

Isomerism

Question Bank

LEVEL 1

1. How many stereocenters does latomoxef (an oxacephem antibiotic) have?

$$\begin{array}{c|c} & & & & & & \\ N-N & & & & & & \\ \parallel & & & & & \\ N-N & & & & & \\ \end{array} \begin{array}{c} & & & & & \\ N-N & & & & \\ O & & & & \\ \end{array} \begin{array}{c} & & & & \\ N-N & & & \\ \end{array} \begin{array}{c} & & & \\ O & & & \\ \end{array} \begin{array}{c} & & & \\ O & & & \\ \end{array} \begin{array}{c} & & & \\ O & & & \\ \end{array} \begin{array}{c} & & & \\ O & & & \\ \end{array} \begin{array}{c} & & & \\ O & & & \\ \end{array}$$

- (a) 2
- (b) 3

- (c) 4
- (d) 5

2. Which molecule is (R, Z)-7-methoxy-2, 7-dimethyl-4-propylnona-1, 4-diene?

3. Choose the correct order that has the following compounds correctly arranged with respect tothermodynamic stability. CH_3 (i) CH₃ CH₃ (a) ii < i < iii(b) i < ii < ii(c) i < iii < i(d) iii < i < ii**4.** Which of the structures below is a diastereomer of A? $\bar{C}H_{3}$ CH_3 CH₃ (ii) (iii) НО H Ē H ĒH3 Η̈́ Η CH_3 Η (iv) (v) H Ā CH₃ (a) i (b) iii (c) ii and iv (d) iv 5. The total number of structural isomers of $C_4H_{11}N$ would be (a) 4 (b) 8 (c) 5 (d) 10 **6.** Which of the following pair is the chain isomer? 7. How many geminal dichloride with different formula are possible for $C_3H_6Cl_3$? (a) only one (b) two (c) three (d) four **8.** What is the relation between 3-ethylpentane and 3-methylhexane? (a) Chain isomers (b) Position isomers (c) Functional isomers (d) Metamers **9.** How many isomers are possible for methyl anthracene? (a) 2 (b) 3 (c) 4 (d) 5 10. The compounds (CH₂)₃N and CH₂CH₂CH₂NH₃ represent (a) chain isomerism (b) position isomerism

(d) all of the above

(c) functional isomerism

11	1	Δn	isomer	of	othano	1 ic
		Αn	isomer	OT	ernano	1 18

(a) methanol

(b) acetone

(c) diethyl ether

(d) dimethyl ether

and

12. The number of primary, secondary and tertiary amines possible with the molecular formula C_aH_oN respectively

- (a) 1, 2, 2
- (b) 1, 2, 1
- (c) 2, 1, 1
- (d) 3, 0, 1

13. Examine the relation between the following pairs of compounds

and

(i)
$$Cl$$
 and Cl

(ii) OH

СООН

- (a) All i, ii, iii are identical
- (b) All i, ii, iii are isomers
- (c) i, ii are identical, iii is isomer
- (d) i is identical and ii, iii are isomers

and

- (a) Positional
- (b) Chain
- (c) Geometrical
- (d) Functional

15. Given compound shows which type of isomerism?

$$\begin{array}{c|c}
O \\
S \\
O
\end{array}$$
and
$$\begin{array}{c|c}
O \\
S \\
O
\end{array}$$

(a) Chain isomerism

(b) Positional isomerism

(c) Metamerism

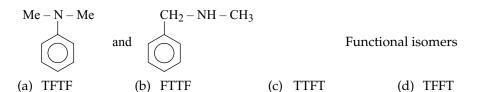
(d) Functional group isomerism

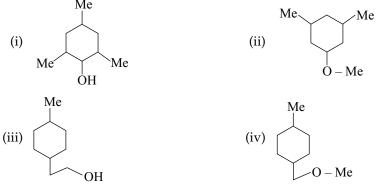
16.

ОСОН

Functional isomers

and


and


Metamers

 CH_2-O-CH_3 and

Metamers

- 17. Which compound is not the isomer of 3-ethyl-2-methylpentane?
 - (a) (b) (d) (d)
- **18.** Which of the following is not the correct relationship?

- (a) ii and iv are metamers
- (b) i and ii are functional isomers
- (c) i and iii are chain isomers
- (d) i and iv are positional isomers
- 19. What is the correct relationship between the following compounds?

(a) Chain isomers

(b) Position isomers

(c) Functional isomers

- (d) Identical
- 20. Which one of the compound is not isomer of others?
 - (a) (b) (d)

Which type of isomerism is observed between i and ii?

(a) Chain isomers

(b) Position isomers

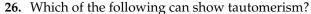
(c) Functional isomers

(d) Metamers

22. The correct relationship among the following pairs of given compounds is

$$(i) \underbrace{\hspace{1cm} 0 \hspace{1cm} 0}_{O} \underbrace{\hspace{1cm} (ii) \hspace{1cm} 0}_{O} \underbrace{\hspace{1cm} 0 \hspace{1cm} 0}_{O} \underbrace{\hspace{1cm} 0$$

- (a) Chain isomer
- (c) Metamer


- (b) Positional isomer
- (d) Functional isomer

23. Which of the following is a pair of metamers?

$$(d) \quad \begin{matrix} Cl \\ \\ Br \end{matrix} \qquad Cl \begin{matrix} Br \\ \\ \\ I \end{matrix}$$

24. Which of the following can show tautomerism?

25. Which of the following can show tautomerism?

- (a) (CH₃)₃CNO
- (b) (CH₃)₂NH
- (c) R_3CNO_2
- (d) RCH₂NO₂

27. Which will not show tautomerism?

28. Which will not show tautomerism?

(a) CH₃CH₂CH₂CH₃NO₂

(b) (CH₃)₂CH-CH₂NO₂

(c) CH₃CH–CH₂CH₃ | NO₂ (d) $(CH_3)_3C-NO_2$

29. Which of the following compound show tautomerism?

(a) $(H_3C)_2CCI$ -CH=CH₂

- (b) | C = O
- (c) $(H_3C)_2C(NO_2)$ -CH=CH-CHO
- (d) None of these

30. Which of the following will not show tautomerism?

(a)
$$H_3C$$
 $C = N$ OH

(b)
$$(H_3C)_3C$$
 $C = C$ $N = O$ CH_3

(c)
$$(H_3C)_3C$$
 $C = C$ $N = O$ $C(CH_3)_3$

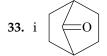
(d)
$$H_3C$$
 $C = N$ OH

31. Tautomerism will be exhibited by

(a) $(CH_3)_2NH$

(b) (CH₃)₃CNO

(c) R_3CNO_2


(d) RCH₂NO₂

32. Which of the following is not an example of tautomeric equilibrium?

(b)
$$-N = N - NH \Longrightarrow NH - N = N$$

(c)
$$> CH - N = O \Longrightarrow > C = N - OH$$

(d)
$$-NH - C = O \rightleftharpoons -N = C - OH$$

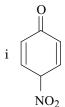
Among these compounds, which of following is the correct order of % enol content?

- (a) i > ii > iii
- (b) iii > ii > i
- (c) ii > iii > i
- (d) i > iii > ii

34. Which of the following will have highest percentage of enol content?

- (a) $C_6H_5 C CH_2 C OC_2H_5$
- (b) $CH_3 C O C_2H_5$
- (c) CH₃ C CH₂ C OCH₃

35. Which of the following compounds have less enol content?



Η

- (a) i
- (c) Both (a) and (b)

- (b) ii
- (d) None of these

36. Which of the following compounds have higher enol content?

ii

- (a) i
- (c) i = ii

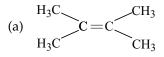
- (b) ii
- (d) None of these

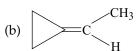
OCH₃

37. Geometrical isomers differ in

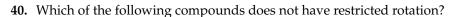
- (a) position of functional group
- (c) position of atoms

- (b) spatial arrangement of atoms
- (d) length of carbon chain


38. Stereoisomers have different


(a) Molecular formula

(c) Configuration


- (b) Structural formula
- (d) Molecular mass

39. Which of the following compounds has restricted rotation?

- (d) All of these

(c)
$$\operatorname{Cl} > C = C < \operatorname{CH}_3$$

- **41.** Which compound can show geometrical isomerism?
 - (a) $CH_3CH = C(CH_3)_7$

(b) $CH_3CH = CH_2$

(c) $CH_3CH = CHCH_3$

- (d) $(CH_3)_2C = C(CH_3)_2$
- **42.** Which of the following will not show cis-trans isomerism?

