

Organic Reaction Mechanisms and Reagents

Question Bank

LEVEL 1

1. When the compound shown below is heated it undergoes a rearrangement to form an isomer. Identify the product.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

2. Organometallic reactions can be classified into fundamental reaction types. Classify the following reaction.

$$(C_{6}H_{5})_{3}P - Pd - P(C_{6}H_{5})_{3} +$$

$$Br \longrightarrow (C_{6}H_{5})_{3}P - Pd - P(C_{6}H_{5})_{3}$$

$$Br \longrightarrow Br$$

(a) Ligand insertion

- (b) Ligand dissociation
- (c) Reductive elimination
- (d) Oxidative addition

3. What is the electron count for the following transition metal complex?

$$(C_{6}H_{5})_{3}P \xrightarrow{Rh} P(C_{6}H_{5})_{3}$$

$$C$$

$$|||$$

$$C$$

$$|||$$

$$O$$
(a) 14 (b) 15 (c) 16 (d) 17

4. Predict the product of the following reaction sequence.

$$O \longrightarrow O \xrightarrow{Br} NaOEt \xrightarrow{Br} NaOEt \xrightarrow{NaOEt} Cl_2 [(C_6H_5)_3 P]_2 Ru \xrightarrow{H} C_6H_5$$
(a)
$$O \longrightarrow O \xrightarrow{(b)} O \xrightarrow{(c)} O \xrightarrow{(d)} O \xrightarrow{(d)} O$$

5. Consider the relative basicity of these three amines. Which statement is true?

$$\begin{array}{c|cccc}
NH_2 & NH_2 & NH_2 \\
\hline
NO_2 & & \\
\end{array}$$

- (a) Cyclohexylamine is the strongest base and aniline is the weakest base
- (b) Cyclohexylamine is the strongest base and 4-nitroaniline is the weakest base
- (c) Aniline is the strongest base and cyclohexylamine is the weakest base
- (d) Nitroaniline is the strongest base and cyclohexylamine is the weakest base
- **6.** Which of the following syntheses of benzylamine is the least likely to work?

(a)
$$NH_2$$
 (i) $LiAlH_4$ (b) Br $NaCN$ (i) $LiAlH_4$ (ii) H_2O (c) NH_2 Br $NaOH$ (d) Rr NH_3 (large excess)

7. Predict the product of the following reaction sequence.

$$\begin{array}{c}
CH_3 \\
\hline
Cl_2 \\
\hline
AlCl_3
\end{array}
\xrightarrow{HNO_3} \xrightarrow{H_2} \xrightarrow{H_2} \xrightarrow{(i) \text{ NaNO}_2, \text{ } H_3O^{\oplus}} \xrightarrow{(ii) \text{ BF}_4^{\oplus} \text{ heat}}$$

$$(a) \qquad \begin{matrix} CH_3 \\ F \end{matrix} \qquad (b) \qquad \begin{matrix} CH_3 \\ F \end{matrix} \qquad (c) \qquad \begin{matrix} CH_3 \\ F \end{matrix} \qquad (d) \qquad \begin{matrix} CH_3 \\ NO_2 \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \\ F \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \\ F \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \\ P \end{matrix} \qquad (d) \qquad \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \\ P \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2 \end{matrix} \qquad (d) \qquad \end{matrix} \qquad (d) \qquad \begin{matrix} NO_2$$

8. Predict the product of following reaction sequence.

9. Choose the major product of the following reaction.

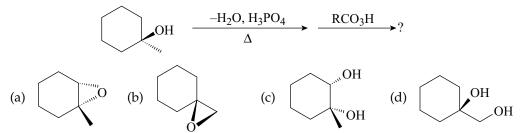
$$\begin{array}{c} CH_{3} \\ \hline \\ OH \end{array} \longrightarrow \text{Major product?}$$

$$\begin{array}{c} CH_{3} \\ OH \end{array} \longrightarrow \begin{array}{c} CH_{3} \\ OH \end{array} \longrightarrow \begin{array}{c}$$

10. Choose the answer that has the following compounds arranged correctly with respect to increasing reactivity with $Br_2/FeBr_3$.

11. Choose the reaction sequence that could be used to perform the following transformation.

(a)
$$\xrightarrow{\text{HNO}_3}$$
 $\xrightarrow{\text{Br}_2}$ (b) $\xrightarrow{\text{HNO}_3}$ $\xrightarrow{\text{NBS}}$ (c) $\xrightarrow{\text{NaNO}_2}$ $\xrightarrow{\text{FeBr}_3}$ (d) $\xrightarrow{\text{FeBr}_3}$ $\xrightarrow{\text{Hyo}_3}$ $\xrightarrow{\text{Hyo}_3}$ $\xrightarrow{\text{Hyo}_3}$ $\xrightarrow{\text{Hyo}_3}$ $\xrightarrow{\text{Hyo}_3}$ $\xrightarrow{\text{Hyo}_3}$


12. Predict the major product of the following reaction

$$\begin{array}{c} & & & \\ & &$$

13. Which of the following compounds is the most acidic? (lowest pK_a)

14. What could be reagents A and B for the following reactions?

- (a) Reagent A: CH₂CH₂Cl / AlCl₃; reagent B: Na₂Cr₂O₇, heat
- (b) Reagent A: CH₃COCl / AlCl₃; reagent B: Na₂Cr₂O₇, heat
- (c) Reagent A: HNO₃, H₂SO₄; reagent B: RCO₃H, heat
- (d) Reagent A: CH₃COCl / AlCl₃; reagent B: H₂, Ni, heat
- **15.** What could be the major product from the following reactions?

16. What could be the major product from the following reactions?

$$(a) \qquad \begin{array}{c} -H_2O, H_3PO_4 \\ \hline \Delta \end{array} \qquad \begin{array}{c} OsO_4 \\ \hline \end{array} \qquad ?$$

17. What could be the reagent to complete the following reaction?

(a) $K_2Cr_2O_7$

(b) PCC in dried CH,Cl,

(c) H₂CrO₄

- (d) OsO₄
- 18. What could be the major product for the following reaction?

$$(a) \qquad \begin{array}{c} + \text{ NH}_3 \text{ (2 equivalents)} & \xrightarrow{S_N 2} \text{ Product } + \text{ NH}_4\text{Cl} \\ \\ \text{NH}_2 \text{ (c)} & \text{ (d)} & \text{ NH}_2 \\ \end{array}$$

19. Choose order that has the following compounds correctly arranged with respect to increasing rate of reaction with LiAlH₄ (most reactive compound on the right).

(c)
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ \end{array}$$
 (d) $\begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array}$ $\begin{array}{c} & & & \\ & & & \\ \end{array}$

20. Choose the following compound that will cyclize to give the pheromone frontalin.

21. Choose the species that does not represent an intermediate in the acid-catalyzed hydrolysis of propionamide to carboxylic acid.

$$(a) \qquad \bigoplus_{\Theta O \qquad H} \qquad (b) \qquad \bigoplus_{O \qquad H} \qquad (c) \qquad \bigoplus_{O \qquad NH_2} \qquad (d) \qquad \bigoplus_{\Theta MH_3} \qquad (d) \qquad (d) \qquad \bigoplus_{\Theta MH_3} \qquad (d) \qquad \bigoplus_{\Theta MH_3} \qquad (d) \qquad ($$

22. Choose the reaction(s) that will not proceed as shown hereunder.

23. Choose the order that has the following aromatic compounds correctly arranged with respect to increasing reactivity towards Br₂/FeBr₃

24. Choose the order that has the following alcohols correctly arranged with respect to increasing acidity.

$$(d) \quad \begin{array}{c|c} OH & OH & OH \\ \hline \\ NO_2 & \\ \end{array}$$

25. The compound shown below is a cyclic hemiacetal. It is in equilibrium with an acyclic open chain compound X.

Identify the structure of compound X.

26. The reaction sequence shown below gives compound Z as the main product.

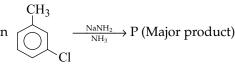
Identify the structure of compound Z.

27. Predict the product of the following aldol condensation.

$$H \longrightarrow OH^- \longrightarrow -H_2O$$

2 moles

28. Which of the following structure is more stable?



(b)
$$\bigcup_{\bigcirc NO_2}$$

$$(d) \quad \bigcup_{\bigcirc}^{Z \quad Cl} NO_2$$

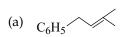
29. Predict the nature of P in the following reaction

(d) All the three

30. Which of the following is most reactive towards aqueous HBr?

(a) 1-Phenyl-2-propanol

(b) 1-Phenyl-1-propanol


(c) 3-Phenyl-1-propanol

(d) 2-Phenyl-1-propanol

31. Ethylbenzene when treated with chlorine in presence of light mainly gives

- (a) β -phenylethyl chloride
- (b) α -phenylethyl chloride
- (c) o-chloroethyl benzene
- (d) o-and p-chloroethylbenzene

32. The following alcohol is treated with Conc. H₂SO₄, the major product obtained is

(b)
$$C_6H_5$$
 H

(c)
$$C_6H_5$$

(d) All the three will be formed in equal amounts

33.
$$\left\langle \begin{array}{c} (i) B_2 H_6 \\ \hline (ii) H_2 O_2, OH^- \end{array} \right\rangle$$
 X. The compound X is

(c)
$$HO$$

(d) Both (b) and (c)

34. Give the nature of A and B in the given reaction

$$B \leftarrow \frac{KMnO_4}{H^+} (CH_3)_3 COH - \frac{KMnO_4/OH^-}{} A$$

- (a) A and B both are $(CH_3)_2C = CH_2$
- (b) A and B, both are $(CH_3)_2CO + CH_2O$
- (c) A is $(CH_3)_3COH$, while B is $(CH_3)_2C = CH_2$ or $(CH_3)_2CO$
- (d) A and B, both are (CH₃)₃COH, i.e., there is no reaction

35. Which of the following is liable to be oxidized by periodic acid?

(d) All of these

36. From the given set of reaction

$$A \xrightarrow{\text{(i) NaOI}} [B] \xrightarrow{\text{Heat}} C$$

starting compound A corresponds to

37. Methanoic acid is heated with Conc. H₂SO₄, to form

- (a) CO
- (b) CO,
- (c) CH₄
- (d) (COOH),

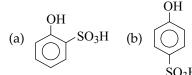
38. When ethane-1,2-dioic acid is heated with Conc. H₂SO₄, it gives

