ORGANIC CHEMISTRY

DPP No. 8

Total Marks: 30

Max. Time: 33 min.

Topic: Structural Determination

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.5

Comprehension ('-1' negative marking) Q.6

Subjective Questions ('-1' negative marking) Q.7

Match the Following (no negative marking) Q.8

M.M., Min.

[15, 15]

(3 marks, 3 min.)

[4, 5]

(4 marks, 5 min.)

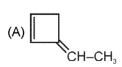
[4, 5]

[8, 10]

- 1._ Which of the following is correctly matched with degree of unsaturation?
 - (A) CONH₂ , 4

- (B) C≡CH , 7
- (C) HOOC CHO
- (D) $CH=CH_2$, 5
- 2. How many alkene isomers will produce 1-Ethyl-3-methylcyclopentane on catalytic hydrogenation?
 (A) 6 (B) 7 (C) 8 (D) 9
- 3. How many products (structural isomers) are formed by monochlorination of?

(A) 6


(B) 7

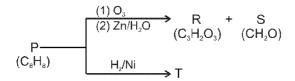
(C) 8

(D) 9

4.
$$X \xrightarrow{O_3/Z_{n_1} H_2O} H - C - CH_2 - C - CH_2 - C - H + HCHC$$

The structure of X will be:

(B) CH.


(C)

5. [X] O_3 , Zn / H₂O \rightarrow 3-Oxobutanal only $H_2/Ni \rightarrow Y \xrightarrow{Cl_2/h\nu}$ Four monochloro structural isomeric products

Compound 'X' is:

- (A) 1-Methylcyclopropene
- e
- (B) 1, 4-Dimethylcyclohexa-1,4-diene
- (C) 1, 4-Dimethylcyclohexa-1,3-diene
- (D) 1, 2-Dimethylcyclohexa-1,4-diene

6. Comprehension

- (a). Total number of monochloro structural products are formed on chlorination of "T":

- (B) 3
- (C) 4
- (D) 5
- (b). How many alkyne can give "T" on catalytic hydrogenation:
- (A) 1
- (B) 2
- (D) Not possible
- A compound with molecular formula $C_{_{13}}H_{_{24}}$ absorbs two molar equivalents of hydrogen to form 3-Ethyl-7-methyldecane. On reductive ozonolysis it forms following three products. 7.

, and H
$$\stackrel{\circ}{\longrightarrow}$$

Assign the structure of the compound.

Match the column: 8.

Column(I) (Compound)	Column (II) (No. of monochloro structural product)
$(A) \qquad \xrightarrow{Cl_2/hv} \qquad \longrightarrow$	(p) = 1
$(B) \qquad \xrightarrow{\text{Cl}_2/\text{hv}}$	(q) = 2
(C) $CI_2/hv \rightarrow CI_2/hv$	(r) = 3
(D) ← CI₂/hv → Et	(s) = 4

Answer Key

DPP No. #8

1.

6.

- (B) (a).
- (C)
- 2. (b).
- (A)

(C)

- 3.
- (B)

 $(A \rightarrow q)$; $(B \rightarrow s)$; $(C \rightarrow p)$; $(D \rightarrow r)$

- 5.
- (D)

Hints & Solutions

DPP No. #8

2. $7 \underbrace{\begin{array}{c} 2\\ 8\\ 6 \end{array}}_{5}^{3}$

6.
$$CH_{2} = CH - C - CH = CH_{2}$$

$$CH_{2} = CH - C - CH = CH_{2}$$

$$CH_{2} = CH - C - CH = CH_{2}$$

$$CH_{2} = CH - C - CH - CH_{2} + 3HCHO$$

$$CH_{2} = CH - CH_{2} - CH_{2} - CH_{3} + CH_{3} - CH_{2} - CH_{3} - CH_{3}$$

$$CH_{3} = CH_{3} - CH_{2} - CH_{3} - CH_{3}$$

$$CH_{3} = CH_{3} - CH_{3} - CH_{3} - CH_{3}$$