(a)
$$CH_3 - C = CH - CH_2 - CH_3$$

(a)
$$CH_3 - C = CH - CH_2 - CH_3$$
 (b) $CH_3 - CH - CH = CH - CH_2 - CH_3$ CH_3 CH_3

$$CH_3$$

(c) $CH_3 - CH = CH - CH_3$

(d)
$$CH_3 - CH_2 - CH = CH - CH_2 - CH_3$$

43. Geometrical isomerism is shown by

(a)
$$H > C = C < I$$

(b)
$$^{H}_{CH_3}$$
 $C = C < ^{I}_{Br}$

(c)
$$H_3C$$
 $C = C < \frac{Cl}{Br}$

(d)
$$CH_3$$
 $C = C < \frac{Cl}{Cl}$

44. The "E"-isomer is

(a)
$$F > C = C < H$$

(b)
$$H_3C > C = C < CH_3$$

(c)
$$H_3C > C = C < \frac{C_2H_5}{CH(CH_3)_2}$$

- (d) none of the above
- **45.** The compounds X and Y shown in the below reaction can be

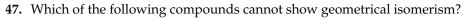
$$Ph - NH \cdot NH_2 + (X) + (Y) \xrightarrow{-H_2O} \xrightarrow{P+Q} Organic products$$

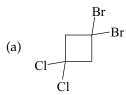
(a)
$$CH_3 - CH_2 - C - CH_3 + CH_3 - C - Ph$$
 (b) $Ph - C - CH_3 + CH_3CHO$ \parallel 0 O O $CH_2 = O + CH_3CHO(d)$ $CH_2 = O + CH_3 - C - CH_3$

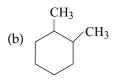
(b)
$$Ph - C - CH_3 + CH_3CHO$$

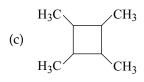
(c)
$$CH_2 = O + CH_3CHO(d$$

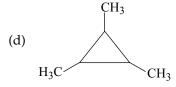
$$CH_2 = O + CH_3 - C - CH_3$$


46. The "Z"-isomer is


(a)
$$F$$
 $C = C < H$ Br


(b)
$$Cl$$
 CH_3 C_2H_5


(c)
$$\begin{array}{c} CH_3 \\ C_2H_5 \end{array}$$
 $C = C < \begin{array}{c} CI \\ COOH \end{array}$


(d)
$$HOOC > C = C < H$$

48. The total number of geometrical isomers possible in following compound is

$$Ph - HC = HC \longrightarrow CH = CH - CH_3$$

- (a) 2
- (b) 1

- (c) 6
- (d) 8

49. The total number of geometrical isomers possible in following compound is

$$CH = CH - CH = CH$$

- (a) 4
- (b) 6

- (c) 3
- (d) 2

50. The number of geometrical isomers in the following compound is

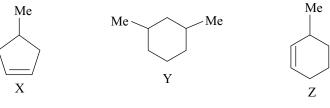
$$CH_3 - CH = CH - CH = CH - C_2H_5$$

- (a) 4
- (b) 3

- (c) 2
- (d) 5

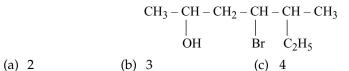
51. The number of cis-trans isomer possible for the following compound is

- (a) 2
- (b) 4


- (c) 6
- (d) 8

52. What characteristic is the best common to both cis-2-butene and trans-2-butene?

(a) B.P.


- (b) Dipole moment
- (c) Heat of hydrogenation
- (d) Product of hydrogenation

53. Number of chiral carbon atoms in the compound x, y and z respectively would be

- (a) 0, 2, 1
- (b) 1, 0, 1
- (c) 1, 2, 1
- (d) 1, 2, 0

54. Number of chiral carbon persent in the following compound is

55. Which of the following have asymmetric carbon atom?

- 56. Meso-tartaric acid and d-tartaric acid are
 - (a) positional isomers

(b) enantiomers

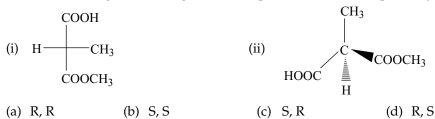
(c) diastereomers

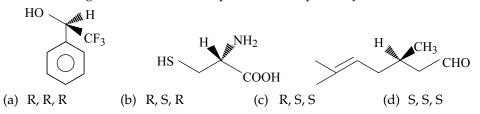
(d) racemic mixture

(d) 5

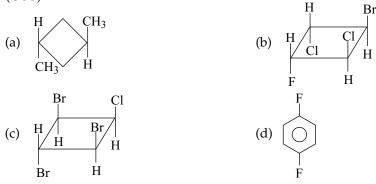
57. observe the following structures (i) to (iii)

Correct statement is


- (a) All three are chiral compounds
- (b) i and ii are chiral
- (c) Only ii is chiral
- (d) Only iii is chiral
- **58.** The number of optically active compounds in the isomers of C_4H_9Br is (a) 1 (b) 2 (c) 3 (d) 4
- **59.** Which of the following compound has "S" configuration?


- **60.** The number of optically active isomers observed in 2,3-dichlorobutane is
 - (a) 0
- (b) 2

- (c) 3
- (d) 4


61. The correct configuration assigned for compound (i) and (ii) respectively is

62. The R/S configurations of these compounds are respectively

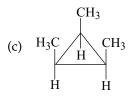
63. Which of the following compound has plane of symmetry (POS) but not centre of symmetry (COS)?

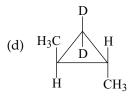
- 64. The instrument which can be used to measure optical activity, i.e., specific rotation
 - (a) Refractometer

(b) Photometer

(c) Voltmeter

- (d) Polarimeter
- 65. The two compounds given below are


(a) Enantiomer


(b) Identical

(c) Meso compound

- (d) Diastereomers
- **66.** Which of the following compounds do not possess a C₂ axis of symmetry?

67. How many stereoisomers can exist for the following acid?

$$\begin{array}{c} H-C(OH).CO_2H\\ |\\ H-C.CO_2H\\ |\\ H-C(OH).CO_2H \end{array}$$

- (a) Two
- (b) Four
- (c) Eight
- (d) Sixteen

68. $CH_3 - CH - CH - CH - CH_3$

Total number of stereoisomers in the above compound is

- (a) 6
- (b) 4
- (c) 8
- (d) 16
- 69. Total number of stereoisomers of the compound is given below

- (a) 2

- (d) 8
- 70. How many stereoisomers of the following molecule are possible?

$$HOOC.CH = C = CH.COOH$$

- (a) two optical isomers
- (b) two geometrical isomers
- (c) two optical and two geometrical isomers
- (d) none
- 71. Total number of stereoisomer of compound is given below

$$CH_3 - CH = CH - CH - CH = CH - C_2H_5$$

$$CI$$

- (a) 2
- (b) 4
- (c) 6
- (d) 8

72. $CH_3 - CH - CH - CH - CH_3$ Br OH

Total number of stereoisomers in the above compound is

- (a) 6
- (b) 4
- (c) 8
- (d) 16
- 73. The enantiomeric excess and observed specific rotation of a mixture containing 6 g of (+)-2-butanol and 4 (g) of (-)-2-butanol are respectively (If the specific rotation of enantiomerically pure (+)-2-butanol is +13.5 units)
 - (a) 80%, +2.7 unit

(b) 20%, –27 unit

(c) 20%, +2.7 unit

(d) 80%, -27 unit

74.	Which of the following pair of isomers cannot be separated by fractional crystallisation or
	fractional distillation?

- (a) Maleic acid and fumaric acid
- (b) (+)-Tartaric acid and meso-tartaric acid

(c)
$$CH_3 - CH - COOH$$
 and $H_2N - CH_2 - CH_2 - COOH$ NH_2

(d) (+)-lactic acid and (-)-lactic acid

75. Increasing order of stability among the three main conformation (i.e., eclipse, anti, gauche) of ethylene glycol is

(a) Eclipse, gauche, anti

(b) Gauche, eclipse, anti

(c) Eclipse, anti, gauche

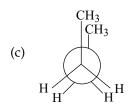
(d) Anti, gauche, eclipse

76. Which of the following pairs of compound is/are identical?

(a)
$$H$$
 CH_3
 $CH_$

77. The two structures (i) and (ii) represent

- (a) Conformational isomers
- (b) Stereoisomers
- (c) Constitutional isomers
- (d) Identical
- 78. In which of the following has minimum torsional strain and minimum Vander waal strain?