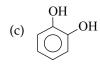
(a) CO + HCOOH

- (b) CO₂ + HCOOH
- (c) $CO + CO_2 + HCOOH$

(d) $CO + CO_2 + H_2O$

39. When sodium formate is heated with soda lime, we get


- (a) CH₄
- (b) H,
- (c) sodium oxalate (d) no action


	(a) CO (b) CO ₂	(c) sodium oxalate (d) no action				
41.	When cyclohexanone is treated with Na ₂ CO ₃ solution, we get					
	(a) OH (b) OH	(c) OH COOH				
42.	Which of the following reagent react C_6H_5CHO ?	s in different ways with CH ₃ CHO, HCHO and				
	(a) Fehling's solution	(b) $C_6H_5NHNH_2$				
	(c) Ammonia	(d) HCl				
43.	The reaction $O \longrightarrow OH^-$ CHO	is an example of				
	(a) Oxidation reaction	(b) Reduction				
	(c) Both	(d) Aldol condensation				
	ОН О					
44.	$C_6H_5CH-C-C_6H_5 \xrightarrow{Z_{n/Hg}} P. \text{ Here, P}$	should be				
	OH OH 	OH				
	(a) $C_6H_5CHCHC_6H_5$	(b) C_6H_5 CHCH ₂ C ₆ H ₅				
	(c) $C_6H_5CH_2CH_2C_6H_5$	(d) $C_6H_5CH = CHC_6H_5$				
45.	Nitrobenzene can be reduced to aniline	by				
	(i) H ₂ /Ni (ii) Sn/HCl	(iii) Zn/NaOH (iv) LiAlH ₄				
	(a) i, ii and iii (b) i and ii	(c) i, ii and iv (d) only ii				
46.	1-Methylcyclopentene can be converted(a) acid-catalyzed hydration(b) hydroboration oxidation(c) epoxide formation followed by reduction(d) oxymercuration-demercuration					
47.	2-Methylpropanol-2 can be obtained by	the acid-catalyzed hydration of				
	(a) CH ₃ CH ₂ CH=CH ₂	(b) CH ₃ CH=CHCH ₃				
	(c)	(d) Either of the three				
48.		reaction $CH_3C \equiv CCH_3 \xrightarrow{\text{NaNH}_2/\text{inert solvent}} P$				
	(a) CH ₂ =CHCH=CH ₂	(b) CH ₂ =C=CH-CH ₃				
	(c) CH ₃ CH ₂ C≡CH	(d) No reaction				

40. Sodium formate is heated at 360°C to give

49. Identify the nature of product in the following reaction

$$OH \longrightarrow + K_2 S_2 O_8 \xrightarrow{HO^-} Product$$

50. Arrange the following alcohols in order of increasing ease of dehydration

- (i) CH₃CH₂OH
- (ii) C₂H₅CH₂OH
- (iii) Cl₃CCH₂OH
- (iv) F₃CCH₂OH

(a) ii < i < iv < iii

(b) iv < iii < ii < i

(c) iv < iii < i < ii

(d) ii < i < iii < iv

51. 1,2-Diethylbenzene on ozonolysis gives......different products

- (a) 1
- (b) 2

- (c) 3
- (d) 4

52.
$$\longrightarrow$$
 Z. Here, Z is

(a) HOOC

(b) (CH₃)₃CCOOH

(c) Both (a) and (b)

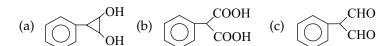
(d) HOOC—(COOH

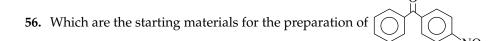
53. When o-hydroxybenzaldehyde is heated with ethanoic anhydride in the presence of sodium ethanoate, compound formed during the reaction is

(a) OH COOCH₃

(p) OH

(c) 0 0


(d) Both (b) and (c)


54. A new carbon–carbon bond is formed in

- (i) Aldol condensation
- (ii) Kolbe's reaction
- (iii) Reimer-Tiemann reaction
- (iv) Wurtz Fittig reaction

- (a) i, iii
- (b) ii, iii
- (c) i, iii, iv
- (d) All of these

55. $\underbrace{\qquad \qquad \stackrel{\text{(i) alk. KMnO}_4}{\text{(ii) HIO}_4}} P. \text{ The compound P should be}$

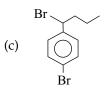
(a)
$$Conc. HNO_3 \rightarrow Conc. H_2SO_4$$

(b)
$$COC1 + OC1 \xrightarrow{Anhydrous} NO2 \xrightarrow{Anhydrous} OC1 + OC1 \xrightarrow{Anhydrous} OC1$$

(d) Any of the three

57.
$$Cl^-H_3N^+$$
 $N^+H_3Cl^ \xrightarrow{\text{Heat}}$ Z; Z is

(a)
$$H_2N$$
 NH_2


(b)
$$\left\langle \begin{array}{c} N \\ H \end{array} \right\rangle$$

(d)
$$\bigcap_{\mathbf{N}}$$

58.
$$(14 \text{ Cl} + \text{NaOH(aq.)}) \xrightarrow{400^{\circ}\text{C}} \text{Product is}$$

(c) Both (a) and (b) (d) No reaction

59.
$$+ HBr \longrightarrow Z, Z \text{ is}$$

60.
$$Me_2CHOCMe_3 \xrightarrow{HI} X + Y$$

Predict the nature of product and the type of reaction involved in their formation.

- (a) Me₂CHI and Me₃COH, formed by S_N1 reaction
- (b) Me₂CHI and Me₃CI, formed by S_N1 reaction
- (c) Me_2CHI and Me_3COH , formed by S_N^2 reaction
- (d) Me_2CHOH and Me_3CI , formed by S_N^2 reaction

61. Anisole is treated with HI under two different conditions

$$C + D \stackrel{\text{HI(g)}}{\longleftarrow} C_6 H_5 OCH_3 \stackrel{\text{Conc. HI}}{\longrightarrow} A + B$$

The nature of A to D will be

- (a) A and B are CH₃I and C₄H₅OH, while C and D are CH₃OH and C₄H₅I
- (b) A and B are CH₂OH and C₂H₅I, while C and D are CH₂I and C₂H₅OH
- (c) Both A and B as well as both C and D are CH₃I and C₄H₅OH
- (d) A and B are CH_3I and C_2H_5OH , while there is no reaction in the second case.
- **62.** Arrange the following in decreasing order of solubility in water

- (a) i > iii > ii
- (b) iii > ii > i
- (c) ii > iii > i
- (d) All are equally soluble
- **63.** The ethereal linkage (-C-O-C-) is cleaved by
 - (a) HBr
- (b) HNO₂
- (c) Both (a) and (b) (d) None
- **64.** Predict the compounds A and B in the following reactions

$$CH_{3}CH_{2}-O-CH_{2}CH_{3}+O_{2}\xrightarrow{h\nu}A;\ C_{6}H_{5}CH\overset{CH_{3}}{\overbrace{CH_{3}}}\xrightarrow{O_{2},95-135^{\circ}}B$$

- (a) CH_3CH_2 -O-O- CH_2CH_3 and C_6H_5 C O OH respectively
- CH₃ (b) CH_3CH_2 -O-O- CH_2CH_3 and C_6H_5 - CH_3 respectively $CH_2 - O - OH$
- OOH CH3 (c) CH3CH O CH2CH3 and C6H5 C O OH respectively
- CH_3 (d) No reaction and $C_6H_5-C-O-OH$ respectively
- **65.** Products $(P_2) \xleftarrow{\text{anhy. HI}} (CH_3)_3 C O CH_3 \xrightarrow{\text{Conc. HI}} \text{Products } (P_1)$ The products P_1 and P_2 respectively are
 - (a) $(CH_3)_3COH + CH_3I$ and $(CH_3)_3CI + CH_3OH$
 - (b) $(CH_3)_3CI + CH_3OH$ and $(CH_3)_3COH + CH_3I$
 - (c) $(CH_3)_3CI + CH_3OH$ in both cases
 - (d) CH₃I and (CH₃)₃COH in both cases
- **66.** Cyclobutylethene is treated with dil. H₂SO₄ to form
 - (a) 2-cyclobutylethanol

- (b) 1-cyclobutyl-2-ethanol
- (c) 2-methylcyclopentanol
- (d) 1-methylcyclopentanol

67.	The decreasing order of acidic character		-			
	$CH_3C \equiv CH$, MeOH, Me ₂ CHOH, Me ₃ COH, H ₂ O					
	(a) $CH_3C \equiv CH > Me_3COH > Me_2CHOH > MeOH > H_2O$					
	(b) $MeOH > Me_2CHOH > Me_3COH > H_2O > CH_3C \equiv CH$					
	(c) Me ₃ COH > Me ₂ CHOH > MeOH > H	-	3			
	(d) $MeOH > H_2O > Me_2CHOH > Me_3CO$)H > ($CH_3C \equiv CH$			
68.	Arrange the following in the decreasing	order	of acidic strengt	h		
	(i) Phenol (ii) p-nitrophenol	(iii)	m-cresol	(iv)	p-cresol	
	(a) ii > iii > iv > i	(b)	ii > i > iii > iv			
	(c) ii > i > iv > iii	(d)	iii > iv > ii > i			
69.	Which of the following will be most acid	dic				
	(a) o-Aminophenol	(b)	p-Aminopheno	1		
	(c) m-Aminophenol	(d)	None of these			
70.	Arrange the following in increasing acid	dic cha	nracter			
	(i) Phenol		m-nitrophenol			
	(iii) m-chlorophenol		m-cresol			
	(a) $iv < i < iii < ii$	(b)	iv < i < ii < iii			
	(c) i < iv < iii < ii	(d)	iii < ii < iv < i			
71.	Which of the following compounds can	react	with hydroxylan	nine?		
	ОН ОН		ÓН		OH	
	(a) (b) OH	(c)		(d)	OH	
	ОН	()	но ОН			
	v on		HO, ~ ,OH	L	ОН	
72.	Which of the following statement is t Friedel-Craft acetylation using acetyl ch				llCl ₃ required during	
	(a) Both require same amount	101140	or deedle drifty dr	iuc.		
	(b) Acetylation with acetyl chloride req	uires 1	more amount			
	(c) Acetylation with acetic anhydride re					
	(d) Nothing is definite	1				
73.	Which of the following gives effervescen	nes of	CO ₂ with NaHC	O_3 sol	ution?	
	(a) HCOOH	(b)	2,4,6-trinitrophe	enol		
	(c) Both (a) and (b)	(d)	None of these			
74.	2,4,6-Trinitrophenol can be prepared in	good v	vield			
	(a) by the nitration of 2,4-dinitrochlorol	٠.				

(b) by the nitration of 2,4-dinitrophenol

(c) by both (a) and (b)(d) neither by (a) nor by (b)

75. The correct stability order of the following three quinones is

(a) i > iii > ii

(b) i = iii > ii

(c) i = ii > iii

- (d) iii > i > ii
- **76.** Which of the following is most stable, and which one is least stable?
 - (i) HCHO
- (ii) CH₃CHO
- (iii) CH₃COCH₃
- (iv) Cl₃CCHO
- (a) (iii) is most stable and (i) is least (b) (iv) is most stable and (i) is least
- (c) (iii) is most stable and (iv) is least (d) All the four are equally stable
- 77. Which of the following has highest and lowest hydration equilibrium constant? HCHO, CH, CHO, CH, COCH,
 - (a) HCHO-Highest, CH₂CHO-Lowest
 - (b) CH₃CHO-Highest, HCHO-Lowest
 - (c) HCHO-Highest, CH₃COCH₃-Lowest
 - (d) CH₃COCH₃-Highest, HCHO-Lowest
- 78. $CH_3COCH_2Cl \xrightarrow{OH^-, Cl_2} Product P$ is
 - (a) ClCH,COCH,Cl

(b) CH₃COCHCl,

(c) Both (a) and (b)

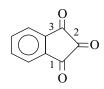
- (d) ClCH₂COOH + CH₂Cl
- **79.** Which of the following is an example of nucleophilic addition?

