of lanthanoid contraction, which of the follow (Numbers in the parenthesis are atomic numbers)	ving	pairs of elements	have ne	early sa	me atomic [AIPMT-	radii? 2015]	
	(1) Zr (40) and Ta (73)	(2)	Ti (22) and Zr (4	0)				
	(3) Zr (40) and Nb (41)	(4)	Zr (40) and Hf (7	72)				
Sol.	Answer (4)							
	Zr and Hf have same size.							

104	The <i>d</i> and <i>f</i> -Block Elements			So	lutions	of Assign	ment (Level-II)
10.	The pair of compounds that can	exist together is					[AIPMT-2014]
	(1) FeCl_{3} , SnCl_{2} (2)	HgCl ₂ , SnCl ₂	(3)	FeCl_2 , SnCl_2	(4)	FeCl ₃ , Kl	
Sol.	Answer (3)						
	Both Fe and Sn are in lower ox	idation state. Therefore	e red	lox is not possible.			
11.	The reaction of aqueous KMnO4	with H_2O_2 in acidic cond	dition	s gives			[AIPMT-2014]
	(1) Mn^{4+} and O_2 (2)	Mn^{2+} and O_2	(3)	Mn^{2+} and $O_{_3}$	(4)	Mn4+ and	MnO ₂
Sol.	Answer (2)						
	$2KMnO_4 + 3H_2SO_4 + 5H_2O_2$	$\longrightarrow K_2SO_4 + 2M$	InSO	$_{4}$ + $8H_{2}O$ + $5O_{2}$			
12.	Magnetic moment 2.83 BM is giv	en by which of the follo	owing	ions ? (At. nos. Ti=2	2, Cr=	=24, Mn=2	5, Ni=28)
							[AIPMT-2014]
	(1) Ti ³⁺ (2)	Ni ²⁺	(3)	Cr ³⁺	(4)	Mn ²⁺	
Sol.	Answer (2)						
	$\sqrt{n(n+2)} = 2.83$				/	~	
	2 0 (0.00)2				5	2	
	$n^2 + 2n = (2.83)^2$			C	30		
	∴ n = 2		9	,,00	ited		
	$Ni^{2+} = 3d^8$			· · · · · · · · · · · · · · · · · · ·	71.		
	<i>i.e.</i> , 2 unpaired electrons			58 Service			
13.	Reason of lanthanoid contraction	n is		K iional			[AIPMT-2014]
	(1) Negligible screening effect of	f'f' orbitals	(2)	Increasing nuclear of	harge		
	(3) Decreasing nuclear charge		(4)	Decreasing screening	ng effe	ect	
Sol.	Answer (1)		S. P.O	r			
	f-orbitals have poor shielding eff	ect.					
14.	Which of the following lanthanoid	d ions is diamagnetic? ((At no	os. Ce=58, Sm=62, E	Eu=63	, Yb=70)	[NEET-2013]
	(1) Sm ²⁺ (2)	Eu ²⁺	(3)	Yb ²⁺	(4)	Ce ²⁺	
Sol.	Answer (3)						
15.	Which of the following statement	s about the interstitial o	comp	ounds is incorrect?			[NEET-2013]
	(1) They are chemically reactive						
	(2) They are much harder than the	he pure metal					
	(3) They have higher melting poir	nts than the pure metal					
	(4) They retain metallic conducti	ivity					
Sol.	Answer (1)						

104 The *d* and *f*-Block Elements

16. Which of the statements is not true?

[AIPMT (Prelims)-2012]

- (1) $K_2 Cr_2 O_7$ solution in acidic medium is orange
- (2) $K_2Cr_2O_7$ solution becomes yellow on increasing the pH beyond 7
- (3) On passing H₂S through acidified K₂Cr₂O₇ solution, a milky colour is observed
- (4) $Na_2Cr_2O_7$ is preferred over $K_2Cr_2O_7$ in volumetric analysis

Sol. Answer (4)

 $Na_2Cr_2O_7$ is not preferred over $K_2Cr_2O_7$ in volumetric analysis. $K_2Cr_2O_7$ is used as primary standard in volumetric analysis.