(i)
$$CH_3$$
 H CH_3 CH_3 H CH_3 $CH_$

- **79.** In the Newman projection formula of the least stable staggered form of n-butane, which of the following reasons is the causes of its unstability?
 - (a) Van der Waal's strain

(b) Torsional strain

(c) Combination of both

- (d) None of these
- **80.** Which of the following represent the staggered conformation with dihedral angle $\phi = 60$?

- **81.** The dihedral angle between two methyl groups in partially eclipsed conformation of n-butane is
 - (a) 180°
- (b) 120°
- (c) 90°
- (d) 109°28′

82. Which of the following is an achiral molecule?

(c)
$$H_3C$$
 H CH_3 H CH_3

83. Which of the following is most stable?

(a)
$$H$$
 H
 H

54.	follows the class of (a) Polymerisation	f		Isomerisation	gives urea. This reaction				
	(c) Association	ı	, ,	Dissociation					
85.	The possible number of alkynes with the formula C_5H_8 is								
	(a) 2	(b) 3	(c)		(d) 5				
86.	How many isomers of C ₅ H ₁₁ OH will be primary alcohols								
	(a) 2	(b) 3	(c)	-	(d) 5				
87.	Number of isomeric forms of C ₇ H ₉ N having benzene ring will be								
	(a) 7	(b) 6	(c)	_	(d) 4				
88.	38. Which of the following is an isomer of diethyl ether								
	(a) $(CH_3)_3COH$	O		CH ₃ CHO					
	(c) C_3H_7OH		(d)	$(C_2H_5)_2$ CHOH					
89.	Total number of isomeric alcohols with the formula $C_4H_{10}O$ is								
	(a) 1	(b) 2	(c)		(d) 4				
90.	The molecular formula of a saturated compound is $C_2H_4Cl_2$. The formula permits the exist-								
	ence of two (a) functional ison	nore	(h)	position isomers					
	(c) optical isomers			cis-trans isomers					
91.	The type of isomer	ism found in urea mole	ecule	o is					
71.	(a) Chain	The type of isomerism found in urea mole (a) Chain			(b) Position				
	(c) Tautomerism		(d)	None of these					
92.	An alkane can show	w structural isomerism i	if it h	nasnumber o	of minimum carbon atoms				
	(a) 1	(b) 2	(c)		(d) 4				
93.	How many chain is	somers can be obtained	l froi	m the alkane C_6H_1	₄ ?				
	(a) 4	(b) 5	(c)	6	(d) 7				
94.	Keto-enol tautomerism is observed in								
	O			O					
	(a) $C_6H_5 - C - H$	I	(b)	$C_6H_5-\overset{ }{C}-CH$	3				
	О			О СН	3				
	(c) $C_6H_5 - C - C$	C ₆ H ₅	(d)	O CH	-C6H5				
	., 0 3		` /	CH					
05	The number of acc	matrical isomore in	o of	a compound with	the etwicture				
75.	The number of geometrical isomers in case of a compound with the structure $CH_3-CH=CH-CH=CH-C_2H_5$ is								
	() 4	-			(1)				
	(a) 4	(b) 3	(c)	7	(d) 5				

- **96.** Which one of the following will show geometrical isomerism?

 - (a) CH_2CI $> C < CH_3$ (b) CH_3 $> C < H = C(CH_3)_2$ CH_2CI $> C < H = C(CH_3)_2$
 - (c) $CH_2 = CH$ CH_2CI $CH = CH_2$
- (d) CH₃CH₂CH=CHCH₂CH₃
- 97. In the reaction: $CH_3CHO + HCN \longrightarrow CH_3CH(OH)CN$

a chiral centre is produced. The number of stereoisomers of the product is

(a) 3

(b) 2

(c) 4

- (d) none of these
- 98. The molecule 3-penten-2-ol can exhibit
 - (a) Optical isomerism

(b) Geometrical isomerism

(c) Metamerism

(d) Tautomerism

The correct answer is

- (a) (a) and (b)
- (b) (a) and (c)
- (c) (b) and (c)
- (d) (a) and (d)
- 99. Find the total number of isomers (including stereo isomers) in dimethyl cyclopropane and dimethyl cyclobutane
 - (a) 6,8
- (b) 5, 6
- (c) 4, 5
- (d) 4, 6

100.

(a) plane of symmetry (c) C₃ axis of symmetry

- (b) centre of symmetry
- (d) C₄ axis of symmetry
- 101. How many optically active cycloalkanones are possible with the molecular formula C_5H_8O ?
 - (a) 8
- (b) 6

- (d) 4

- (a) Geometrical isomers

(b) Position isomers (d) Enantiomers

- (c) Chain isomers
- 103. For the given compound which of the $CH_3 C = CH C CH = C CH_3$ following statement(s) are correct?
 - (a) It has 4 stereoisomers
 - (b) It has 3 stereoisomers
 - (c) It has 2 chiral centres
 - (d) The compound does not show G.I.

- 104. Racemic mixture is formed by mixing two
 - (a) Isomeric compounds

(b) Chiral compounds

(c) Meso compounds

- (d) Enantiomers
- 105. Which of the following does not show geometrical isomerism?
 - (a) 1,2-dichloro-1-pentene
- (b) 1,3-dichloro-2-pentene
- (c) 1,1-dichloro-1-pentene
- (d) 1,4-dichloro-2-pentene
- **106.** The general formula $C_n H_{2n} O_2$ could be for open chain
 - (a) Diketones

(b) Carboxylic acids

(c) Diols

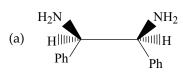
- (d) Dialdehydes
- **107.** Among the following four structures i to iv

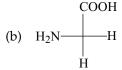
$$\begin{array}{cc} & CH_{3} \\ | \\ (i) & C_{2}H_{5}-CH-C_{3}H_{7} \end{array}$$

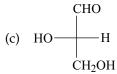
$$\begin{array}{c|c} O & CH_3 \\ \parallel & \mid \\ (ii) & CH_3-C-CH-C_2H_5 \end{array}$$

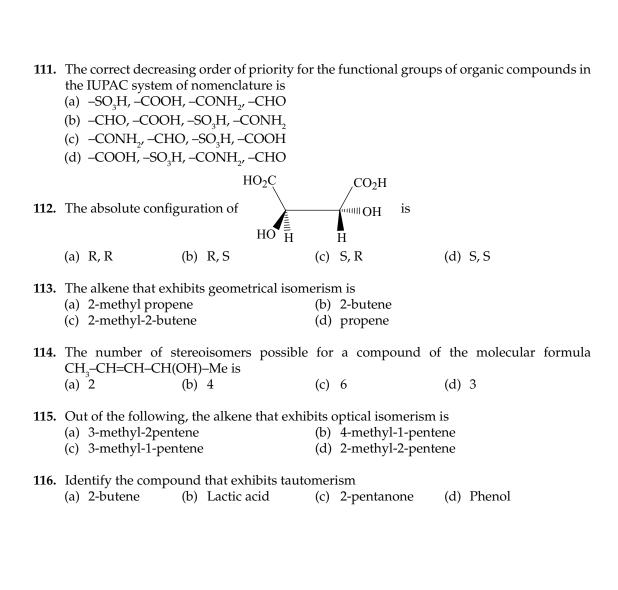
$$\begin{array}{ccc} & & H & \\ | & | & \\ (iii) & H - C^{\oplus} & \\ | & | & \\ H & \end{array}$$

$$CH_3$$
 | (iv) $C_2H_5 - CH - C_2H_5$

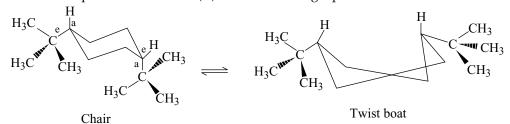

it is true that


- (a) All four are chiral compounds
- (b) Only i and ii are chiral compounds
- (c) Only iii is a chiral compound
- (d) Only ii and iv are chiral compounds
- 108. Amongst the following compounds, the optically active alkane having lowest molecular mass is
 CH₃


(d)
$$CH_3$$
- CH_2 - $C\equiv CH$


- **109.** Which of the following compounds is not chiral?
 - (a) 1-chloropentane

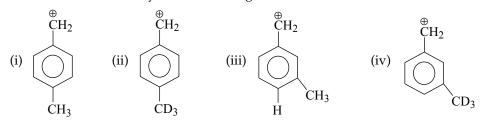
- (b) 2-chloropentane
- (c) 1-chloro-2-methylpentane
- (d) 3-chloro-2-methylpentane
- 110. Which of the following molecules is expected to rotate the plane of polarised light?