(a)
$$C_6H_5CCH_3 \xrightarrow{NH_2NH_2, H^+} C_6H_5CCH_3$$

(b)
$$C_6H_5CCH_3 \xrightarrow{\text{LiAlH}_4} C_6H_5CHCH_3$$

- (c) Both (a) and (b)
- (d) None of the two
- 80. Propanal and propanone, both have same molecular formula (C_3H_6O) , what do you expect about their boiling points?
 - (a) Both have same boiling point.
 - (b) Boiling point of propanal is higher than the boiling point of propanone.
 - (c) Boiling point of propanal is lower than the boiling point of propanone.
 - (d) Nothing can be predicted.
- **81.** Which of the following statement is false about 1,3-dithane, $\begin{bmatrix} 1 & 1 \\ S & S \end{bmatrix}$?
 - (a) 1,3-Dithane can react with RLi
 - (b) It can be alkylated by CH₂CH₂CH₂Br

	(c) It can be alkylated by Me ₂ CHX					
	(d) 1,3-Dithane can be used for preparing aldehydes and ketones					
82.	In dilute aqueous solution, formaldehyde	exis	ts as			
	(a) Formaldehyde (b) Paraldehyde	(c)	Trioxymethylene (d)	Methyleneglycol		
83.	The major driving force for the hydration	of cl	nloral is			
	(a) less steric hinderance in the product					
	(b) less force of repulsion in the product					
	(c) hydrogen bonding in the product					
	(d) electronegativity of the three chlorine	ator	ns			
84.	The products A and B in the following rea	ctio	ns are			
	$\frac{1 \text{ Eq. H}_2/\text{ca}}{}$	atalys	$\xrightarrow{\text{st}} [A] \xrightarrow{O_3} [B]$			
	(a) $\frac{1 \text{ Eq. H}_2/\text{ca}}{0}$ (c) Both (a) and (b)	(b)	$\wedge \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			
	(c) Both (a) and (b)	(d)	/\/ /\/ ⁰			
85.	$ \begin{array}{c} O \\ \\ CH_3CC_2H_5 + NaCN + NH_4Cl \xrightarrow{NH_4OH} \end{array} $	Z; Z	Z is			
	(a) $\begin{array}{ccc} CH_3 & OH \\ C_2H_5 & COOH \end{array}$ (b) $\begin{array}{ccc} CH_3 & OH \\ C_2H_5 & CN \end{array}$	(c)	CH_3 CN CN CN CN	CH_3 C CN $COOH$		
		0	0			
0.0	The common distriction the Common CII.		0 OC H			
86.	36. The compound having the formula, $CH_3 - C - CH_2 - C - OC_2H_5$					
	(a) forms dioxime		undergoes iodoform	test		
	(c) both (a) and (b)	(d)	neither of the two			
87.	Fehling's solution can be used for distingu	uishi	ng between			
	(a) CH ₃ CHO and C ₆ H ₅ CHO	(b)	CH ₃ CHO and CH ₃ CO	OCH ₂ OH		
	(c) Both (a) and (b)	(d)	None of these			
88.	Which of the following is least reactive wi	ith a	nucleophile?			
	(a) Methanal (b) Propanone	(c)	3-Pentanone (d)	2-Pentanone		


89. Aldehydic group can be protected

- (a) by acetal formation against alkaline oxidizing agents.
- $\begin{tabular}{ll} (b) & by mercaptal formation against acidic oxidizing agents. \end{tabular}$
- (c) both (a) and (b)
- (d) none of the above

90.
$$\stackrel{\text{CHO}}{\stackrel{2}{\longrightarrow}} \stackrel{\text{OH}}{\stackrel{\text{COO}^-}{\longrightarrow}} \stackrel{\text{COO}^-}{\stackrel{\text{COO}^-}{\longrightarrow}} \stackrel{\text{COO}^-}{\longrightarrow} \stackrel{\text{COO}^-}{\longrightarrow}$$

The above reaction can said to be an example of

- (a) Intramolecular Cannizzaro reaction (b) Intermolecular Cannizzaro reaction
- (c) Crossed Cannizzaro reaction
- (d) Tischenko reaction
- 91. Ninhydrin has three keto groups, which of the keto group is expected to be hydrated most easily?

- (a) 2
- (b) 3

- (c) 1
- (d) All are equally hydrated
- 92. $C_2H_5O-C-OC_2H_5+2CH_3MgBr\longrightarrow A$; A is

- 93. $\langle \rangle \longrightarrow \frac{(i) O_3 / H_2 O}{(ii) \text{ Heat}} A; A \text{ is}$
 - (a) CH₂(COOH)₂ (b) CH₃COOH (c) HCOOH
- (d) HCHO
- 94. Which is least reactive towards addition of HCl?
 - (a) CH₂CH₂CH=CH₃

(b) CH₂=CH-CH=CH,

(c) CH₃CH₂C≡CCH₃

- (d) CH₂CH=CHCHO
- 95. Which of the following is true regarding preparation of aldehydes and ketones?
 - (i) Both can be prepared by the oxidation of the concerned alcohol with copper at about 250°C.
 - (ii) Both can be prepared by the oxidation of the concerned alcohol by Oppenauer oxidation.
 - (iii) Both can be prepared by the oxidation of respective alcohol with acidic dichromate.
 - (a) i
- (b) ii and iii
- (c) i and iii
- (d) All the three
- **96.** Observe the following structures and pick up the correct statement.
 - (i) C = O

- (ii) C = OH
- (a) Carbonyl carbon of (i) is more electrophilic than that of (ii).
- (b) Carbonyl carbon of (i) is less electrophilic than that of (ii).
- (c) Carbonyl carbon of both structures has equal electrophilic character.
- (d) It depends upon the complete structure of the compound

97. Acetal formation is a reversible reaction

Under what conditions, the reaction can be forced to proceed only in right (forward) direction?

- (a) Using excess of alcohol
- (b) Using high temperature
- (c) Using dilute acid and excess of alcohol
- (d) Using dry acid and excess of alcohol
- **98.** Which of the following does not react with sodium bisulphite?
 - (i) HCHO
- (ii) $CH_3COC_2H_5$ (iii) (iv)
- COCH₃

- (a) iii and iv
- (b) ii and iv
- (c) i

- (d) All reacts
- **99.** Which of the following reagent can be used for carrying out the reaction outlined below?

$$OH O OC_2H_5$$

- (a) BrMgCH,COOC,H₅(b)
- BrZnCH,COOC,H,

(c) LiCH,COOC,H₅

- (d) Any of the three
- **100.** Which of the following statement is false?
 - (a) Cannizzaro reaction is given by aldehydes in presence of alkali
 - (b) Aldol condensation is given by aldehydes in presence of alkali
 - (c) Aldol condensation is given by aldehydes and ketones in presence of acids
 - (d) None of these
- 101. Carbonyl compounds, sensitive to both acids as well as bases, can be reduced to hydrocarbons by
 - (a) Clemmensen reduction
- (b) Wolf-Kishner reduction

(c) Thioacetal reduction

- (d) All of the three
- 102. What should be the product when ethylmethyl ketone is treated with peracetic acid
 - (a) Ethyl acetate

(b) Methyl propanoate

(c) Both (a) and (b)

- (d) Only acetic acid
- 103. Which of the following complex hydride is a stronger reducing agent?
 - (a) $Li^{+}[AlH_4]^{-}$

(b) Li⁺[Al(OCMe₃)₃H]⁻

(c) Al(CH,CHMe,),H

(d) All are strong reducing agents

104.
$$O_2N - \bigcirc \bigcirc -COCl + R \longrightarrow O_2N - \bigcirc \bigcirc -COCH_2CH_3$$

The reagent R may be

(i) CH₃CH₂MgBr

(ii) CH₂CH₂Li

(iii) (CH₂CH₂)₂Cd

(iv) (CH₃CH₂)₂CuLi

- (a) i or ii
- (b) i or ii or iii
- (c) iii or iv
- (d) Any of the four

105. Which one does not belong to the same compound?

(a) Paraformaldehyde

(b) Paraldehyde

(c) Trioxane

(d) Formalin

106. Which of the following is not a good reagent in Wittig reaction?

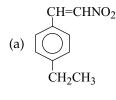
(a) $Ph_3P = CH_2$

(b) Ph₃ PCHCH₂CH₃

(c) (CH₃)₃CCH=PPH₃

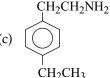
(d) C₆H₅COCH=PPh₃

107. Which of the following is not formed in iodoform reaction?


- (a) CH₃COCH₂I
- (b) ICH,COCH,I
- (c) CH₃COCHI₂
- (d) CH₃COCI₃

 $CH=CHNO_2$

108.


 $\xrightarrow{\text{Zn/Hg}}$ Product. Here, the product is

COCH₃

CH=CHNH₂

CH₂CH₃

CH₂CH₂NO₂

(d) CH₂CH₃

109. C_6H_5COOOH Product. Here, the product is

(b) O

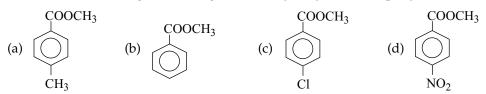
- (с) СООН
- (d) COOH

110. Acetyl chloride does not react with

(a) Water

(b) Sodium acetate

(c) 2-methylpropene


(d) It reacts with all the three

111. Which of the following statement is true?

- (a) At room temperature, formyl chloride is present in the form of CO and HCl.
- (b) Acetamide behaves as a weak base as well as a weak acid.
- (c) $CH_3CONH_2 \xrightarrow{LiAlH_4} CH_3CH_2NH_2$.
- (d) All of the above.

- **112.** Which of the following reaction is possible?
 - (i) CH₂COCl + H₂O ---- CH₂COOH + HCl
 - (ii) CH₃COOCH₃ + HBr ----> CH₃COBr + CH₃OH
 - (iii) $CH_3CONH_3 + HBr \longrightarrow CH_3COBr + NH_3$
 - (iv) $CH_3COOCOCH_3 + H_2O \longrightarrow 2CH_3COOH$
 - (a) i and iv
- (b) i, iii and iv
- (c) i, ii and iv
- (d) All the four

- 113. Which of the following is not possible?
 - (a) ICH₂COOH + NaCl Acetone → ClCH₂COOH + NaI
 - (b) $ClCH_2COOH + NaI \xrightarrow{Acetone} ICH_2COOH + NaCl$
 - (c) Both (a) and (b)
 - (d) None of these
- 114. Acid amide do not undergo the usual properties of carbonyl, C=O group because
 - (a) it is a weak base
- (b) it is a weak acid
- (c) it is amphoteric
- (d) its carbonyl carbon is not electron deficient
- 115. Which of the following statement is true regarding aspirin, a commonly used antipyretic and analgesic? Given pK_a for aspirin = 3.5; pH in stomach and small intestine is 2.5 and 8, respectively.
 - (a) It is completely ionized in the stomach and almost un-ionized in the small intestine.
 - (b) It is ionized in the small intestine and almost un-ionized in the stomach.
 - (c) It is ionized in the stomach and almost un-ionized in the small intestine.
 - (d) It is neither ionized in stomach nor in intestine.
- **116.** Which of the following will undergo alkaline hydrolysis most rapidly?