17. Which one of the following does not correctly represent the correct order of the property indicated against it ?

```
[AIPMT (Mains)-2012]
```

- (1) Ti < V < Cr < Mn : increasing number of oxidation states
- (2) $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$: increasing magnetic moment
- (3) Ti < V < Cr < Mn : increasing melting points
- (4) Ti < V < Mn < Cr: increasing 2nd ionization enthalpy

Sol. Answer (3)

The incorrect order of increasing melting point is

Ti < V < Cr < Mn

Melting point increases from T_1 to chromium but decreases in case of Mn. Mn has melting point even lower than that of Ti.

18. Which of the following exhibits only +3 oxidation state ?[AIPMT (Mains)-2012](1) U(2) Th(3) Ac(4) Pa

Sol. Answer (3)

- Four successive members of the first series of the transition metals are listed below. For which one of them the standard potential (E°_{M²⁺/M}) value has a positive sign ? [AIPMT (Mains)-2012]
 - (1) Co (Z = 27) (2) Ni (Z = 28) (3) Cu (Z = 29) (4) Fe (Z = 26)
- Sol. Answer (3)
- 20. Acidified K₂Cr₂O₇ solution turns green when Na₂SO₃ is added to it. This is due to the formation of

[AIPMT (Prelims)-2011]

- (1) $CrSO_4$ (2) $Cr_2(SO_4)_3$ (3) CrO_4^{2-} (4) $Cr_2(SO_3)_3$
- Sol. Answer (2)
- 21. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order? [AIPMT (Prelims)-2011]
 - (At nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)(1) Cr > Mn > Co > Fe(2) Mn > Fe > Cr > Co(3) Fe > Mn > Co > Cr(4) Co > Mn > Fe > Cr

Sol.	Answer (2)			
	More the number of unpaired electrons more will be	the st	ability.	
	Hence, the correct order is, $Mn > Fe > Cr > Co$.			
22.	Which of the following ions will exhibit colour in aqueo	ous sol	utions ?	[AIPMT (Prelims)-2010]
	(1) La³⁺ (Z = 57)	(2)	Ti ³⁺ (Z = 22)	
	(3) Lu ³⁺ (Z = 71)	(4)	Sc ³⁺ (Z = 21)	
Sol.	Answer (2)			
23.	Which one of the following ions has electronic configu	iration	[Ar] 3d ⁶ ?	[AIPMT (Prelims)-2010]
	(1) Ni ³⁺	(2)	Mn ³⁺	
	(3) Fe ³⁺	(4)	Co ³⁺	
Sol.	Answer (4)			
24.	Which of the following pairs has the same size ?			[AIPMT (Prelims)-2010]
	(1) Fe ²⁺ , Ni ²⁺	(2)	Zr ⁴⁺ , Ti ⁴⁺	
	(3) Zr ⁴⁺ , Hf ⁴⁺	(4)	Zn ²⁺ , Hf ⁴⁺	5
Sol.	Answer (3)			
25.	Which of the following oxidation states is the most co	mmon	among the lanthanoids?	[AIPMT (Mains)-2010]
	(1) 4 (2) 2	(3)	5 (4)	3
Sol.	Answer (4)		LOU INCEST	
	Lanthanides show 3+ oxidation state generally.		A SOL	
26.	The correct order of decreasing second ionisation entl	halpy o	f Ti(22), V(23), Cr(24) and	Mn(25) is
		1)	SHED	[AIPMT (Prelims)-2008]
	(1) Ti > V > Cr > Mn	(2)	Cr > Mn > V > Ti	
	(3) V > Mn > Cr > Ti	(4)	Mn > Cr > Ti > V	
Sol.	Answer (2)	2		
	Cr > Mn > V > Ti			
	This is the order of the decreasing second ionization	n enth	alpy of above elements.	After loosing an electron

Cr gains stable 3d⁵ configuration which describes it high 2nd ionization enthalpy. Mn also loses an electron and form stable half filled Mn⁺(3d⁵4s¹). Vanadium due to smaller size posses higher 2nd ionization enthalpy that Ti.