LEVEL 2

Single and Multiple-choice Type

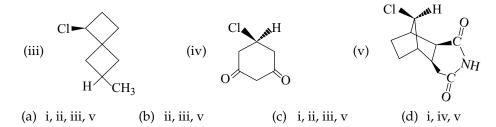
1. The value of equilibrium constant (K) for the following equilibria

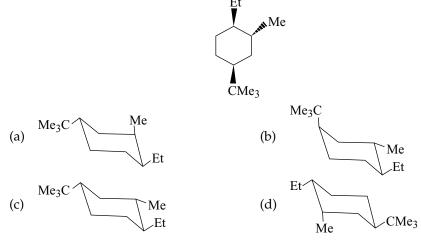

- (a) K = 1
- (c) K < 1

- (b) K > 1
- (d) Cannot relate

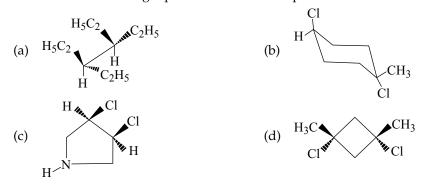
2. E/Z nomenclature of the following compound is

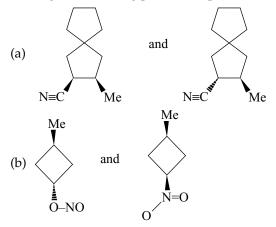

- (a) E
- (c) Does not show geometrical isomerism


- (b) Z
- (d) None
- 3. Correct order of stability of the following carbocations is


- (a) i > ii > iii > iv
- (c) ii > i > iv > iii

- (b) i > ii > iv > iii
- (d) i > iv > ii > ii
- 4. Which of the following compounds are chiral?




5. The conformation of the following compound is

6. Which of the following represent the meso compound?

7. Among the following pair of compounds functional isomer is

(c)
$$Me$$
 and $CH_2 - CH_3$ and $CH_2 - O - CH_3$

8. Identify equilibrium which has maximum K (equilibrium constant)

(a)
$$\underbrace{K}$$
 \underbrace{Me}

(b)
$$K \longrightarrow O \longrightarrow H$$

(c)
$$Me$$
 Me
 Me
 Me
 Me

$$(d) \qquad \underbrace{K} \qquad \underbrace{O} \qquad \underbrace$$

9. The most stable Newmann projection of the 2,3-dichlorobutane, whose Fischer projection is given below is

$$\begin{array}{c|c} CH_3-CH-CH-CH_3 \\ \hline Cl & Cl \end{array}$$

$$(a) \begin{array}{c} CH_3 \\ H \\ CI \\ CH_3 \end{array} \qquad (b) \begin{array}{c} H \\ CH_3 \\ CI \\ CI \\ CI \end{array}$$

10. The correct stereochemical descriptions for the structure given below are

$$\begin{array}{c} \text{Me} \\ \text{CH}_2 - \text{CH}_2 \\ \end{array} \begin{array}{c} \text{OH} \\ \text{D} \end{array}$$

- (a) 1S, 4E
- (b) 1R, 4E
- (c) 1R, 4Z
- (d) 1S, 4Z
- 11. The number of optical isomers possible for the compound is

12. Which one of the following compounds will not rotate the plane of plane polarised light?

(a)
$$OOODD$$

(b) $OODDD$

(c) $OODDD$

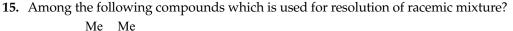
(d) $OODDD$

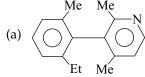
(e) $OODDD$

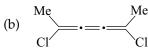
(b) $OODDD$

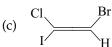
(d) $OODDD$

(e) $OODDD$


(find the content of the content of


13. The correct Fischer projection formula of the Newman projection representation is


14. Which one of the following statements regarding the projections shown below (i and ii) is correct?

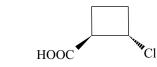

(i)
$$C_6H_5$$
 (ii) C_6H_5 C_6H_5 C_6H_5

- (a) Both the projections represent the same configuration
- (b) Both (i) and (ii) are optically active
- (c) Only (i) is optically active
- (d) Only (ii) is optically active

16. Identify specific rotation of a mixture have 5 g of (+)2-butanol and 7 g of (-)2-butanol (If specific rotation of 100% pure compound is 13.5°)

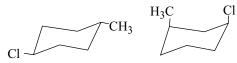
- (a) -2.25°
- (b) -1.6°
- (c) 12.2°
- (d) 4.45°

17. Identify compound having highest heat of combustion


(a) Me tBu

(b) Me tBu

(c) Me Me


(d) Me

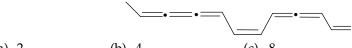
18. Identify R and S configurations of chiral centres in the following compound

- (a) (i)-R (ii)-S
- (b) (i)-S (ii)-R
- (c) (i)-S (ii)-S
- (d) (i)-R (ii)-S

19. What is the relationship between the two structures shown?

- (a) Different drawings of the same conformation of the same compound
- (b) Stereoisomers
- (c) Constitutional isomers
- (d) Different conformations of the same compound

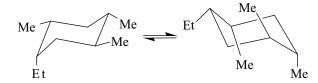
20. C_8H_{12} has 3° of unsaturation. Thus, it can have the structure

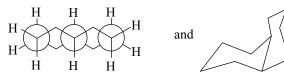

(a)

(b)

(c)

(d)

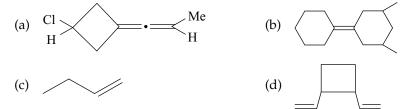

21. Calculate the total number of geometrical isomers for the following compound


- (a) 2
- (b) 4

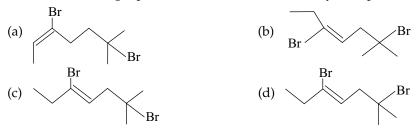
- (c) 8
- (d) 16

22. Identify the value of K_C for the following equilibrium

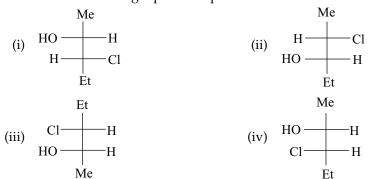
- (a) $K_C > 1$
- (b) $K_{C} < 1$
- (c) $K_{c} = 1$
- (d) None of these
- 23. Identify the relationship between the following pairs of compound



(a) Positional isomers


(b) Geometrical isomers

(c) Functional isomers

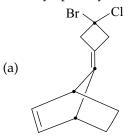

- (d) Identical compounds
- 24. Identify compounds that give geometrical isomerisation

- **25.** Which conformation has a C_3 axis of symmetry?
 - (a) Boat
- (b) Twist boat
- (c) Chair
- (d) Enveloped
- **26.** Which of following represent (E)-3, 6-dibromo-6-methyl-3-heptene?

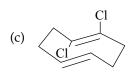
27. Which of the following represent a pair of enantiomers?

- (a) i and ii
- (b) iii and iv
- (c) i and iv
- (d) ii and iii

28. Choose the total number of constitutional isomers with the formula $C_4H_{10}O$.


(a) 9

(b) 7


(c) 5

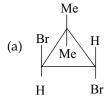
(d) 3

29. Identify optically active molecules

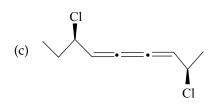
(b) NH——NH

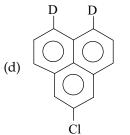
(d) Cl Br

30. In which structure Gauche form has less potential energy than antiform

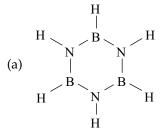

(a) $CH_3 - CH_2 \rightarrow CH_2 - C1$

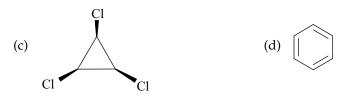
(b) $HO-CH_2$ CH_2-F

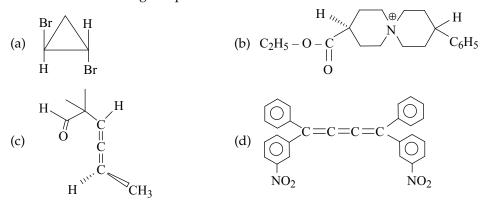

(c)
$$CH_2 \rightarrow CH_2$$
Br Br


(d) $HO - CH_2 \rightarrow CH_2 - OH$

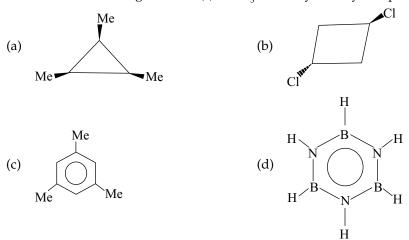
31. Which of the following molecule/s show the plane of symmetry as well as axis of symmetry?