117. HVZ reaction involves the use of P and Cl,

$$CH_3CH_2COOH \xrightarrow{P, Cl_2} CH_3CHCICOOH$$

The function of phosphorus is

- (a) as a catalyst
- (b) in the formation of PCl₃ which carries out halogenation at the α-carbon atom
- (c) in the formation of PCl₃ which converts –COOH into –COCl
- (d) none of the these
- **118.** Hydrolysis of esters in presence of an acid is a reversible reaction. What is true about ester hydrolysis in presence of a base?
 - (a) It is irreversible because salts of carboxylic acids are insoluble.
 - (b) It is irreversible because salts of carboxylic acids have high melting points.
 - (c) It is irreversible because carboxylate ion is resonance stabilized.
 - (d) It is a reversible reaction.

120. What is the main product when HOOC—COOH is heated?

(d)
$$\begin{pmatrix} C \\ C \\ C \end{pmatrix}$$

121. The yield of ester in esterification can be increased by

$$CH_3CH_2OH + CH_3COOH \rightleftharpoons CH_3COOCH_2CH_3 + H_2O$$

(a) removing water

- (b) taking ethanol in excess
- (c) taking acetic acid in excess
- (d) all the above factors

122.
$$CH_3CH_2COOH + NCl \xrightarrow{HCl} Product is$$

(a) CH₃CH₂CHCOOH

C1

(b) ClCH₂CH₂CH₂COOH

Cl | (c) CH₃CHCH₂COOH

(d) All the three

123. The correct order of decarboxylation of the three acids is

- (a) iii > ii > i
- (b) iii = ii > i
- (c) iii > ii = i
- (d) iii = ii = i

124. Which statement is true regarding oxidation of the following two compounds?

- (a) Both are oxidizable to benzoic acid under similar conditions
- (b) It is very difficult to oxidize either of the two
- (c) Compound (i) is oxidizable to benzoic acid easily while compound (ii) is oxidizable only under vigorous conditions to benzoic acid
- (d) Compound (i) is oxidizable to benzoic acid, while (ii) is oxidizable only under vigorous conditions to 2,2-dimethylpropanoic acid
- **125.** Predict the nature of end product in the following reaction

126. The correct order for the acidic character of the following carboxylic acids is

COOH

(i)

COOH

(ii)

COOH

(iii)

COOH

(iv)

COOH

(v)

HO

OH

(b)
$$v > ii > ii > iv$$

(c) $v > ii > iv > ii > ii$

(d) $v > ii > iv > iii$

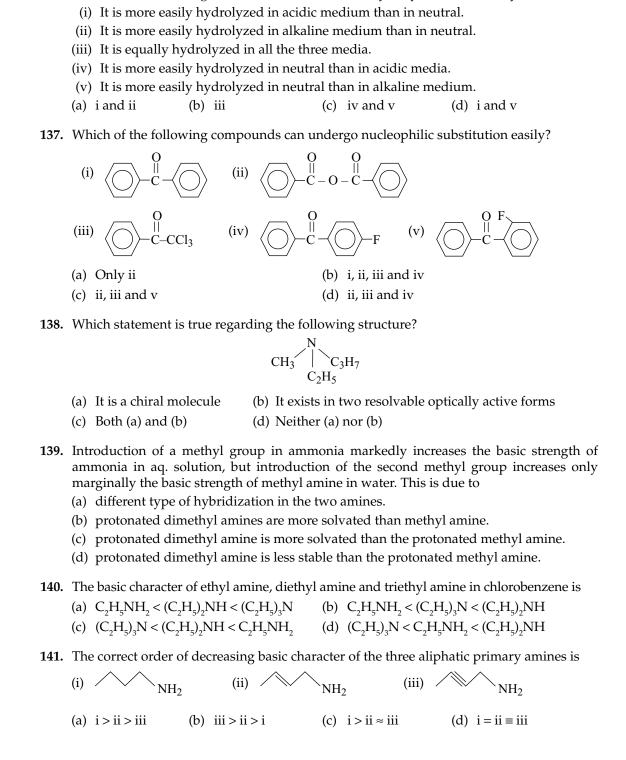
127. Salicylic acid is treated with bromine under two different conditions.

$$[Y] \xrightarrow{\text{Br}_2} COOH \xrightarrow{\text{COOH}} \frac{\text{Br}_2\text{in}}{\text{CH}_3\text{COOH}} [X]$$

Predict the nature of [X] and [Y] in the following reactions

- **128.** Which of the following statements is true?
 - (a) Hydrogen bonding always increases the acidic character of a species.
 - (b) Hydrogen bonding always decreases the acidic character of a species.
 - (c) Hydrogen bonding may increase or decrease the acidic character of a species.
 - (d) Hydrogen bonding play no role in determining the acidity of a species.
- 129. Choose the correct statement regarding acidic character of acetic acid, CH₃COOH and peroxyacetic acid, CH₂COOOH.
 - (a) Peroxyacetic acid is stronger acid than acetic acid since the former has one extra oxygen, an electronegative element.
 - (b) Peroxyacetic acid is stronger than acetic acid because its conjugate base is a weaker base than acetate.
 - (c) Peroxyacetic acid is weaker than acetic acid because its conjugate base is less stable than that of acetate ion.
 - (d) Both are equally strong.
- **130.** A carboxylic acid can best be converted into acid chloride by using
 - (a) PCl₅
- (b) SOCl,
- (c) HCl
- (d) ClCOCOCl
- 131. The yield of acid amide in the reaction, $RCOCl + NH_3 \longrightarrow RCONH_2$, is maximum when
 - (a) acid chloride and ammonia are treated in equimolar ratio
 - (b) acid chloride and ammonia are treated in 1:2 molar ratio
 - (c) acid chloride and ammonia are treated in 2:1 molar ratio
 - (d) All the three give nearly similar result
- **132.** Which of the following statement is not upto the mark?

(a)
$$R - C - OR' \xrightarrow{OH^-} R - C - O^- + R'OH$$
 (a base-catalyzed reaction)

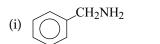

- (b) $CH_3COOC_2H_5 \xrightarrow{OH^-} CH_3COOH + C_2H_5OH$ (reaction involves acyl-oxygen fission)
- (c) $C_6H_5COOH + CH_3OH \xrightarrow{H^+} C_6H_5COOCH_3 + H_2O$ (reaction involves acyl-oxygen
- (d) $CH_3COOCH(CH_3)C_2H_5 \xrightarrow{OH^-} CH_3COO^- + HOCH(CH_2)C_2H_5$ (configuration of the reactant is retained)
- **133.** The products in the following reaction are

$$C_6H_5COOCH_2C_6H_5 \xrightarrow{H_2-Pd/C}$$

- (a) $C_6H_5CH_2OH + C_6H_5CH_2OH$ (b) $C_6H_5CH_3 + C_6H_5CH_3$ (c) $C_6H_5CH_2OH + C_6H_5CH_3$ (d) $C_6H_5COOH + C_6H_5CH_3$

CH₃

- 134. Pyrolysis of CH₃COOCHCH₂CH₃ gives
 - (a) 1-butene and 2-butene in equimolar ratio
 - (b) 1-butene and 2-butene in 1:2 molar ratio
 - (c) 1-butene and 2-butene in 3:2 molar ratio
 - (d) 1-butene and 2-butene in 2:3 molar ratio



135. The relative stability of the four acid derivatives towards nucleophiles is

136. Which of the following statement is true about the hydrolysis of acetic anhydride?

(a) Amide > Ester > Acid anhydride > Acid chloride
(b) Amide > Acid anhydride > Ester > Acid chloride
(c) Acid chloride > Acid anhydride > Ester > Amide
(d) Acid chloride > Ester > Acid anhydride > Amide

142.	Which of the statement is tru	ie regarding the ba	sicity of the follo	wing two primary amines?
------	-------------------------------	---------------------	---------------------	--------------------------

- (a) Both are equally basic because both are 1° amines.
- (b) i > ii because it is an aromatic amine.
- (c) ii > i because it is an aliphatic amine
- (d) i < ii because of difference in the nature of β -carbon.

143. The correct order of decreasing basic character is

- (i) $C_6H_5NH_2$
- (ii) C₆H₅CH₂NH₂
- (iii) $(C_6H_5)_2NH$
- (iv) $C_6H_{11}NH_2$

(a) ii > i > iii > iv

(b) iv > ii > i > iii

(c) iv > iii > ii > i

(d) iv > ii > iii > i

144. The correct order of increasing basicity is

- (i) CH₃CH₂NH₂
- (ii) NH || CH₃CNH₂
- (iii) O CH₃CNH₂

- (a) ii < iii < i
- (b) $i \approx iii < ii$
- (c) i < ii < iii
- (d) iii < i < ii

145. The relative order of basic character of the following compound is

(a) ii > i > iii > iv > v

(b) ii > iii > iv > v > i

(c) ii > v > iv > i > iii

(d) ii > iv > v > iii > i

146. The basic character of the following alcohols is

(a) iv > i > ii > iii

(b) ii > iii > iv > i

(c) iv > ii > iii > i

(d) i > ii > iii > iv

147. When aniline is treated with acetyl chloride in presence of anhydrous aluminium chloride, the main product is

- (a) o-aminoacetophenone
- (b) p-aminoacetophenone

(c) Both (a) and (b)

(d) m-aminoacetophenone

140	CH CH CH NH	$\xrightarrow{\text{NaNO}_2, \text{HCl}}$	D D ic
140.	CH ₃ CH ₂ CH ₂ NH ₃	0°C	r. r is

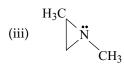
(a) CH₃CH₅CH₅OH

(b) (CH₃),CHCl

(c) Both (a) and (b)

- (d) Reaction not possible
- 149. Benzenediazonium chloride when treated with phenols gives an azo dye, to get best result the pH of the medium should be
 - (a) around 4
- (b) around 8
- (c) around 10
- (d) 12
- **150.** In the following reaction, the reagent X should be

$$RCOOH + [X] \xrightarrow{Conc. H_2SO_4} RNH_2$$


- (a) NH₃
- (b) HN₃
- (c) Either of the two
- (d) None of the two
- 151. Which of the following can undergo electrophilic substitution when treated with nitrous acid at 0°C?
 - (a) $C_6H_5NH_5$
- (b) $C_5H_5NHCH_3$ (c) $C_6H_5N(CH_3)_2$ (d) None of these

152. Which of the two reactions proceed faster?

(i) Conc. HNO₃,
$$\frac{\text{Conc. H}_2\text{SO}_4}{\text{(ii) Sn/HCl}}$$
 + HOH

- (a) i
- (b) ii

- (c) i = ii
- (d) Not definite
- **153.** Which of the following does not reduce $C_5H_5NO_2$ to aniline?
 - (a) Sn/HCl
- (b) SnCl₂/HCl
- (c) Zn/HCl
- (d) LiAlH
- **154.** Which of the following amines can be resolved into two enantiomers?