27. Number of moles of MnO_4^- required to oxidize one mole of ferrous oxalate completely in acidic medium will be

[AIPMT (Prelims)-2008]

Sol	Answer (2)	(.)	
	(3) 0.4 moles	(4)	7.5 moles
	(1) 0.2 moles	(2)	0.6 moles

[AIPMT (Prelims)-2007]

- 28. Identify the incorrect statement among the following
 - (1) Shielding power of 4f electrons is quite weak
 - (2) There is a decrease in the radii of the atoms or ions as one proceeds from La to Lu
 - (3) Lanthanoid contraction is the accumulation of successive shrinkages
 - (4) As a result of lanthanoid contraction, the properties of 4d series of the transition elements have no similarities with the 5d series of elements

Sol. Answer (4)

29. Which one of the following ions is the most stable in aqueous solution? (Atomic number. Ti = 22, V = 23, Cr = 24, Mn = 25) [AIPMT (Prelims)-2007]

(1)	Mn ²⁺	(2)	Cr³⁺
(3)	V ³⁺	(4)	Ti ³⁺

- Sol. Answer (2)
 - $Cr^{3+} \Rightarrow d^3$ configuration

i.e. t_{2q} orbitals is half filled \Rightarrow Stable aqueous compound.

- 30. More number of oxidation states are exhibited by the actinoids than by the lanthanoids. The main reason for this is [AIPMT (Prelims)-2006]
 - (1) More energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals
 - (2) Lesser energy difference between 5f and 6d orbitals than that between 4f and 5d orbitals

edit onision

- (3) Greater metallic character of the lanthanoids than that of the corresponding actinoids
- (4) More active nature of the actinoids

Sol. Answer (2)

- 31. Copper sulphate dissolves in excess of KCN to give
 - (1) CuCN
 - (3) [Cu(CN)₄]²⁻

Sol. Answer (2)

 $\mathsf{CuSO}_{4} \textbf{ + } \underset{\scriptscriptstyle(excess)}{\mathsf{KCN}} \longrightarrow \mathsf{K}_{3}\big[\mathsf{Cu}(\mathsf{CN})_{4}\big]$

- 32. In which of the following pairs are both the ions coloured in aqueous solution? (At. no.: Sc = 21, Ti = 22, Ni = 28, Cu = 29, Co = 27)
 [AIPMT (Prelims)-2006]
 - (1) Ni^{2+} , Ti^{3+} (2) Sc^{3+} , Ti^{3+}
 - (3) Sc³⁺, Co²⁺ (4) Ni²⁺, Cu⁺

Sol. Answer (1)

 Ti^{3+} (3 d^{1}) and Ni^{2+} (3 d^{8}) have unpaired electrons.

... Both Ti³⁺ and Ni²⁺ ions are coloured in aqueous solution.

[AIPMT (Prelims)-2006]