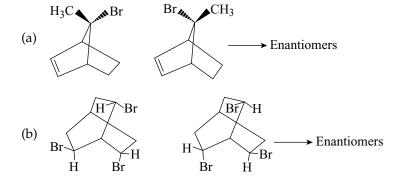



(b) Me Cl



32. The C_3 axis of symmetry is present in which of the following compounds?




33. Which of the following compounds are chiral?

34. Which of the following molecule(s) has C_3 axis of symmetry and plane of symmetry?

35. In which of the following case correct relationship is given?

36. Which of the following is an optically active compound?

- 37. Which of the following options is correct?
 - (a) pk₁ Cis but-2-ene dioic acid < Trans but-2-ene dioic acid

(b) Dipole moment
$$\stackrel{NC}{\underset{H}{\bigvee}} C = C \stackrel{CH_3}{\underset{H}{\bigvee}} C = C \stackrel{CH$$

38. Which of the following are optically active?

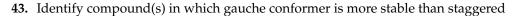
39. For the given compounds, correct statement is/are

(i)
$$H_3C - C - O - C$$
 (iii) $O = C - OH$ (iii) $O = C - OH$ (iii) $O = C - OH$

- (a) i and ii are positional isomers
- (b) ii and iii are functional group isomers
- (c) i and iii are metamers
- (d) i and iii are positional isomers
- **40.** Among the following pair of compounds or conformers, identify pair(s) in which the I^{st} compound has more stability than the II^{nd}

41. Among the following pair of compounds identify metamers

(a) Me and Me Me C-OM

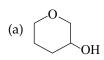

(b) CH₂-CH₂-C-OMe and CH₂-CH₂-CH₃

(c)
$$CH_2$$
-CH₃ and H-N CH_2 -CH₃

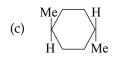
(d) CH_3 -CH₂-NH- CH_2 -NH- CH_2 -Ph

42. Which of the following pairs show functional group isomerism?

- (b) CH₃COOCOC₆H₅ and C₆H₅COOCOCH₃
- (c) HCOOCH, and CH, COOH
- (d) CH₃COCH₃ and

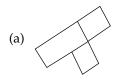

(a) Ethylene diamine

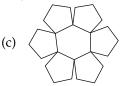
(b) Succinic acid


(c) Ethylene glycol

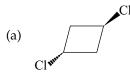
(d) n-butane

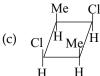
44. Identify the compound which has axial conformer more stable than equatorial

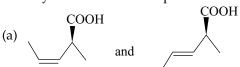


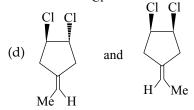


45. Among the following compounds, C_3 axis is present in


(b) PCl₅


(d)


46. Identify among the following compounds having plane of symmetry, centre of symmetry and axis of symmetry



(b) H

47. Identify diastereo isomeric pairs

48. Identify the optically active compound

49. Which of the following statements is correct?

(i)
$$H^{O}$$
 (ii) H^{O} (iii) H^{O} (iii) H^{O} H^{O}

- (a) i and ii have R-configuration
- (b) i and iii have R-configuration
- (c) Only iii has R-configuration
- (d) i and iii have S-configuration

(d)

50. Which of the following relationships are correctly matched?

(a) and Positional isomers

Br

(b)
$$C_2H_5$$
 and C_2H_5 Identical

 C_2H_5 OH

 C_2H_5 OH

 C_2H_3 Positional isomers

 C_2H_3

➤ Chain isomers

- 52. Identify compound(s) in which gauche conformer is more stable than staggered
 - (a) 1, 2-difluoroethane
 - (c) Ethylene glycol

- (b) Chloropropane
- (d) Succinic acid
- **53.** Identify the structure of Erythro

(a)
$$H$$
 CH_3 CH_3 CH_3

54. Identify the structure of Erythro

$$(a) \begin{array}{c} CH_3 \\ H \longrightarrow OH \\ CH_3 \end{array}$$

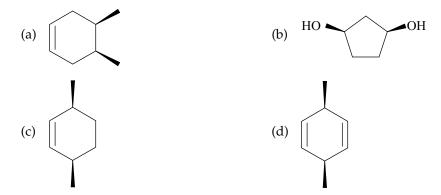
- $(d) \quad \begin{matrix} HO \\ H_3C \end{matrix} \begin{matrix} I \\ I \end{matrix} \begin{matrix} D \\ CH_3 \end{matrix}$
- 55. Identify the structure of Threo

(a)
$$H \longrightarrow CH_3$$
 $H \longrightarrow CH_3$ $H \longrightarrow CH_3$

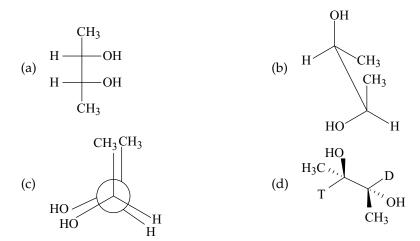
(c)
$$H_3CH_3$$
 $H_3C_{\prime\prime\prime,\prime,}$ (d) $H_3C_{\prime\prime\prime,\prime,\prime}$

56. Identify the structure of meso compounds

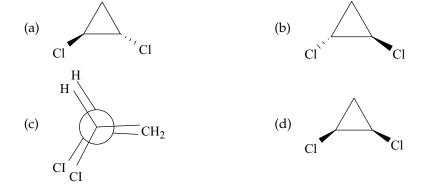
57. Identify the structure of meso compounds


58. Identify the structure of optically inactive compounds

(a)
$$H$$
 CH_3
 CH_3
 CH_3

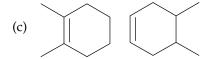

(c)
$$D$$
 CH_3
 Cl
 D
 HO

,,,OH

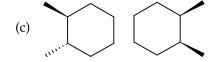

59. Identify the structure of Meso

60. Identify the structure of identical compounds

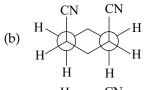
61. Identify the structure of identical compounds

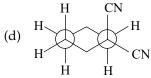


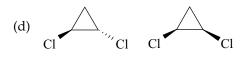
62. Identify the geometrical isomers

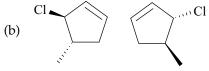

(a)
$$H$$
 H CN H H CN (c) H H

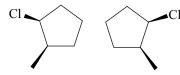
63. Identify the pair of chain isomers

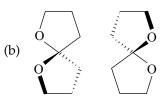

64. Identify the pair of diastereoisomers

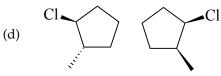


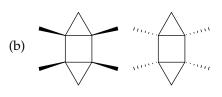

65. Identify the pair of diastereoisomers

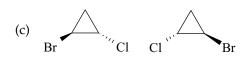


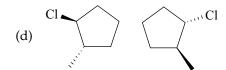

66. Identify the pair of diastereomers

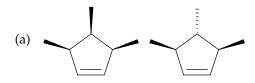


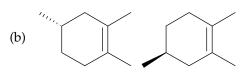


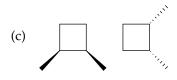


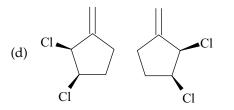



(d)

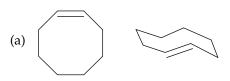


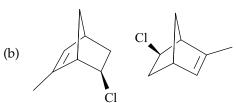


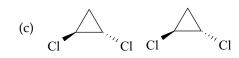


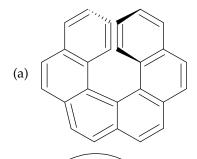


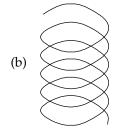
67. Identify the pair of diastereoisomers