(iv)
$$\begin{array}{c} NH_2 \\ C - CH_2CH_2 \end{array}$$

- (a) i, iv
- (b) i, ii
- (c) i, iii, iv
- (d) iii, iv

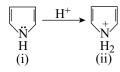
- **155.** Which of the following statement is false?
 - (a) Dimethyl amine as well as trimethyl amine are soluble in water.
 - (b) Trimethyl amine forms hydrogen bond neither with itself nor with water.
 - (c) Trimethyl amine can act as hydrogen bond acceptor only, while dimethyl amine can serve as both a hydrogen bond donor and acceptor.
 - (d) All the three statements are false.

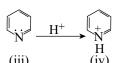
- **156.** Ephedrine is a secondary amine. It is widely used in cold and allergy conditions in the form of its hydrochloride but not as such because
 - (a) the amine itself has an unpleasant smell, while its salt is odourless.
 - (b) the amine is insoluble in water, while the salt is soluble in water.
 - (c) the amine is unstable and easily oxidized by air, while the salt is resistant to atmospheric oxidation.
 - (d) of all the above facts
- 157. Benzamide and benzyl amine can be distinguished by
 - (a) cold. dil. NaOH

(b) cold dil. HCl

(c) both (a) and (b)

- (d) NaNO₂, HCl, 0°C, then β-naphthol
- **158.** The correct order for the basic character of the compounds i to iv should be


(iv) CH₃CN


(a) iv < iii < i < ii

(b) iv < i < iii < ii

(c) iv < ii < iii < i

- (d) iv < iii < ii < i
- 159. Which of the following is true regarding basic character of pyridine and pyrrole?
 - (a) Pyrrole is more basic because its non-bonding electrons occupy sp³ orbital.
 - (b) Pyridine is more basic because its non-bonding electrons are not part of aromatic sextet.
 - (c) Both are equally basic.
 - (d) Pyridine is less basic because it is a tertiary amine.
- **160.** Pyrrole and pyridine both are basic and form salts with acids.

Which of the following statement is true regarding the aromatic character of the four species?

- (a) All the four are aromatic
- (b) i, iii and iv are aromatic
- (c) i, ii and iii are aromatic
- (d) i and iii are aromatic
- **161.** Ethylene can be prepared in good yield by
 - (a) $CH_3CH_2N^+(CH_3)_3I^- \xrightarrow{Heat} CH_2 = CH_2 + (CH_3)_3N + HI$
 - (b) $CH_3CH_2N^+(CH_3)_3OH^- \xrightarrow{\text{Heat}} CH_2 = CH_2 + (CH_3)_3N + H_2O$
 - (c) Both (a) and (b)
 - (d) $CH_3CH_2NH_2 \xrightarrow{Heat} CH_2 = CH_2 + NH_3$
- 162. Which one of the following is not an oxidation product of a primary amine?
 - (a) A hydroxylamine

(b) A nitroso compound

(c) A nitro compound

(d) None of these

163.	Which of the following method is used for eliminating nitrogen of an amine present out side the ring?					out-
	(a) Hofmann elim	ination	(b)	Cope eliminati	on	
	(c) Both (a) and (b))	(d)	Emde degrada	tion	
164.	Which of the follow	wing does not rea	act with nit	rous acid?		
	(a) $C_6H_5NH_2$	(b) C_6H_5NHCH	H_3 (c)	$C_6H_5N(CH_3)_2$	(d) None of these	
165.	Which of the follow	wing leads to car	bon–carbor	double bond?		
	(a) 1° amine + RC	$HO \longrightarrow$	(b)	2° Amine + R_2 C	$CO \longrightarrow$	
	(c) 2° amine + RC	$HO \longrightarrow$	(d)	Both (b) and (c)	
166.	Electrophilic aroma	atic substitution	of pyridine	resembles with	ı	
	(a) benzene	(b) aniline	(c)	nitrobenzene	(d) none of these	
167.	Arrange the follow substitution.	ving compounds	in decreasi	ng order of rea	ctivity towards electrop	hilic
	(i) (i)	(ii)		(iii)	N	
	(a) i > ii > iii	(b) i > ii = iii	(c)	iii > ii > i	(d) iii > i > ii	
168.	Which reaction see	ems to be incorre	ct?			
	(a) Me ₃ CCl — NH ₃	$\rightarrow \text{Me}_3\text{CNH}_2$	(b)	Me ₃ CCl — NH ₃	$\rightarrow Me_2C = CH_2$	
	(c) $\left(\begin{array}{c} -Cl \\ \end{array}\right)$	$\overline{\text{IH}_3}$	(d)	CH ₂ Cl	NH_3 CH_2NH_2	
169.	Which of the states	ment regarding f	following st	ructure is true?		
	СНО		ÇНО		СНО	
	н+он	I	н+он		но +н	
	(i) $HO + H$) +H	(iii)	HO TH	
	н+он н+он		O 		Н — ОН	
	CH ₂ OH		CH ₂ OH		CH ₂ OH	
	(a) (i) and (ii) are 6	epimers	(b)	(i) and (iii) are	epimers	
	(c) Both (a) and (b) are true	(d)	All the three ar	e epimers	
170.	Which of the follow	wing pair represe	ents an exar	nple of diastere	oisomers	
	(i) (+)-Tartaric ac	~ -		-		
	(ii) Maleic acid ar					
	(iii) D(+)-Galactose		nose			

(iv) (+)-Lactic acid and (-)-Lactic acid

(a) i and iii

(b) i, iii and iv

(c) i, ii and iii

(d) iv

LEVEL 2

Single and Multiple-choice Type

1. What could be the reagent for the following reaction?

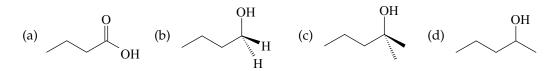
- (a) CH₃COCH₃
- (b) CH₂OH
- (c) CH₃CH₂OH
- (d) HOCH₂CH₂OH

2. What could be the product for the following reaction?

$$\begin{array}{c} \text{CH}_{3} \\ \text{Br} \\ & \text{(i) Mg, Et}_{2}O \\ \hline & \text{(ii) CD}_{2}O \\ \hline & \text{(iii) H}_{2}O \end{array} \qquad \begin{array}{c} \text{Product?} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

3. What could be the major product for the following reaction?

OH
$$\xrightarrow{\text{(i) EtMgBr (1 equivalent)}} \text{Product?}$$


HO
HO
(b)
HO
OH
(d)
OH

4. What could be the product for the following reaction?

(a) OH (b) OH (c) OH (d)
$$H$$
 (d) OH H (d)

5. What could be the product for the following reaction?

$$\begin{array}{c}
O \\
\hline
(i) CH_3MgBr \\
\hline
(ii) H^+, H_2O
\end{array}$$
 Product?

6. What is not the name for the following compound?

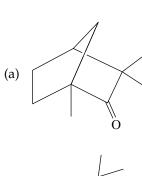
- (a) 2-Acetaldehyde
- (b) propanone
- (c) acetone
- (d) dimethyl ketone

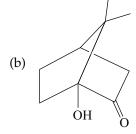
7. What could be the reagent for the following reaction?

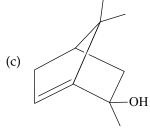
- (a) H₂N-Ph, removal of water
- (b) H₂NCH₂CH₃, CH₃CO₂H, removal of water
- (c) H₂NCH₃, H₂O, removal of water
- (d) H₂NCH₂CH₂CH₃, CH₃CO₂H, removal of water

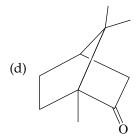
8. What could be the reagent for the following reaction?

Reagent cat. acid Removal of
$$H_2O$$

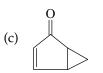

(a) CH₃COCH₃


(b) HOCH,CH,OH (c) CH3CH,OH

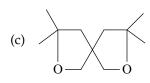

(d) CH₃OH


$$(a) \begin{array}{c|cccc} OH & OH & OH \\ OH & (b) & OH \\ OH & H & OOH \\ OOH \\ OOH & OOH \\ OOH$$

10.
$$Conc. H_2SO_4$$
 Major product is?



11.
$$Conc. H_2SO_4 \rightarrow Major product is?$$



12.
$$OH$$

Conc. H_2SO_4
 Δ

Major product is?

13.
$$OH \longrightarrow OH$$
 Dil. $H_2SO_4 \longrightarrow Major product is?$

14.
$$Conc. H_2SO_4 \rightarrow Major prodeut is?$$

$$(d) \qquad OH \qquad O$$

16.
$$\underbrace{\text{(i) O}_3}_{\text{(ii) PPh}_3} \text{ Major product is?}$$

(a)
$$O \longrightarrow O \longrightarrow H$$
 $O \longrightarrow O \longrightarrow H$
 $O \longrightarrow O \longrightarrow H$
 $O \longrightarrow O \longrightarrow O$

$$\underbrace{\text{(ii) BH}_3 - \text{THF}}_{\text{(ii) H}_2\text{O}_2} \rightarrow \text{Major product is?}$$

(i) mCPBA

(ii) DIBAL-H

→ Major product is? (iii) H₃O⁺

(i) Excess of Me MgCl (ii) H₂O / H⁺ ➤ Major product

20.
$$(i) O_3 / H_2O_2$$

$$(ii) Excess of MeOH /H^+ \longrightarrow Major product is?$$

- (i) MeOH / H⁺
- (ii) NaOMe / MeOH

 Major product of reaction is?
- (iii) Aqueous NaOH

(a)
$$O$$
OMe (b) O
OMe (c) O
OMe (d)

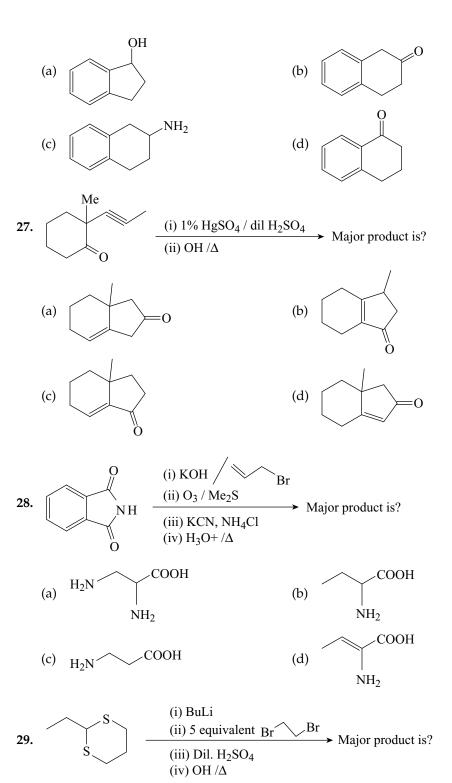
22. O (ii)
$$2 \text{ eq. RLi/Cl}$$
 Cl
 $H - C - H$ (iii) 4 eq. RLi/Cl Major product is?

→ Major product is?