(2) $[Cu(CN)_4]^{3-1}$ (4) $Cu(CN)_2$

33.	The number of moles of KM	nO ₄ re	educed one mole of Kl	in all	caline medium is		[AIPMT (Prelims)-2005]
	(1) One fifth	(2)	Five	(3)	One	(4)	Two
Sol.	Answer (4)						
	In alkaline medium						
	$2MnO_4^- + H_2O + I^- \longrightarrow$	2Mn	O ₂ + 2OH ⁻ + IO ₃ ⁻				
	\Rightarrow 2 moles of KMnO ₄ are	reduc	ced by 1 mole of KI.				
34.	The aqueous solution contai Ti = 22, Mn = 25)	ining	which one of the follow	ing io	ons will be colourless?	? (Ato	omic no. Sc = 21, Fe = 26, [AIPMT (Prelims)-2005]
	(1) Sc ³⁺	(2)	Fe ²⁺	(3)	Ti ³⁺	(4)	Mn ²⁺
Sol.	Answer (1)						
	Sc ³⁺ has 3d ⁰ configuration	with r	no unpaired electron.	There	efore Sc ³⁺ is colourle	ess ir	n its aqueous solution.
35.	Four successive members of one of them expected to have	of the ve the	first row transition eler highest third ionizatio	ments n ent	s are listed below with halpy?	n thei	r atomic numbers. Which [AIPMT (Prelims)-2005]
	(1) Vanadium (Z = 23)	(2)	Chromium (Z = 24)	(3)	Iron (Z = 26)	(4)	Manganese (Z = 25)
Sol.	Answer (4)					/ ,	5
36.	The main reason for larger nuis	ımber	r of oxidation states exh	iibited	l by the actinides than	the c	orresponding lanthanides, [AIPMT (Prelims)-2005]
	(1) Lesser energy difference	e betv	ween 5f and 6d orbitals	s than	between 4f and 5d o	rbita	s
	(2) Larger atomic size of ac	tinide	es than the lanthanides	5	60 11085		
	(3) More energy difference	betwe	een 5f and 6d orbitals t	han b	etween 4f and 5d orb	itals	
	(4) Greater reactive nature	of the	e actinides than the lan	thani	des		
Sol.	Answer (1)			\leq	F. GILCC		
	Because of the lesser energy achnoids exhibits more num	gy dif nber	ference between 5 <i>f</i> ar of oxidation states.	nd 6d	orbitals as compared	d to t	that of 4 <i>f</i> and 5 <i>d</i> orbitals,
37.	The catalytic activity of tran	sition	n metals and their con	npour	nds is ascribed main	ly to	
	(1) Their magnetic behaviou	ur	40 6	(2)	Their unfilled d-orbit	als	
	(3) Their ability to adopt va	riable	e oxidation states	(4)	Their chemical reac	tivity	
Sol.	Answer (3)						
	The ability to adopt variable metals.	oxida	ation state is the main	reas	on which explains the	e cat	alytic activity of transition
38.	Which one of the following	eleme	ents shows maximum	num	ber of different oxida	tion	states in its compounds?
	(1) Gd	(2)	La	(3)	Eu	(4)	Am
Sol.	Answer (4)						
	Americium (Am) being an a +4, +6, and +5 oxidation si	actinio tates.	de exhibits more num	ber o	f oxidation states that	an la	nthanides. It exhibits +3,

Solutions of Assignment (Level-II)

