R.A	ACE # 17	STOIC	HIOMETRY	CHEMISTRY	
Pro	blem based on mixtu	res			
1.	3 litre of mixture of propane (C_3H_8) & butane (C_4H_{10}) on complete combustion gives 10 litre CO_2 . Find the composition of mixture.				
	$ (A)C_{3}H_{8} \ 2L \ and \ C_{4}H_{10} \ 1L (B) \ C_{3}H_{8} \ 3L \ and \ C_{4}H_{10} \ 0L(C)C_{3}H_{8} \ 1.5L \ and \ C_{4}H_{10} \ 1.5L(D) \ C_{3}H_{8} \ 0L \ and \ C_{4}H_{10} \ 3L $				
2.	0.01 mole of iodoform (CHI ₃) reacts with Ag to produce a gas whose volume at NTP is				
	$2CHI_3 + 6Ag \longrightarrow$	$6AgI(s) + C_2H_2(g)$			
	(A) 224 ml	(B) 112 ml	(C) 336 ml	(D) None of these	
3.	One mole mixture of CH_4 and air (containing 80% N_2 20% O_2 by volume) of a composition such that when underwent combustion gave maximum heat (assume combustion of only CH_4). Then which of the statements are correct, regarding composition of initial mixture. (X presents mole fraction).				
	(A) $X_{CH_4} = \frac{1}{11}, X_{O_2}$	$X_{N_2} = \frac{2}{11}, X_{N_2} = \frac{8}{11}$	(B) $X_{CH_4} = \frac{3}{8}, X_C$	$D_{2} = \frac{1}{8}, X_{N_{2}} = \frac{1}{2}$	
	(C) $X_{CH_4} = \frac{1}{6}, X_{O_2}$	$=\frac{1}{6}, X_{N_2} = \frac{2}{3}$	(D) Data insuffici	ent	
4.	A mixture of KBr a as 0.970 gm of pure	us Ag ⁺ and all the bromide ion was recovered is (approximately)			
	(A) 0.25	(B) 0.50	(C) 0.40	(D) 0.28	
5.	40 gram of a carbonate of an alkali metal or alkaline earth metal containing some inert impurities was made to react with excess HCl solution. The liberated CO ₂ occupied 12.315 lit. at 1 atm & 300 K. The correct option is				
	(A) Mass of impuri	ty is 1 gm and metal is Be	(B) Mass of impu	(B) Mass of impurity is 3 gm and metal is Li	
	(C) Mass of impurity is 5 gm and metal is Be		(D) Mass of impurity is 2 gm and metal is Mg		
Pro	blem based on % yie	ld and % purity			
6.	Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone (CaCO ₃).				
	(A) 104.4 kg	(B) 105.4 kg	(C) 212.8 kg	(D) 106.4 kg	
7.	am chloride was added to the solution all the tof the precipitated silver chloride was 14.35				
	(A) 4.8%	(B) 95.2%	(C) 90%	(D) 80%	
8.	For the reaction				
	$2Fe(NO_3)_3 + 3Na_2CO_3 \rightarrow Fe_2(CO_3)_2 + 6NaNO_3$				
	initially 2.5 mol of reaction is	Fe(NO ₃) ₂ and 3.6 mol of Na ₂ C	CO ₃ is taken. If 6.3 mo	l of NaNO ₃ is obtained then % yield of given	
	(A) 50%	(B) 84%	(C) 87.5%	(D) 100%	

For the reaction, $2x + 3y + 4z \longrightarrow 5w$ Initially if 1 mole of x, 3 mole of y and 4 mole of z is taken and 1.25 mole

(C) 75%

(D) None of these

9.

(A) 25%

of w is obtained then % of this reaction is

(B) 50%

Problem based on sequential and parallel reaction

10.	120 g Mg was burnt in air to give a mixture of MgO and Mg ₃ N ₂ . The mixture is now dissolved in HCl to form MgCl ₂
	and NH ₄ Cl, if 107 gram NH ₄ Cl is produced. Then the moles of MgCl ₂ formed is:

$$Mg + \frac{1}{2}O_2 \longrightarrow MgO$$
 (i)

$$3Mg + N_2 \longrightarrow Mg_3N_2$$
 (ii)

$$MgO + 2HCl \longrightarrow MgCl_2 + H_2O$$
 (iii)

$$Mg_3N_2 + 8HC1 \longrightarrow 2NH_4Cl + 3MgCl_2$$
 (iv)

(A) 3 moles

(B) 6 moles

(C) 5 moles

(D) 10 moles

Paragraph Question No. 11 to 13

NaBr, used to produced AgBr for use in photography can be self prepared as follows:

$$\label{eq:Febra} \text{Fe} + \text{Br}_2 \longrightarrow \text{FeBr}_2 \qquad \qquad \dots \text{(i)}$$

$$FeBr_2 + Br_2 \longrightarrow Fe_3Br_8$$
 ... (ii) (not balanced)

$$Fe_3Br_8 + Na_9CO_3 \longrightarrow NaBr + CO_2 + Fe_3O_4 \qquad ... (iii) (not balanced)$$

11. Mass of iron required to produce 4120 gm NaBr

(A) 420 gm

(B) 840 kg

(C) 840 gm

(D) 420 kg

12. If the yield of (ii) is 50% and (iii) reaction is 60% then mass of iron required to produce 2060 gm NaBr

(A) 25 mol

(B) 50 mol

(C) 75 mol

(D) 100 mol

13. If yield of (iii) reaction is 90% then mole of CO₂ formed when 1030 gm NaBr is formed

(A) 20

(B) 4

(C) 10

(D) 40

14. Two substance $P_4 \& O_2$ are allowed to react completely to form mixture of $P_4 O_6 \& P_4 O_{10}$ leaving none of the reactants. Using this information calculate the composition of final mixture when mentioned amount of $P_4 \& O_2$ are taken.

$$P_4 + 3O_2 \longrightarrow P_4O_{6,} \quad P_4 + 5O_2 \longrightarrow P_4O_{10}$$

(i) If 1 mole P₄ & 4 mole of O₂

(ii) If 3 mole P_4 & 11 mole of O_2

(iii) If 3 mole P₄ & 13 mole of O₂

15. Sulphur trioxide may be prepared by the following two reactions :

$$S_8 + 8O_2(g) \rightarrow 8SO_2(g)$$
,

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

How many grams of SO₃ will be produced from 1 mol of S₈?

ANSWER KEY

RACE # 17

1. (A) **2.** (B) **3.** (A) **4.** (C) **5.** (B) **6.** (D) **7.** (B) **8.** (C) **9.** (B) **10.** (C)

11. (B) **12.** (A) **13.** (B)

14. (i) $P_4O_6 = 0.5 \text{ mole}, P_4O_{10} = 0.5 \text{ mole}$, (ii) $P_4O_6 = 2 \text{ mole}, P_4O_{10} = 1 \text{ mole}$, (iii) $P_4O_6 = 1 \text{ mole}, P_4O_{10} = 2 \text{ mole}$

15. 640 gram