- (i) SOCl₂
- (ii) NaN₃
- (iii) Ag_2O/Δ

$$\begin{array}{c|c} \text{(iv) H}_2\text{O} \\ \text{(v)} & \text{OH} \end{array} / \begin{array}{c} \\ \\ \end{array}$$

(vi) LAH


(d)
$$NH_2$$

24. Ph O
$$(i) NaCN
(ii) NH3 / \Delta / H+
(iii) HCN
(iv) H3O+ Major product is?$$

(c)
$$\begin{array}{c} & & \\ & & \\ & Ph & NH_2 \end{array}$$

$$(d) \qquad \qquad COOH \qquad \qquad \\ Ph \qquad \qquad \\$$

25.
$$CH_2OH$$
 (ii) PBr_3 (2 eq.) (ii) O O OEt $NaOEt$ OEt $Major product is? CH_2OH (iv) $H^+/\Delta$$

(a)
$$O$$
 (b) Me (c) O (d) O

(i) OH OH
$$/H^{\oplus}$$

(ii) BuLi (excess)

(iii) Dil. H_2SO_4 (iv) OH $/\Delta$

→ Major product is?

(i) CH
$$\equiv$$
 C \ominus Na \oplus

(ii) HgSO₄, dil H₂SO₄ 31. → Major product is? (iii) Ph-CHO / OH

(c)

(vii) Fe + HCl

(i) AC₂O

(viii) OH / H₂O

34.
$$(i) Br_2 / Fe$$

$$(ii) K_2 Cr_2 O_7 / H^+ / \Delta \longrightarrow Identify product?$$

$$(iv) CO_2 / H^+$$

$$(a) \qquad (b) \qquad (c) \qquad (d) \qquad (d)$$

35.
$$(i) HNO_3 / H_2SO_4 / \Delta$$

$$(ii) LAH$$

$$(iii) NaNO_2 + HC1 / 0-5^{\circ}C$$

$$(iv) CuCN$$
Identify product?

36.
$$(i) \text{ HNO}_3 / \text{H}_2\text{SO}_4 / \Delta$$

$$(ii) \text{ CH}_3\text{Cl} / \text{AlCl}_3 \longrightarrow \text{Identify product?}$$

$$(iii) \text{ Sn} / \text{HCl}$$

$$(iv) \text{ NaOH} / \text{H}_2\text{O}$$

(a)
$$C1$$
 $C1$ CH_3 $COOH$ $C1$ $COOH$ $C1$ $COOH$ $C1$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ OOD_{NH_2} $OODD_{NH_2}$ O

37.
$$(i) \text{ Li / Et}_2O$$

$$(ii) \text{ HCHO Then H}^+$$

$$(iii) \text{ HCl}$$

$$(iv) \text{ Li / Et}_2O$$

$$(v) \text{ CO}_2, \text{ Then H}^+$$

$$(iii) \text{ HCl}$$

$$(iv) \text{ Li / Et}_2O$$

(a)
$$MeO$$
 OMe OMe OMe OMe OMe OMe OMe OMe OMe OMe

39. In the presence of a base, the compound below cyclizes to give a compound Y.

$$O$$
 H_3C
 CH_3
 O
 H_2O

Identify the structure of compound Y.

(a)
$$CH_3$$
 (b) CH_3 (c) CH_3 (d) CH_3 (d) CH_3 (e) OH (f) OH (

40. (i)
$$CH_3COC1 / AlCl_3$$

(ii) $Zn-Hg /HCl$ Identify product?

41.
$$HO$$
 H_3C
 O
 CH_3
 $Identify product?$

43.
$$H_3C_{0}$$
 H_3 H_3C_{0} H_4 H_3 H_4 H_4 H_4 H_5 H_6 H_6 H_7 H_8 $H_$

(a)
$$H_3C$$
 CH_3 CH_3 H_2NOC

(b)
$$H_2NOC$$
 CH_3

(c)
$$H_3C$$
 O CH_3 SPh

СООН

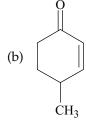
$$(d) \quad \begin{array}{c} H_3C \\ H_3C \\ \end{array} \quad O$$

$$H_2NOC$$

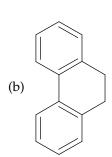
- (i) NaOH, H₂O → Identify product? (ii) H₃O⁺
- (a) OH OH CH3 COOH

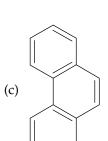
соон

(c)
$$H_2N$$
 $NaNO_2$, then HCl $0 \, {}^{\circ}C$ Identify product?


(a) (b) (c) H_2N NH_2 H_3O^+ A Identify product?

(b) H_2N NH_2 H_3O^+ A Identify product?


(a) H_2N NH_2 H_3O^+ A Identify product?


 NH_2

 $\underbrace{\text{(i) NaOMe} / \Delta} \rightarrow \text{Identify product?}$

 $\frac{\text{NaOD / D}_2\text{O}}{\text{Dioxane}} \rightarrow \text{Identify product?}$

CH₃

KH 18- Crown- 6 / THF → Identify product?

 CH_3

 $\mathbf{59.} \quad \begin{array}{c} \mathbf{H_3C} \\ \mathbf{O} \\ \end{array} \quad \underline{\mathbf{Conc.} \, \mathbf{H_2}}$

 $\xrightarrow{\text{Conc. H}_2\text{SO}_4}$ Identify product?

CH₃

(a)
$$H_3C$$
 CH_3 CH_3 CH_3

ĊH₃

(b)

60. $\frac{\text{CH}_{3}}{\text{H}_{2}\text{C} = P} \xrightarrow{\text{Ph}} \text{Identify product?}$

ÇH₃

(a)
$$CH_3$$
 CH_3 CH_2

(c)
$$CH_3$$
 CH_3 (d)

61.
$$\frac{\text{(i) CH}_2N_2}{\text{(iii) MeI}} \text{Identify product?}$$

62.
$$(i) \text{ MeMgCl} \atop (ii) \text{ HClO}_4 \text{ (aq.)} \atop (iii) \text{ NaOH (aq.)}} \text{ Identify product?}$$

63. AcO O O Aq. NaOH
$$/\Delta$$
 Identify product?

 H_3C CH_3 CH_3

64.
$$Ac_2O$$
 Identify product?

 Ac_2O Identify product?

 CH_3 CH_3 CH_3
 CH_3 CH_3 CH_3
 CH_3 CH_3
 CH_3 CH_3
 CH_3 CH_3
 CH_3 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH

 $\dot{N}O_2$

 $\dot{N}O_2$

66.
$$O_2N$$
 O_2N O_2N O_2N O_3N O_4N O_4

Identity true statement for A and B products.

(a) 'A' is
$$\begin{array}{c} CH_2OH \\ CH_2OH \end{array}$$
 (b) 'B' is
$$\begin{array}{c} H_2N \\ OH \end{array}$$

(c) 'A' is
$$O_2N \qquad OH \qquad OOH \qquad OOD$$

67.
$$\begin{array}{c}
O \\
(i) HO \\
O \\
H \\
(ii) NH_2NH_2 / OH^- / \Delta \\
(ii) H_3O^+ \\
(iv) LiAlH_4 \\
(v) SOCl_2
\end{array}$$
(a)
$$\begin{array}{c}
(i) PPh_3 \\
(ii) BuLi \\
MeO \\
O \\
MeO \\
O \\
(iii) H
\end{array}$$
(B)

Identify correct statement for (A) and (B) products.

68.
$$(i) HO OH OH (ii) PPh_3 = CH_2$$

$$(iii) H_3O^+$$
Major product is?

(a)
$$CH_2$$
 PPH_3 O CH_2 O O O

69.
$$(iii) \xrightarrow{O} OEt / H^{+}$$

$$(iv) LAH$$

$$(v) H_{3}O^{+}$$

$$(iv) LAH$$

70. Identify correct reaction sequence

71. Identify correct reaction sequence

72. Identify correct reaction sequence

(a)
$$VO_2$$
 VO_2 $VO_$

73. Identify correct reaction sequence

74.
$$\begin{array}{c|c}
CHO & (i) MeOH / H^{+} \\
H & OH & (ii) HIO_{4} \\
CH_{3}OH & (iii) NaBH_{4}
\end{array}$$
 Major product is?

 $\begin{array}{c} \text{(iii) } O_3 \, / \, Zn \\ \text{(iv) } OH^- \, / \Delta \end{array}$

➤ Major product is?

78.

(a)
$$(b)$$
 (c) (c) (d) (d)

(a)
$$t$$
-Bu O

84.
$$(i) H_3PO_4/\Delta$$

$$(ii) BH_3 - THF$$

$$(iii) H_2O_2/OH$$

$$(iv) SOCl_2$$

$$(v) NaSMe$$

$$(v) NaSMe$$

(a)
$$OH$$
 (b) Me (c) Me (d) Me SMe

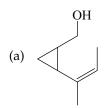
85.
$$(i) 2 \text{ eq. NaNH}_{2}$$

$$(ii) Pd / BaSO_{4} / H_{2}$$

$$(iii) OsO_{4}, \text{ then NaHSO}_{3} \longrightarrow \text{Major product is?}$$

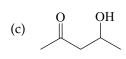
$$(iv) HIO_{4}$$

$$(v) H_{2}CrO_{4}$$


$$(a) \qquad Br \qquad (b) \qquad COOH$$

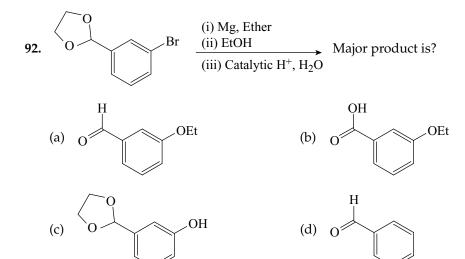
$$(c) \qquad O \qquad (d) \qquad COOH$$

86. OH
$$\begin{array}{c}
(i) \text{ BuLi} \\
(ii) & & \\
\hline
(iii) \text{ NaNH}_2 \\
(iv) \text{ CH}_3\text{-I} \\
(v) \text{ Br}_2 / \text{ CCl}_4
\end{array}$$


87. HO
$$\begin{array}{c}
(i) \longrightarrow / H_2SO_4 \\
(ii) NaNH_2 \\
(iii) \longrightarrow I
\end{array}$$
Major product is?
$$(v) H_3O^+ \\
(v) H_2 / Lindlar's catalyst \\
(vi) m \cdot CPBA$$

- (iii) Pd / BaSO $_4$ / H $_2$
- (iv) Zn–Cu / CH_2 I_2 ether

→ Major product is?



89. Which of the following structures is the product from the self-condensation of two molecules of pentan-3-one?

Major product is?

$$\frac{\text{(i) Na, NH}_3}{\text{(ii) HBr}} \rightarrow \text{Major product is?}$$

(c)
$$\begin{array}{c|c} H & H \\ | & | \\ -C & -C - CH_3 \\ Br & H \end{array}$$

- 93. Select all of the following statements about the cross Aldol experiment that are true:
 - (a) The ketone was added to a solution containing the aldehyde and base.
 - (b) The reaction can be catalyzed by an acid.
 - (c) The electrophile is the enolate ion.
 - (d) The aldehyde is used in excess.