39.	Without losing its concent	ratior	n ZnCl ₂ solution cannot	be k	ept in contact with		
	(1) Pb	(2)	AI	(3)	Au	(4)	Ag
Sol.	Answer (2)						
	Aluminium (Al) is more rea	active	e than Zn and it can di	splac	e Zn from its salt so	lution	
40.	Which ion is colourless?						
	(1) Cr ⁴⁺			(2)	Sc ³⁺		
	(3) Ti ³⁺			(4)	V ³⁺		
Sol.	Answer (2)			. ,			
	Sc ³⁺ does not have any u	npair	ed electron, hence it is	colo	urless.		
	$Sc^{3+} = 1s^2, 2s^2, 2p^6, 3s^2,$	3p ⁶					
			Charles the states to				
41.	General electronic configure (1) $(m = 2)$ $f^1 = \frac{14}{m}$ $(m = 1)$	$a_{0} = 1$	of lanthanides is	$\langle 0 \rangle$	(n - 2) = 510 - 14 (n	1) -10	1 - 1 2
	(1) $(n-2) f^{n-1} (n-1) (n-1)$	ມີ ⊿10 ມ		(Z)	$(n-2) T^{10} \cdots (n-1)$	1) a ° 1) £1 -	¹⁴ no ²
Sal	(3) $(n-2) = n + (n-1)$	a 10 I	15-	(4)	$(n-2) d^{-1} \cdot (n-2) d^{-1} \cdot (n-2$	1) /	S IIS-
301.	The general electronic co	oficu	ration of lanthanides is	(n	2) $f^{1} = 14 (n - 1) d^{0} =$	-1 nc2	
42	Which of the following sho	ws n	aximum number of ox	(<i>II</i> – II) idatio	n states?	NH0	
42.	(1) Cr	(2)		(3)	Mn	(N)	V
Sol	Answer (3)	(2)		(3)	LO' 1085	(+)	v
001.	Manganese show maximu	ım nı	umber of oxidation stat	es fro	m + 2 to $+7$		
	manganeee enew maxime				aliono.		
43.	In the silver plating of copp	oer, k	<[Ag(CN) ₂] is used inste	ead o	f AgNO ₃ . The reason	ı is	
	(1) A thin layer of Ag is fo	rmec	l on Cu		A. S.		
	(2) More voltage is require	ed		SOLA			
	(3) Ag ⁺ ions are complete	ly rer	noved from solution				
	(4) Less availability of Ag	t ions	s, as Cu can not displa	ce Ag	from [Ag(CN) ₂]⁻ ion		
Sol.	Answer (4)						
	Fact.						
44.	CuSO ₄ when reacts with I to formation of the followin	KCN Ig col	forms CuCN, which is nplex	insol	uble in water. It is so	oluble	in excess of KCN, due
	(1) K ₂ [Cu(CN) ₄]	(2)	K ₃ [Cu(CN) ₄]	(3)	CuCN ₂	(4)	Cu[K Cu(CN) ₄]
Sol.	Answer (2)						
	$CuSO_4 + 2KCN \longrightarrow CuSO_4$	uCN	+ K ₂ SO ₄				

 $CuCN + 3KCN \longrightarrow K_{3}[Cu(CN)_{4}]$

110 The *d* and *f*-Block Elements

- 45. Which of the following is expected to be coloured in solutions?
 - (1) Cu⁺ (2) Cu²⁺
 - (3) Ti⁴⁺ (4) Sc³⁺
- Sol. Answer (2)

 $Cu^{2+} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^9$

Cu²⁺ contains unpaired electron in d-subsheel and hence Cu²⁺ is coloured in solution.

- 46. The basic character of the transition metal monoxides follows the order (Atomic nos. Ti = 22, V = 23, Cr = 24, Fe = 26)
 - (1) VO > CrO > TiO > FeO (2) CrO > VO > FeO > TiO
 - (3) TiO > FeO > VO > CrO (4) TiO > VO > CrO > FeO
- Sol. Answer (4)

TiO > VO > CrO > FeO

47. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic nos. Y = 39, La = 57, Eu = 63, Lu = 71)

- (1) Y³⁺ < La³⁺ < Eu³⁺ < Lu³⁺
- (3) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$

- (2) Lu³⁺ < Y³⁺ < Eu³⁺ < La³⁺
- (4) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$

(2) Ti⁺, V⁴⁺, Cr⁶⁺, Mn⁷⁺
(4) Ti²⁺, V³⁺, Cr⁴⁺, Mn⁵⁺

Sol. Answer (2)

The correct order of ionic radii of Y³⁺, La³⁺, Eu³⁺ and Lu³⁺ is

 $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$

Due to lanthanide contraction, the size of 3+ ion decreases continuously from La to Iu, but Lu⁺³ ion has ionic size greater than that of Y⁺³ which is a d block element.

- 48. Among the following series of transition metal ions, the one where all metal ions have 3d² electronic configuration is [At. Nos. Ti = 22, V = 23, Cr = 24, Mn = 25]
 - (1) Ti³⁺, V²⁺, Cr³⁺, Mn⁴⁺
 - (3) Ti⁴⁺, V³⁺, Cr²⁺, Mn³⁺

Sol. Answer (4)

Ti = $3d^2$, $4s^2$; V = $3d^3$, $4s^2$; Cr⁴⁺ = $3d^5$, $4s^1$; Mn = $3d^5$, $4s^2$