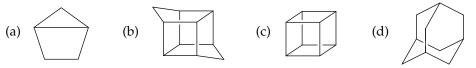


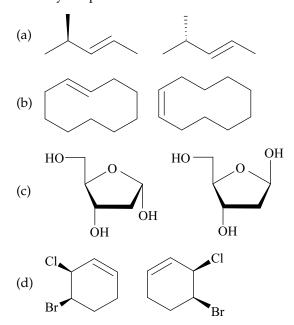

68. Identify the pair of enantiomers

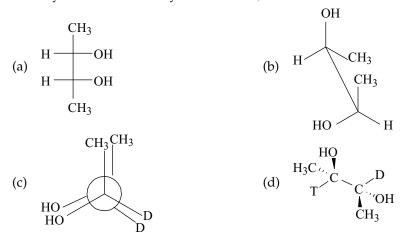




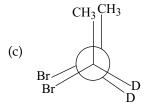
69. Identify the optically active shape



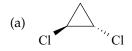



70. Identify the structures having centre of symmetry

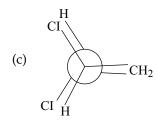
71. Identify the pair of enantiomers

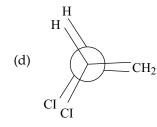


72. Identify the structure of Erythro-butane-2, 3-diol

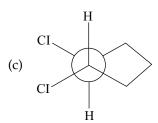


73. Identify the structure of Threobutane-2,3-diol

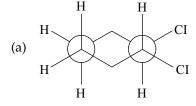

(a)
$$\begin{array}{c} CH_3 \\ H-C-OH \\ HO-C-H \\ CH_3 \end{array}$$
 (b) $\begin{array}{c} CH_3 \\ C-C \\ HO \\ H \end{array}$



74. Identify the structure of identical compounds







75. Identify the structure of identical compounds

76. Identify the structure of enantiomeric compounds

- 77. Identify the structure of transdecaline
- (b) H H H H

- (c)
- (d)
- 78. Identify the compounds that give trans product on reaction with Zn dust and heat
 - (a) $\begin{array}{c|c} CH_3 \\ H & -CI \\ CH_3 \end{array}$

(b) H CH₃ CH₃

(c) CI H

- $(d) \quad \begin{array}{c} H_3C_{\prime\prime} \\ T \end{array} \quad \begin{array}{c} CI \\ D \\ CH_3 \end{array}$
- 79. Identify the compounds that give cis product on reaction with Zn dust and heat
 - (a) $\begin{array}{c} CH_3 \\ H \longrightarrow C1 \\ Cl \longrightarrow H \\ CH_3 \end{array}$

(b) CI CH₃ CH₃

(c) H CI

- (d) H₃C,,,,D

 T

 CI

 D

 CH₃
- 80. Identify the compounds that give cis product on reaction with Zn dust and heat
 - (a) $H \xrightarrow{CH_3} C1$ $C1 \xrightarrow{H} CH_3$

(b) $\begin{array}{c} CH_3 \\ H \longrightarrow C1 \\ CH_3 \end{array}$

81. Identify the compounds that give cis product on reaction with Zn dust and heat

82. Identify the compounds that give trans product on reaction with Zn dust and heat

83. Identify the compounds that give trans product on reaction with Zn dust and heat

84. Identify the compounds that give trans product on reaction with alcoholic KOH and heat

85. Identify the compounds that give trans product on reaction with alcoholic KOH and heat

86. Identify the compounds that give trans product on reaction with alcoholic KOH and heat

87. Identify the compounds that give trans product on reaction with alcoholic KOH and heat

(a)
$$H_3C$$

Et

 CH_3

(b) H_3C
 CH_3

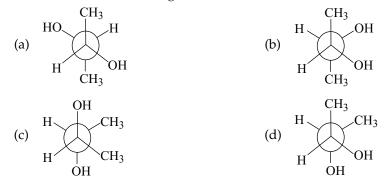
(c) H_3C
 CH_3

(d) H_3C
 CH_3
 CH_3
 CH_3
 CH_3

88. Identify the compounds that give trans product on reaction with alcoholic KOH and heat

(a)
$$P_{r}$$
 CH_{3} CH_{4} CH_{5} CH_{5}

Comprehension Type


Passage 1

Different spatial arrangements of the atom that result from restricted rotation about a single bond are conformers. The general stability order of these conformer are as follows.

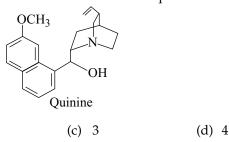
Anti > Gauch > Partially eclipsed > Fully eclipsed

Although anti is more stable than gauch but in some cases gauch is more stable than anti.

89. Which one of the following is the most stable conformer?

- **90.** Number of possible stable conformers of butane is
 - (a) 2
- (b) 4

- (c) 6
- (d) Infinite
- **91.** Which of the following are more stable conformers?


Passage 2

With few exceptions, enantiomers cannot be separated through physical means. When in racemic mixtures, they have the same physical properties. Enantiomers have similar chemical properties as well. The only chemical difference between a pair of enantiomers occurs in reactions with other chiral compounds. Thus resolution of a racemic mixture typically takes place through a reaction with another optically active reagent. Since living organisms usually produce only one of two possible enantiomers, many optically active reagents can be obtained from natural sources. For instance, (S)-(+)-lactic acid can be obtained from animal muscle tissue and (S)-(-)-2-methyl-1-butanol from yeast fermentation.

In the resolution of a racemic acid, a solution of (R)-phenylethylamine is reacted with a racemic mixture of phenylchloroacetic acid to form the corresponding salts. The salts are then separated by careful fractional crystallisation. Hydrochloric acid is added to the separated salts, and the respective acids are precipitated from their solutions.

Resolution of a racemic base can be accomplished in the same manner with tartaric acid.

92. Quinine, a natural antimalarial, is commonly used as an optically active reagent to resolve acidic enantiomers. How many chiral carbons exist in the quinine molecule drawn below?

(a) 5

(b) 2

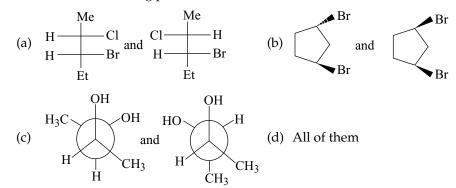
93. Which of the following compounds might be used to resolve a racemic mixture of acidic enantiomers?

(a)
$$Cl$$
 $C = C = C$ Cl (b) $CH_3 - CH_2 - CH_3$ (c) $CH_3 - CH_2 - CH_3$ (d) $CH_3 - CH_2 - CH_3$ (e) $CH_3 - CH_2 - CH_3$ (f) $CH_3 - CH_2 - CH_3$

94. Which of the following amines could in principle be used as a resolving agent for a racemic carboxylic acid?

Passage 3

Stereoisomers are compounds that have same sequence of covalent bonds but differ in the relative dispositions of their atoms in space. Geometrical and optical isomers are the two important types of configurational isomers.


The compound with double bonds or ring structure has restricted rotation, so exists in two geometrical forms. The double bonds in larger rings can also cause geometrical isomerism. The optical isomers rotate the plane of plane-polarised light. A sp³-hybridised carbon atom bearing four different types of substituents is called an asymmetric centre of chiral centre. A chiral object or molecule cannot be superimposed on its mirror image. Stereoisomers that are mirror images of each other are called enantiomers. The stereoisomers that are not mirror images of each other are called diastereomers. Diastereomers have different physical properties.

A racemic mixture is optically inactive and contains equal amounts of both the enantiomers. Resolution refers to method of separating a racemic mixture into two pure enantiomers. A meso compound is an optically inactive stereoisomer, which is achiral due to the presence of an internal plane of symmetry of centre of symmetry within the molecule.

95. The pair showing identical species is

(d) None of these

96. Which of the following pairs are diastereomers?

97. The following two compounds are

Passage 4

Isomers that have the same skeletons (that is, with component atoms attached in the same sequence) but differ from each other with relative positions of some atoms in three-dimensional space by virtue of rotation about σ bonds are called **conformational isomers or conformers.**

A quantitative description that relates relative atomic positions to the changes in potential energy during rotation about a σ bond describes the energetics of conformational interconversion, a process known as **conformational analysis**.

Rotation about $(C^{\sigma}C)$ bond in ethane can give various conformers:

In structure A_1 or B_1 , C–H flagpoles at C-1 completely overlap each other at C-2. This form is called **eclipsed conformation**.

In structure A_2 or B_2 , C—H flagpoles at C-1 is fixed at 60° dihedral angle so that it is exactly between two C–H flagpoles at C–2. This is called staggered conformation.

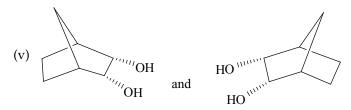
- Various other structures in between eclipsed and staggered conformations are called **skew conformation**.
- Structures B₁ and B₂ show the orientations of the hydrogens on the front carbon relative
 to those on the back carbon, these are called Newman projections.
- Structures A₁ and A₂ are called **Sawhorse projections**.

