

Permutations and Combinations

Assertion Reason Questions

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.

1. Assertion (A): If $5^4 P_r = 6^5 P_{r-1}$, then $r = 3$.

Reason (R): If $5^5 P_r = 6^6 P_{r-1}$ then $r = 9$.

Ans. (c) (A) is true but (R) is false.

Explanation: We have $5^4 P_r = 6^5 P_{r-1}$

$$\begin{aligned}\Rightarrow 5 \times \frac{4!}{(4-r)!} &= 6 \times \frac{5!}{(5-r+1)!} \\ \Rightarrow \frac{5!}{(4-r)!} &= \frac{6 \times 5!}{(6-r)(5-r)(4-r)!} \\ \Rightarrow (7-r)(6-r) &= 6 \\ \Rightarrow 42 - r^2 - 13r &= 6 \\ \Rightarrow (6-r)(5-r) &= 6 \\ \Rightarrow r^2 - 11r + 24 &= 0 \\ \Rightarrow (r-8)(r-3) &= 0 \\ \Rightarrow r &= 8, 3\end{aligned}$$

But $r \neq 8$ as $r \leq 4$

$$\therefore r = 3$$

We have, $5^5 P_r = 6^6 P_{r-1}$

$$\begin{aligned}\Rightarrow \frac{5!}{(5-r)!} &= \frac{6!}{(6-r+1)!} \\ \Rightarrow \frac{1}{(5-r)!} &= \frac{6}{(7-r)(6-r)(5-r)!} \\ \Rightarrow r^2 - 13r + 36 &= 0 \\ \Rightarrow (r-4)(r-9) &= 0 \\ \Rightarrow r &= 4, 9 \\ \Rightarrow r &= 4 \quad [\because r \neq 9]\end{aligned}$$

2. Assertion (A): The number of permutations of letters of word 'ROOT' are 10.

Reason (R): The number of permutations of letters of word 'INSTITUTE' is

$$\frac{9!}{2!3!}.$$

Ans. (d) (A) is false but (R) is true.

Explanation: There are 4 letters in 'Root' of which there are 2O's and rest are different.

Therefore, the required number of arrangements

$$= \frac{4!}{2!} = 12$$

There are 9 letters in 'INSTITUTE' of which there are 2 I's, 3T's and rest are different.

Therefore, the required number of arrangements

$$= \frac{9!}{2!3!}$$

3.

Assertion (A): ${}^n P_r = \frac{n!}{(n-r)!}$, $0 \leq r \leq n$.

Reason (R): ${}^n P_r = n(n-1)(n-2)\dots(n-r+1)$,
 $0 \leq r \leq n$.

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: We know,

$$\begin{aligned} {}^n P_r &= n(n-1)(n-2)\dots(n-r+1) \\ &= \frac{n(n-1)(n-2)\dots(n-r+1)(n-r)\dots3\times2\times1}{(n-r)(n-r-1)\dots3\times2\times1} \\ &= \frac{n!}{(n-r)!} \end{aligned}$$

4. Assertion (A): The value of ${}^6 P_4$ is 360.

Reason (R): ${}^n P_r = P(n, r) = \frac{n!}{(n-r)!}$.

Ans. (a) Both A and R are true and R is the correct explanation of A.

Explanation: We know that,

$${}^n P_r = P(n, r) = \frac{n!}{(n-r)!}$$

$${}^6 P_4 = \frac{6!}{(6-4)!} = \frac{6!}{2!}$$

$$= \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!}$$

$$= 360$$

5. Assertion (A): Number of lines formed by joining n points on a circle

$$(n \geq 2) \text{ is } \frac{n(n-1)}{2}.$$

$$\text{Reason (R): } C(n, 3) = \frac{n(n-1)}{2}.$$

Ans. (c) (A) is true but (R) is false.

$$\text{Explanation: Number of lines is } {}^n C_2 = \frac{n(n-1)}{2}$$

$$C(n, 3) = \frac{n!}{3!(n-3)!} = \frac{n(n-1)(n-2)}{6}$$

6. Assertion (A): The product of five consecutive natural numbers is divisible by 4!

Reason (R): Product of n consecutive natural numbers is divisible by $(n + 1)!$.

Ans. (c) (A) is true but (R) is false.

Explanation: Product of n consecutive natural numbers

$$= (m+1)(m+2)(m+3) \dots (m+n), m \in \mathbb{W}$$

$$= \frac{(m+n)!}{m!} = n! \times \frac{(m+n)!}{m!n!} = n! \times {}^{m+n} C_m$$

Product is divisible by $n!$ and so it is always divisible by $(n-1)!$ but not by $(n+1)!$

7. Assertion (A): Number of rectangles on a chess board is ${}^8 C_2 \times {}^8 C_2$

Reason (R): To form a rectangle, we have to select any two of the horizontal line and any two of the vertical line.

Ans. (d) (A) is false but (R) is true.

Explanation: To form a rectangle, we have to select any two of the horizontal line and any

two of the vertical line.

In a chess board, there are 9 horizontal and 9 vertical lines. Number of rectangles of any size are ${}^9C_2 \times {}^9C_2$

8. Assertion (A): If n is a positive integer, then $n(n^2 - 1)(n+ 2)$ is divisible by 24.

Reason (R): Product of r consecutive positive integers is divisible by $r!$.

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: $n(n^2 - 1)(n+ 2) = (n - 1)n(n + 1)(n + 2)$ is the product of four consecutive positive integers and hence it is divisible by 24.

9. Assertion (A): The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is 9C_3 .

Reason (R): The number of ways of choosing any 3 places, from 9 different places is 9C_3 .

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: Let the number of ways of distributing n identical objects among r persons such that each person gets at least one object is same as the number of ways of selecting $(r-1)$ places out of $(n - 1)$ different places, i.e.,

$$\begin{aligned} & {}^{n-1}C_{r-1} \\ \therefore & {}^{10-1}C_{4-1} \end{aligned}$$

The number of ways will become 9C_3 .