- \therefore Ti⁺², V⁺³, Cr⁺⁴ and Mn⁺⁵ have 3*d*² configuration.
- 49. Lanthanides are
 - (1) 14 elements in the sixth period (atomic number 90 to 103) that are filling 4f sublevel
 - (2) 14 elements in the seventh period (atomic number = 90 to 103) that are filling 5f sublevel
 - (3) 14 elements in the sixth period (atomic number = 58 to 71) that are filling the 4f sublevel
 - (4) 14 elements in the seventh period (atomic number = 50 to 71) that are filling 4f sublevel

Sol. Answer (3)

Lanthanides are member of 6th period and starts from atomic number 58 to 71. They are 14 element in which filling of electrons takes place in 4*f* sublevel.

- 50. Which of the following statement is not correct?
 - (1) $La(OH)_2$ is less basic than $Lu(OH)_3$
 - (2) In lanthanide series ionic radius of Lu⁺³ ion decreases
 - (3) La is actually an element of transition series rather lanthanides
 - (4) Atomic radius of Zr and Hf are same because of lanthanide contraction

Sol. Answer (1)

As we go right in a period, the basic character decreases.

- 51. Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidations states?
 - (1) $3d^24s^2$ (2) $3d^34s^2$ (3) $3d^54s^1$ (4) $3d^54s^2$
- Sol. Answer (4)

 $3d^54s^2$ will show highest numbers of oxidation states.

- 52. The highest possible oxidation state shown by osmium in its compound is
 - (1) +4
 - (3) +6
- Sol. Answer (2)

OS shows 8+ oxidation state (maximum).

SECTION - C

+8

+10

(2)

(4)

Assertion - Reason Type Questions

1. A : FeO is basic in character.

R : Oxides of Transition metals are basic when metal is in lower oxidation state.

Sol. Answer (1)

Both are correct and correct explanation (fact).

2. A: Ti (IV) complexes are white.

R : Ti (IV) has no electrons in d subshell.

Sol. Answer (1)

 $Ti^{4+} \Rightarrow 3d^0 \Rightarrow$ no *d*-*d* transition \Rightarrow no colour.

- 3. A : Ce⁴⁺ is a good oxidizing agent.
 - R : Sm²⁺ is a good reducing agent.
- Sol. Answer (2)

Both the statements are true.

But, reason is not the correct explanation for oxidizing character of Ce⁴⁺.

dation.

4. A : Equivalent mass of $K_2 Cr_2 O_7$ when it acts as an oxidizing agent in acidic medium is M/6.

R : During reduction, oxidation number of chromium changes from +6 to +3.

Sol. Answer (1)

In acidic medium, n-factor of K₂Cr₂O₇ is 6

- \therefore Equivalent mass = $\frac{M}{6}$
- 5. A : All Cr–O bond length in $K_2Cr_2O_7$ are equal.
 - R : Both the Cr are present in *dsp*² hybrid state.

Sol. Answer (4)

In $K_2Cr_2O_7$, some Cr–O bonds have double bond and some are single bond, so bond lengths are different and Cr is sp^3 hybridized.

6. A : FeCl₃ reacts with KCNS to give blood red colour.

R : FeCl₃ reacts with KCNS to form potassium ferro-ferricyanide.

Sol. Answer (3)

```
FeCl<sub>3</sub> + KCNS → Fe(CNS)<sub>3</sub> + 3KCl

(Yellow) (Blood red

ferric thiocvanate)
```

7. A : La(OH)₃ is less basic than Lu(OH)₃.

R : Basic character of hydroxides of lanthanides increase on moving from La⁺³ to Lu⁺³.

```
Sol. Answer (4)
```

As we go right in a period the basic nature of hydroxides decreases.

8. A : KMnO₄ is purple in colour due to charge transfer.

R : In MnO_4^- , Mn is in + 7 oxidation state and thus has no electron present in d orbitals.

Sol. Answer (1)

KMnO₄ is purple.

In Mn^{7+} no any *d* electron, so *d*-*d* transition is not possible. Hence charge transfer.