98. Among the following conformers, which has highest potential energy for n-butane (along C_2 – C_3 bond rotation)?

(a) Skew (b) Fully eclipsed (c) Staggered (d) Partially eclipsed

99. In the following chair conformer correct orientation of -OH groups is/are

$$\begin{array}{cccc} OH & 6 \\ & & CH_2OH \\ & & 5 & 2 \\ & & OH \\ & & OH \\ \end{array}$$


- (a) OH groups at C₁, C₂ and C₄ are axial
 (b) OH groups at C₁ and C₂ are axial
 (c) OH groups at C₁ and C₄ are axial
 (d) OH groups at C₁, C₂ and C₄ are equatorial

100. In the following equilibrium, the value of "K" is

Passage 5

(a) K < 1

Consider the following pairs of compounds

- 101. Identical pair of compounds is/are
 - (a) i and ii
- (b) ii and iii
- (c) iv and v
- (d) i and v

- 102. Both compounds in above pair are meso
 - (a) 1st pair
- (b) 2nd pair
- (c) 5th pair
- (d) 4th pair

- **103.** Diastereoisomeric pair is
 - (a) 1st pair
- (b) 2nd pair
- (c) 3rd pair
- (d) 4th pair

Passage 6

Presence of chiral carbon in organic compound is neither a necessary nor a sufficient condition showing optical activity. The chirality, i.e., dissymmetry of a molecule as a whole is the necessary condition for optical activity.

104. Which of these compounds will NOT show optical activity?

(a) CH₃-CHOH-CH₂-CH₃

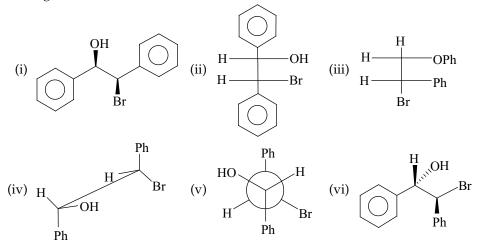
(b) $H_5C_6 \subset C = C \subset C_6H_5 \subset C_{10}H_5$

(c)
$$O_2N$$
 HOOC NO_2

$$(d) \quad \begin{array}{c} H_2N \\ H_2N \end{array} \qquad \begin{array}{c} H \\ NH_2 \end{array}$$

- **105.** Which of the following pairs is correctly matched?
 - (a) $CH_3 CH = C = CH_2$; optically active

(b)
$$H_3C$$
 COOH H_3C Alkylidene; optically active


(c)
$$CH_3$$
 $C=C=C$ C_4H_9 coptically active C_7H_{15} ; optically active

(d)
$$NO_2$$
 ; optically active NO_2

106. Which one of the following is an achiral molecule?

Passage 7

Observe the given molecule/s

- **107.** Correct statement is
 - (a) i and ii are enantiomers
 - (c) i and iv are identical

- (b) iii and v are diastereomers
- (d) i and vi are diastereomers

- 108. Diastereomeric pair is
 - (a) i and ii
- (b) i and vi
- (c) ii and v
- (d) iii and vi
- 109. If Br is attached in place of -OH group in structure "V" (with same stereochemistry) then resultant structure is
 - (a) Meso
 - (b) Threo
 - (c) Structure has odd degree of unstaturation
 - (d) Structure is identical to (i) compound

Matrix Type

Match the columns:

110. Column I

(a)
$$H$$
 H H H

Column II

- (p) Compounds give positional isomerisation with 1,2-dichloro benzene.
- (b) Cl Ph Cl Ph
- (q) Degree of unsaturation in the given compound is even [excluding zero value]

- (r) Given compound or conformer has zero dipole moment.
- $(d) \begin{array}{c} Cl \\ H \\ Cl \end{array}$

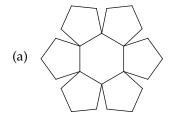
- (s) Net dipole of one mole of compound is nonzero.
- (t) Compound has ketone functional group.

111. Column I (Compound)

(a)
$$\stackrel{D}{H}$$
 C=C $\stackrel{H}{<}$ and $\stackrel{D}{H}$ C=C $\stackrel{CH_2OH}{<}$

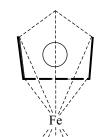
- Column II (Isomerism)(p) Functional isomers
- (b) O O (q) Geometrical isomers
- (c) $H \subset C = C \subset H$ and $H \subset C = C \subset H$ (r) Position isomers
- (d) H and H CN (s) Chain isomers (t) Metamer

112. Column I (Structure)

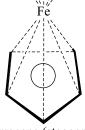

- (a) H_3C C=C CH_2CH_3 CHO CHO (b) HO-C-H CH_2OH
- (р) Е

Column II (Configuration)

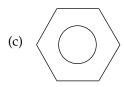
(q) Z

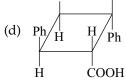

- - (r) R(s) S(t) Plane of symmetry

113. Column I



Column II


(p) Plane of symmetry absent



(b)

Ferrocene (staggered)

114. Column I (Compounds)

(a)
$$CH_3$$
– CH_2 – CH_2 – CH_3 and CH_3 – CH_2 – C – CH_2 – CH_3

(c)
$$CH_3$$
 CH_3 and CH_3

$$(d) \begin{tabular}{lll} & CH_3 & CH_3 & Br & H \\ & CH_3 & and & Br & H \\ & & & CH_3 \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

(q) C_6

(r) S_6

(s) C_i/COS

(t) C₅

Column II (Type of isomerism)

(p) Positional

(q) Conformational

(r) Metamerism

(s) Functional

(t) Optical isomerism

- (a) $O \leftarrow S \longrightarrow S \rightarrow O$
- (b) Cl Br
- (d) Br C

116. Column I

(a)
$$Cl$$

$$CH_3$$

$$C$$

$$CH_3$$

$$C$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Column II

(p) Optically inactive compound

- (q) Optically active compound
- (r) Meso compound

- (s) Axis of symmetry present
- (t) Asymmetric compound

Column II

(p) Optically inactive compound

(q) Optically active compound

(r) Meso compound

- (s) Axis of symmetry present
- (t) Asymmetric compound

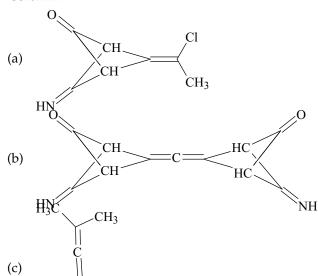
117. Column I

(a)
$$H_3C$$
 OH HO CH_3 H_3C

Column II

(p) Optically inactive compound

(b) H₃C CH₃

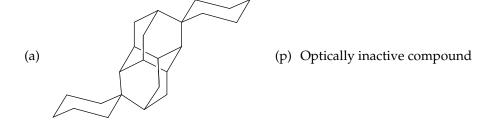

(q) Optically active compound

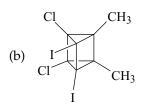
(c) Cl CH_3

(r) Meso compound

- (s) Axis of symmetry present
- (t) Dissymmetric compound

Column II


- (p) Optically inactive compound
- (q) Optically active compound
- (r) Meso compound


(d)

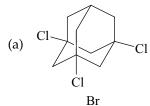
- (s) Axis of symmetry present
- (t) Asymmetric compound

119. Column I

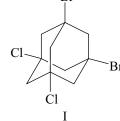
Column II

(q) Optically active compound

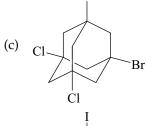
(r) Meso compound


(s) Axis of symmetry present

(t) Asymmetric compound

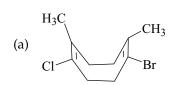

120. Column I

(b)


Column II

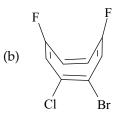
(p) Optically inactive compound

(q) Optically active compound

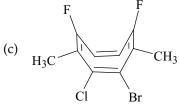


(r) Dissymmetric compound

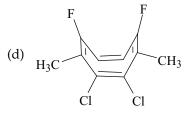
(d) Cl Br


(s) Axis of symmetry present

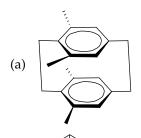
(t) Asymmetric compound



(p) Optically inactive compound


Column II

(q) Optically active compound



(r) Degree of unsaturation is odd

- (s) Axis of symmetry present
- (t) Asymmetric compound

122. Column I

Column II

(p) Optically inactive compound

(b) Cr³⁺

(q) Optically active compound

(c)