94.
$$CH_3CO_2H$$
 (i) $SOCl_2$ (ii) 3 -Methylaniline (iii) $LiAlH_4$, then H_3O^+

H₃C NH_2 CH_3 (b) NH_2 CH_3 OH OH

95. (i) O_3 , then Zn in H_2O OH OH

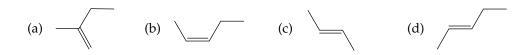
Identify reactant?

(iii) Excess PBr₃(iv) Excess KCN(v) H⁺, H₂O, Heat

96.
$$(i)$$
 HO-CH₂CH₂-OH, Catalytic H⁺
 (ii) Mg, THF then H₂O=O, then H₃O⁺
 (iii) H₃O⁺, heat

Identify reactant?

Identify reactant?


98.
$$\frac{\text{BrMg-(CH2)4-MgBr}}{\text{then, H3O+}} OH$$

Identify reactant?

(a)
$$O$$
 (b) O (c) O (d) O

(50:50 of these enantiomers)

Identify reactant?

100. O (ii) LDA (ii)
$$CH_3I$$
 Major product is?

(a)
$$OH_3C$$
 (b) OH (c) OH

101.
$$\begin{array}{c} (i) \ HBr \ (dark, N_2) \\ \hline (ii) \ PH_3P, \ then \ nBuLi \\ (iii) \end{array}$$
 Major product is?

103. H CO₂CH₂CH₃
$$\xrightarrow{\text{(i) HOCH}_2\text{CH}_2\text{OH/H}^+/\text{heat}}$$
 Major product is? $\xrightarrow{\text{(ii) LiAlH}_4, \text{ then H}_3\text{O}^+}$ heat

Comprehension Type

Passage 1

When the following three different types of esters are hydrolyzed in a basic medium,

the hydroxide anion attacks the acyl carbon in carboxylates while it attacks the alkyl carbon in sulphonates leading to a difference in the site of cleavage. More interestingly, phosphate esters lie somewhat in between carboxylates and sulphonates in that cleavage can occur in either direction.

In an acidic solution, all the three types of phosphates (monoalkyl, dialkyl and trialkyl) are hydrolyzed to phosphoric acid, while in a basic solution only trialkyl phosphates undergo hydrolysis and only one alkoxy group is removed.

- **104.** Which of the following factor explains the difference in attack of the nucleophile, OH⁻ on carboxylates and sulphonates?
 - (a) Sulphonate anions are weakly basic and hence good leaving groups.
 - (b) Carboxylate anions are strongly basic and hence poor leaving groups.
 - (c) Both (a) and (b)
 - (d) None of the these
- **105.** Competition between phosphorus and alkyl carbon to nucleophilic attack is due to the fact that
 - (a) Phosphorus can accept an additional pair of electrons.
 - (b) Phosphoric acid lies between carboxylic acid and sulphonic acid.
 - (c) Both (a) and (b)
 - (d) None of the these
- **106.** The rate of hydrolysis of monoalkyl phosphates tends to with increase in pH.
 - (a) Decrease

(b) Increase

(c) Remains unaffected

- (d) None of these
- 107. In an aqueous solution, a monoalkylphosphate ester can exist as
 - (a) A neutral ester
 - (b) A monoanion and dianion
 - (c) A monoanion, dianion and protonated ester
 - (d) A monoanion, dianion, protonated ester and neutral ester

Passage 2

Grignard reagents (RMgX) are prepared by the reaction of an organic halide and magnesium metal is in ether solvent.

$$R-X + Mg \xrightarrow{R-O-R} R-MgX$$

The solvent (usually diethyl ether or tetrahydrofuran) plays a crucial role in the formation of a Grignard reagent. Alkyl halides are more reactive than aryl and vinyl halides. Indeed, aryl and vinyl chlorides do not form Grignard reagent in diethyl ether.

However, an alkyl halide containing an alcoholic –OH group can be converted to Grignard reagent by first protecting the –OH group to tert–butyldimethylsilyl ether which is inert to Grignard reagent. The protecting group is finally liberated by treatment with fluoride ion.

$$R - O - H + CI \underbrace{Si - C(CH_3)_3}_{CH_3} \longrightarrow R - O - \underbrace{Si - C(CH_3)_3}_{CH_3}$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

tert-butylchlorodimethylsilane

$$\frac{\text{CH}_{3}}{\text{CH}_{3}}$$

$$\xrightarrow{\text{THF}} R - O - H + F - \text{Si} - C(\text{CH}_{3})_{3}$$

$$\xrightarrow{\text{CH}_{3}}$$

$$\downarrow \\
\text{CH}_{3}$$

- 108. Grignard reactions generally occur in dry ether because
 - (a) The stronger acid diethyl ether will displace the weaker RH acid from its salt.
 - (b) The stronger acid H₂O will displace the weaker acid RH from its salt.
 - (c) Water slows down the reaction.
 - (d) Water mixes with ether preventing ether to perform its function.
- **109.** Grignard reagent cannot be prepared from

(a)
$$HO \longrightarrow Br$$
 (b) Cl (c) Cl (d) Cl

- 110. H₂N(CH₂)₂Br cannot be converted into corresponding Grignard reagent because of
 - (a) Reaction between –NH, and –Br groups present in the same molecule
 - (b) Strong nucleophilic character of the Grignard reagent
 - (c) Strong basic nature of the Grignard reagent
 - (d) All the three factors
- 111. The function of tetrahydrofuran in the preparation of Grignard reagent is that it
 - (a) Acts as a solvent
 - (b) Helps in maintaining the reactivity of magnesium
 - (c) Both (a) and (b)
 - (d) None of the these

Passage 3

Grignard reagents are powerful nucleophiles and strong bases. They act as nucleophiles by attacking a variety of compounds including saturated and unsaturated carbon atoms. Examples of reaction on saturated carbon include oxiranes (epoxides) which form alcohols as the final product.

$$\begin{array}{ccc}
\delta - & \delta + \\
R \text{ MgX} + \text{H}_2\text{C} \longrightarrow \text{CH}_2 & & \underbrace{\text{(i) Ether}}_{\text{(ii) H}_3\text{O}^+} & R - \text{CH}_2 - \text{CH}_2\text{OH}
\end{array}$$

Examples of reaction on unsaturated carbon are attack on C = 0, C = N, C = S, etc.

$$R > C = O + R''MgX \xrightarrow{H_3O^+} R > C - OH$$

When R and R' = H, product is 1° alcohol.

When R and R' = Alkyl group, product is 3° alcohol.

When one R or R' is alkyl, product is 2° alcohol.

112.
$$C_6H_5MgBr + H_2C \xrightarrow{C} CHCH_3 \xrightarrow{(i) Et_2O} Product.$$

Here, the nucleophile C₆H₅⁻ attacks

- (a) C_1
- (b) C,
- (c) C₃
- (d) Any of the three

- 113. Epoxides react with Grignard reagent to form
 - (a) Primary alcohols

(b) Secondary alcohols

(c) Tertiary alcohols

- (d) Any of the three
- **114.** On the basis of the above two passages, predict which of the reaction is feasible.

(i)
$$(i)$$
 (i) (i)

(ii)
$$\longrightarrow$$
 MgBr \longrightarrow CH₃CHO, H₃O⁺ OH

(iii)
$$O$$
 HO CH_2CH_3 O OH O OH

- (a) Only ii
- (b) i and ii
- (c) All the three
- (d) None of three

115. On the basis of the above two passages, steps involved in the following conversion are

- (a) Protection of the –OH group, followed by reaction with $^{\rm H_2C-CHCH_3}$
- (b) Protection of the -OH group, followed by reaction with CH₃CH₂CHO
- (c) Protection of the -OH group, followed by reaction with (CH₂)₂CHCHO
- (d) Reaction is not feasible to give quantitative yield

Passage 4

Alkyl halides and alcohols easily undergo nucleophilic substitution either through $S_N 1$ or $S_N 2$ mechanism. The relative case of these two processes depends upon the nature of the substrate (alkyl group as well as leaving group), nature of nucleophile and also upon the nature of solvent.

 S_N^{-1} mechanism involves the formation of carbocation as intermediate while S_N^{-2} mechanism involves the formation of a transition pentavalent state. S_N^{-1} is the main mechanism in 3° alkyl halides and alcohols, while S_N^{-2} mechanism is the path adopted by most of the 1° alkyl halides and 2° alkyl halides may follow S_N^{-1} as well as S_N^{-2} .

- **116.** Which of the following solvent will give maximum yield for an alkyl halide undergoing $S_{N}1$ mechanism?
 - (a) Water
- (b) Ethanol
- (c) Diethyl ether
- (d) n-hexane
- **117.** Rearrangement of alkyl groups occur when hydrogen halides react with alcohols except with most primary alcohols. The best explanation is that
 - (a) The 1° carbocations are unstable and hence are not formed.
 - (b) The 1° carbocations are unable to undergo rearrangement.
 - (c) Both (a) and (b) are true
 - (d) Both (a) and (b) are false
- 118. Neopentyl alcohol, Me₃CCH₂OH, reacts with HX according to
 - (a) $S_N 1$ mechanism

(b) S_N2 mechanism

(c) Both (a) and (b)

(d) None

Passage 5

119. A chemist treated a compound X with NaOH in presence of acetone as solvent. However, he recovered the starting material as such, and instead isolated a small amount of the product A. The product A was shown to have C, H and O and it had a molecular weight of 116g/mol. It gave a positive iodoform test and was found to be identical with a compound obtained by the aldol self-condensation of acetone.

Although the product A did not discharge colour of bromine in CCl_4 , its dehydration product B with hot sulphuric acid discharged bromine dissolved in CCl_4 .

	(a) 35	(b)	44	(c)	49	(d) 58						
121.	The aldol self-condensation of acetone is in equilibrium that favours acetone over its corresponding product. Which of the following conditions is most likely to shift the position of equilibrium toward product A?											
	(a) By using a catalytic amount of NaOH.											
	(b) By using only a	a cata	lytic amount of ac	etor	ie.							
	(c) By removing p	rodu	ct A as soon as it is	for	med.							
	(d) By increasing r	eactio	on temperature.									
122.	Which of the follow	ving o	compounds will g	ive a	n positive iodoform	m test?						
	(a) Only compoun	ıd A		(b)	Only compound	В						
	(c) Both (a) and (b)		(d)	None of these							
123.	The compound X can be											
	O				O							
	(a) CH ₃ CH			(b)	$CH_3 - C - CH_3$							

120. What is the molecular weight of a compound that undergoes an aldol self-condensation

reaction and whose dehydrated product has a molecular weight of 70?

Passage 6

(c) HCHO

Amides undergo hydrolysis to yield carboxylic acid plus amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of esters, anhydrides or acid chlorides, but the mechanism is similar (nucleophilic acyl substitution). Nucleophilic acyl substitutions involve a tetrahedral intermediate, hence these are quite different from alkyl substitution (RCH₂Br $\xrightarrow{\text{NaCN}}$ RCH₂CN) which involves a pentavalent intermediate or transition state.

One of the important reactions of esters is their reaction with two equivalent of a Grignard reagent to give tertiary alcohols.