9. A : $CuSO_4.5H_2O$ on heating to 250°C losses all the five H_2O molecules and becomes anhydrous.

R : All the five $\rm H_2O$ molecules are co-ordinated to the central $\rm Cu^{+2}$ ion.

Sol. Answer (3)

 $\begin{array}{ccc} \text{CuSO}_{4} \cdot 5\text{H}_{2}\text{O} & \xrightarrow{\Delta} & \text{CuSO}_{4} & + 5\text{H}_{2}\text{O} \\ & & \text{(anhydrous)} \end{array}$

All the 5H₂O molecules are not bonded to the central atom.

10. A : $Cr_2O_7^{-2}$ is orange in colour.

R : It is due to the presence of unpaired electrons in d-subshell of Cr.

Sol. Answer (3)

 $Cr_{2}O_{7}^{-2} \Rightarrow \text{orange colour} \Rightarrow \text{true}$

Here Cr is in 6+ \Rightarrow 3*d*⁰ 4*s*⁰ \Rightarrow no any unpaired electron in *d*-subshell.

11. A : Mn shows exceptional M.P. in 3d series.

R : Its outer configuration is $4s^2 3d^5$.

Sol. Answer (1)

Mn shows exceptional MP. Due to its very stable configuration i.e. $3d^5 4s^2$.

12. A : I.E. of 5*d* elements > 4d elements in general.

R : It is due to lanthanide contraction.

Sol. Answer (1)

I.E. 5d elements > I.E. 4d elements due to lanthanide contraction.

13. A: There is very less gap between the value of radii of 4d and 5d elements.

R : Size of 5d is more than 4d subshell.

Sol. Answer (2)

The gap between radii of 4*d* and 5*d* elements is very less due to lanthanide contraction and size of 5*d* is greater than size of $4d \Rightarrow$ True.

- 14. A : Mn₂O₇ is acidic in nature.
 - R : Mn has +7 oxidation state.

Sol. Answer (1)

 Mn_2O_7 acidic in nature \Rightarrow True. In 7+ state Mn has high tendency to accept electron.

15. A : NiCl₂ is more stable than PtCl₂.

R : K_2 PtCl₆ is more stable than K_2 NiCl₆.

Sol. Answer (2)

 $NiCl_2$ is more stable than $PtCl_2 \Rightarrow True$

 K_2 PtCl₆ is more stable than K_2 NiCl₆ \Rightarrow True

Reason is CFSE.

16. A : $Cr_2O_7^{2-}$ becomes equilibrium with CrO_4^{2-} at PH > 5.

R : $Cr_2O_7^{2-}$ is tetrahedral having Cr - O - Cr angle 109°28′.

13tions

Sol. Answer (4)

 $CrO_4^{2-} \xrightarrow{P^H = 4} Cr_2O_7^{2-}$

In $K_2 Cr_2O_7$ the Cr–O–Cr angle is 126°.

17. A : In CrO_5 oxidation state of Cr is +10.

R : $Cr_2O_7^{2-}$ (aq) is yellow in colour.

Sol. Answer (4)

In CrO₅, oxidation state of Cr is 6+.

 $Cr_2O_7^{2-}$ (aq) is orange in colour.

- 18. A : Cu^{2+} is the only ion (M²⁺) which has positive E°_{red} (M²⁺/M) in 3*d* series.
 - R : Cu has lower hydration enthalpy as comparision to its I.E. and ΔH_{atm} .

Sol. Answer (1)

Both the statements are correct with proper explanation.

- 19. A : Hg is a liquid transition metal.
 - R : It has strong metallic bonding.
- Sol. Answer (4)

Hg is not a transition metal and there is no any strong metallic bonding that is why it is liquid.

- 20. A : Lanthanides have +3 as most common oxidation state.
 - R : Electrons of 4f in lanthanides rarely participate in bonding.
- Sol. Answer (1)

Lanthanides, most commonly shows 3+ oxidation state because the 4f electrons do not participate in bonding.