124. The mechanism involved during the hydrolysis of acid derivatives is

(a) elimination-addition

(b) addition-elimination

(d) n-CH₃CH₂CH₂CH₃

- (c) nucleophilic addition-elimination
- (d) electrophilic addition-elimination

125. Which of the following constitutes the best substrate during the acidic hydrolysis of amides?

126. For which functional derivative of carboxylic acids, acidic hydrolysis is avoided?

(a) Acid chlorides

(b) Acid amides

(c) Acid anhydrides

(d) Esters

- **127.** When \(\sum_{=}^{\infty} \) is treated with two equivalent of methyl magnesium iodide, the product that acidified the final product will be
- **128.** Which of the following methods is more general for preparing nitriles?
 - (a) $RCH_{2}Br + NaCN \longrightarrow RCH_{2}CN + NaBr$
 - (b) $RCH_2CH_2CONH_2 \xrightarrow{P_4O_{10}} RCH_2CH_2CN$
 - (c) Both (a) and (b)
 - (d) None of these

Passage 7

Methanoic acid, the first member of carboxylic acid series, when warmed with concentrated sulphuric acid decompose in the following way and evolve carbon monoxide

The driving force for this reaction lies in the fact that the $HC \equiv O^+$ ion is very unstable acid and thus easily loses H⁺.

- **129.** Formic acid on heating with conc. H₂SO₄ gives

 - (a) $CO_2 + H_2$ (b) $CO + H_2O$ (c) CO
- (d) H₂O
- 130. What happens when acetic acid is treated with conc. H₂SO₄?

 - (a) $CO + H_2O$ (b) $CH_4 + CO_2$ (c) $CO + CH_4$
- (d) No reaction
- 131. If acetic acid is replaced by triphenylacetic acid, the product formed will be
 - (a) $(C_6H_5)_3CH + CO$

(b) $(C_6H_5)_3CH + CO_7$

(c) $(C_6H_5)_3COH + CO$

- (d) No reaction
- **132.** If formic acid is replaced by benzoylformic acid, C₆H₅COCOOH, the product formed will
 - (a) $C_6H_5COOH + CO + CO_9$
- (b) $C_6H_5COOH + CO_2$

(c) $C_6H_5COOH + CO$

(d) $C_6H_5CHO + CO_7$

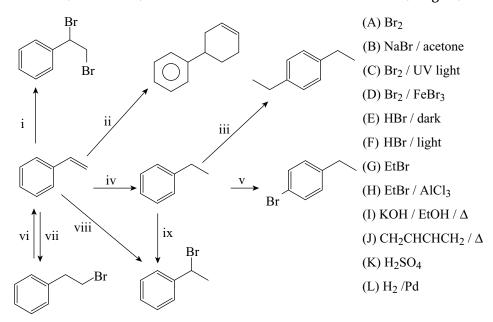
Answer Keys

LEVEL 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	a	с	d	b	b	a	d	d	d	d	a	с	a	a	a	b	b	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	b	d	b	a	d	С	b	d	b	b	b	b	с	d	с	a	d	b	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	С	d	d	b	b	С	с	С	d	с	С	d	d	С	с	С	С	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	a	a	с	b	С	d	b	С	a	с	С	с	b	d	с	С	b	с	с
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	d	b	d	с	b	a	с	С	b	a	d	b	d	a	b	d	b	b	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
с	a	a	с	b	d	b	ь	a	d	d	a	a	d	b	d	С	С	d	с
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	a	b	d	b	d	b	с	С	d	b	d	d	с	a	a	С	a	d	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	d	b	d	с	a	d	с	b	b	с	С	d	d	b	d	b	a	b	b
161	162	163	164	165	166	167	168	169	170										
b	d	b	d	d	С	d	a	С	с										

LEVEL 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	d	С	С	С	a	b	b	b	a	d	b	С	b	a
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
a	С	d	С	b	С	d	b	b	с	b	d	a	b	a
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
d	С	a	b	a	b	b	С	С	С	a	b	a	b	b
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	b	b	С	d	С	a	a	С	d	b	a	a	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
b	d	a	С	b	bc	ad	b	С	bcd	ad	abcd	bcd	d	b
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
С	d	b	a	b	a	b	a	cd	d	b	с	a	b	с
91	92	93	94	95	96	97	98	99	100	1 01	1 02	1 03	1 04	105
С	d	abd	d	b	a	С	d	d	d	a	с	a	С	a
106	1 07	108	1 09	110	111	112	113	114	115	116	117	118	119	120
a	d	b	a	с	с	a	d	d	d	a	d	a	b	с
121	1 22	123	124	125	126	127	128	129	130	131	132			
С	d	C	С	С	b	b	b	b	С	С	С			


WORKBOOK EXERCISES

EXERCISE 1

Matrix Type

Identify reagents (1 to 9) used in the following conversion from reagent present in the second Column II (A to L).

Column I (Conversion)

Identify reagents (1 to 10) used in the following conversion from reagent present in the second Column II (A to P).

Column I (Conversion)

$$OH \xrightarrow{i} OEt \xrightarrow{ii} OEt \xrightarrow{iii} OEt OEt$$

$$OE \xrightarrow{iii} OET$$

Brevicomin

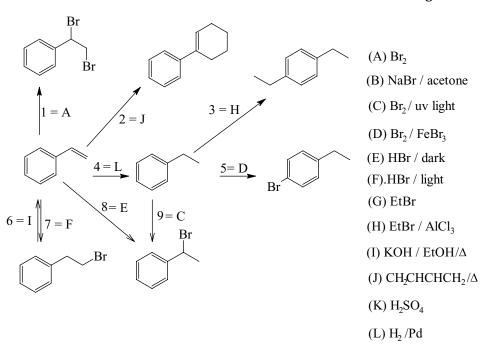
- (A) CH₃CH₂CH₂CH₂Li / THF
- (B) CH₃CH=CH₂
- (C) CH₃CO₂H
- (D) CH₃CO₃H
- (E) $(CH_3)_2C=O/H^+$
- (F) CH₃CH₂CHO
- (G) PBr₃ / Et₃N
- (H) PPh₃
- (I) $CH_3CH_2CH_2MgBr / THF$, then H_3O^+
- (J) H_3O+/Δ
- (K) Conc. H_2SO_4 / Δ
- (L) NaOEt, then Br(CH₂)₃Br
- (M) NaOEt / EtOH
- (N) LiAlH₄, then H₃O⁺
- (O) HOCH₂CH₂OH/H⁺
- (P) EtOH $/H^+$ / heat

Identify reagents (1 to 9) used in the following conversion from reagent present in the second Column II (A to S).

Column I (Conversion)

- (A) KOH / $H_2O / H_3O^+ / \Delta$
- (B) NaOEt / EtOH
- (C) CH₃ONa / CH₃OH
- (D) CH_3CH_2OH / H^+
- (E) CH_3OH / H^+
- (F) Excess CH₃I
- (G) Conc. H₂SO₄
- (H) BH $_3$, then aq. NaOH / H $_2$ O $_2$
- (I) CH₃Cl / AlCl₃
- CO₂Et (J) CH₃COCl / AlCl₃
 - (K) Excess CH_3MgI , then H_3O^+
 - (L) Conc. HCl
 - (M) NCS or Cl₂
 - (N) LiAlH₄, then H₃O⁺
 - (O) NaBH₄
 - (P) Ph₃P=CH₂
 - (Q) $tBuOH / H^{+}$
 - (R) tBuCl / KOH
 - $\mathrm{(S)}\:\mathrm{H_{2}O\:/\:HgSO_{4}\:/\:H_{2}SO_{4}}$

Identify products in the following matrix.


Reagents ----

Compounds	PCC	K ₂ Cr ₂ O ₇	NaH/Mel	MnO ₂	Conc. KMnO ₄
HO					
ОН					
OH					
OH					
ОН					
ОН					
НООН					
ОН					
ОН ОН					
НО ОН					
ОН					
ОН					
- CX					
OH					
НООН					

SOLUTION FOR WORKBOOK EXERCISES

EXERCISE 1

Column I (Conversion)

Column I (Conversion)

$$OH^{1} = P OEt^{2} = M OEt^{3} = L OEt^{4} = J$$

$$OEt^{4} = J$$

$$OOT^{4} = J$$

$$OOT^{4}$$

- (A) CH₃CH₂CH₂CH₂Li / THF
- (B) CH₃CH=CH₂
- (C) CH₃CO₂H
- (D) CH₃CO₃H
- (E) $(CH_3)_2C=O/H^+$
- (F) CH₃CH₂CHO
- (G) PBr_3 / Et_3N
- (H) PPh₃
- (I) $CH_3CH_2CH_2MgBr$ / THF then H_3O^+
- (J) H_3O^+ / D
- (K) Conc. H₂SO₄/D
- (L) NaOEt then Br(CH₂)₃Br
- (M) NaOEt / EtOH
- (N) LiAlH₄ then H₃O⁺
- (O) HOCH₂CH₂OH/H⁺
- (P) EtOH $/H^+$ / heat

Column I (Conversion)

$$\begin{array}{c}
1 = Q \\
\hline
CO_2Et \\
\hline
CO_2Et \\
\hline
CO_2Et \\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
\hline
CO_2Et
\\
CO_2Et
\\
\hline
CO_2Et
\\
CO$$

- (A) KOH / H_2O / Δ
- (B) NaOEt / EtOH
- (C) CH₃ONa / CH₃OH
- (D) CH_3CH_2OH / H^+
- (E) CH₃OH / H⁺
- (F) Excess CH₃I
- (G) conc. H₂SO₄
- (H). BH₃ then aq. NaOH / H₂O₂
- CO₂Et (I) CH₃Cl / AlCl₃
 - (J) CH₃COCl / AlCl₃
 - (K) excess CH₃MgI then H₃O⁺
 - (L) conc. HCl
 - (M) NCS or Cl₂
 - (N) LiAlH₄ then H₃O⁺
 - (O) NaBH₄
 - (P) Ph₃P=CH₂
 - (Q) tBuOH / H⁺
 - (R) tBuCl / KOH
 - $\mathrm{(S)}~\mathrm{H_2O}~/~\mathrm{HgSO_4}~/~\mathrm{H_2SO_4}$

	Reagents —				
Compounds	PCC	$K_2Cr_2O_7$	NaH/MeI	MnO_2	Conc.KMnO ₄
HO	$\langle \rangle_0$	0	OMe	HO	0
✓ OH	/ 0	OH	OMe	✓✓ OH	✓√O _O H
OH	ОН	ОН	OMe	OH	OH
✓ OH	✓	✓√OH	OMe	✓ OH	OH
ОН			OMe	ОН	<u> </u>
> ✓ ОН	≫ 0	O O O O O O O O O O	OMe	≫ 0	O O O O O O O O O O O O O O O O O O O
НО	НО	но	MeO OMe	но	но
		СООН			СООН
OH	o	HOO	OMe	О С–н	HOO
ОН ОН	ООН	ООН	OMe OMe	ОН ОН	ООН
ОН	но	но о	OMe MeO OMe	ОН	но о
ОН	o Co	HOOC HOOC	OMe OMe	ОН	HOOC HOOC
ОН	0	0	OMe	ОН	0
		СООН			СООН
OH		HOO	OMe		НО О С-ОН
НООН	ОН	о ноос он	MeO OMe OMe	ОН	HOOC OH