(r) Dissymmetric compound

$$(d) \quad \begin{array}{c} Br \\ Cl \\ \vdots \\ Br \end{array}$$

124. Column I

(s) Axis of symmetry present

(t) Asymmetric compound

Column II

(p) Optically inactive compound

(q) Optically active compound

(r) Dissymmetric compound

(s) Axis of symmetry present

(t) Asymmetric compound

Column II

(p) Optically inactive compound

(q) Optically active compound

(r) Dissymmetric compound

126. Column I

(a)

- (s) Axis of symmetry present
- (t) Asymmetric compound

Column II

- (p) Optically active molecules without chiral centres
- (q) Optically active molecules with chiral centres.
- (r) Compounds have even number of chiral centres
- (s) Optically inactive molecules

Column II

- (p) Optically active
- (q) Optically inactive
- (r) Compounds show geometrical isomerism
- (s) Plane of symmetry

(p) Molecule has chiral centre

Column II

(q) Molecule is asymmetric

(r) Molecule is dissymmetric

(d)
$$Me$$
 $C=C=C$ $COOH$

(s) Molecule is optically inactive

Integer Type

128. $\mu_{obs} = \sum \mu_i x_i$; where μ_i is the dipole moment of stable conformer and x_i is the mole fraction of that conformer of Z–CH₂–CH₂–Z in Newmann's projection. If $\mu_{solution}$ or $\mu_{net} = 1$ D and mole fraction of antiform = 0.82, find μ_{Gauche} .

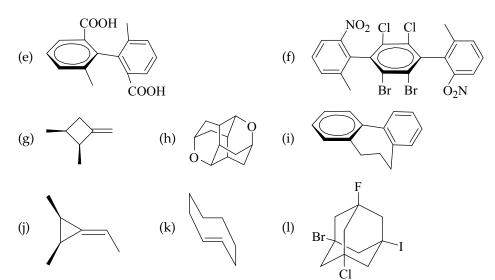
129. Number of primary amine possible for $C_4H_{11}N$ is

130. How many chiral centres are present in the following compound?

131. How many chiral centres are present in the following compound?

132. How many stereoisomers are possible for the following compound?

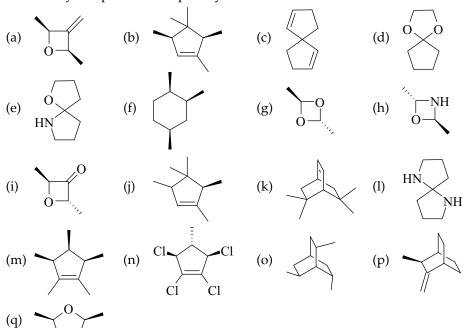
133. How many stereoisomers are possible for the following compound?


$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

134. How many stereoisomers are possible for the following compound?

$$\begin{array}{c|cccc} OH & CH_2 \\ \hline H_2C & N & O \\ \hline H_2N & CH_2 & NH_2 \\ \hline N & CH_2 & NH_2 \\ \hline CH_3 & CH_2 & \\ \hline \end{array}$$

135. How many stereoisomers are possible for the following compound?


136. How many compounds are optically active?

137. How many stereocentres are possible for the following compound?

$$H_3C$$
 O
 H_3C
 CH_2
 H_3C
 CH_3

138. How many compounds are optically inactive?

139. How many geometrical isomers are possible for the following compound?

140. How many geometrical isomers are possible for the following compound?

$$CH_3$$
 H_3C
 CH_3
 CH_3
 CH_3

141. How many geometrical isomers are possible for the following compound?

142. How many steroisomers are possible for the following compound?

$$\begin{array}{c|c} CH_3 \\ Cl & Br \\ H_3C & & CH_3 \\ \hline Br & & Cl \\ \hline & Cl & Br \\ \hline & CH_3 \\ \hline \end{array}$$

Answer Keys

LEVEL 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	a	d	d	b	b	b	a	b	С	d	с	С	a	с
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	b	d	a	d	С	ac	ab	d	d	d	d	d	a	с
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
d	a	b	d	b	a	b	С	d	d	С	a	b	С	d
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	a	d	С	a	a	d	a	b	d	с	d	b	с	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
с	a	с	d	a	с	b	b	b	a	d	с	с	d	с
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
a	с	b	a	b	b	a	a	b	b	d	с	a	d	b
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
С	d	b	b	a	d	b	a	d	b	a	a	a	d	с
106	107	108	109	110	111	112	113	114	115	116				
b	b	с	a	С	a	a	b	b	С	с				

LEVEL 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	a	b	b	b	С	b	b	a	d	b	d	С	d	a
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
a	b	с	С	d	b	b	b	abd	с	b	b	b	bc	abd
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
bd	abcd	abc	acd	bcd	acd	abd	ad	bc	bd	ad	acd	abc	ab	abcd
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
ab	abcd	cd	a	abd	acd	abcd	abcd	abcd	ab	abc	bd	abd	abc	abc
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
cd	ac	a	a	cd	a	a	d	ab	bc	ad	ab	ab	bc	bc
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
ab	bc	abcd	abc	acd	ab	abd	cd	d	ac	d	acd	ad	b	a
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
b	d	d	С	d	ab	b	b	С	b	С	с	a	d	С
106	107	108	109	110(a)	110(b)	110(c)	110(d)	111(a)	111(b)	111(c)	111(d)	112(a)	112(b)	112(c)
d	с	a	a	rst	qrs	pqr	s	p	rt	p	s	qt	s	pt

112(d)	113(a)	113(b)	113(c)	113(d)	114(a)	114(b)	114(c)	114(d)	115(a)	115(b)	115(c)	115(d)	116(a)	116(b)
r	rs	st	qrs	ps	pr	s	p	t	qs	pr	qs	qt	pr	pr
116(c)	116(d)	117(a)	117(b)	117(c)	117(d)	118(a)	118(b)	118(c)	118(d)	119(a)	119(b)	119(c)	119(d)	120(a)
ps	qt	qst	qst	qst	pr	qt	qt	pr	prs	prs	pr	qs	qt	ps
120(b)	120(c)	120(d)	121(a)	121(b)	121(c)	121(d)	122(a)	122(b)	122(c)	122(d)	123(a)	123(b)	123(c)	123(d)
ps	p	qt	qrt	qrt	qrt	pr	ps	ps	qrs	qrs	p	ps	qt	qt
124(a)	124(b)	124(c)	124(d)	125(a)	125(b)	125(c)	125(d)	126(a)	126(b)	126(c)	126(d)	127(a)	127(b)	127(c)
qrs	qrs	ps	qrs	qr	qr	rs	p	qrs	qs	qsr	qrs	pr	pq	s
127(d)	128	129	130	131	132	133	134	135	136	137	138	139	140	141
q	5.55	5	2	8	64	1024	32	8	9	8	7	4	8	5
qrs 127(d)	qrs 128	ps 129	qrs 130	qr 131	qr 132	rs 133	p 134	qrs 135	qs 136	qsr 137	qrs 138	pr 139	pq 140	s 14

WORKBOOK EXERCISES

EXERCISE 1

Identify molecules that show Geometrical Isomerism

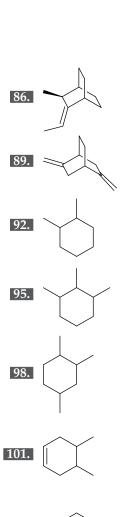
$$\begin{array}{ccc} & & \\ & &$$

73.
$$C = C = C = C$$
Br $C = C = C$

73.
$$C = C = C = C'$$
 $E = C = C = C'$
 $E = C'$

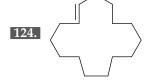
75.
$$C = C = C = C$$
 F
 F

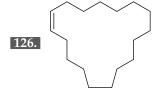
76.
$$C = C = C = C$$
F
C1
F
C2
C1
77. $C = C = C = C$
C1
78. $C = C = C = C$
C1
C1

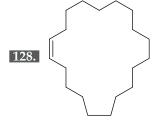

$$78. \quad C = C = C = C \quad Cl$$

EXERCISE 2

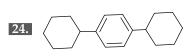
Identify molecules that show Geometrical Isomerism




$$\begin{array}{c|c} & & \\ & & \\ & & \\ \end{array}$$



116.



EXERCISE 3

Identify molecule give G.I.

3.
$$\begin{pmatrix} 0 & & 0 \\ N & & N \end{pmatrix}$$

Identify stable conformer

Me

Me

EXERCISE 4

Identify Isomeric Relationship between pair of Compounds

EXERCISE 5

Identify optically active compounds

Cĺ

SOLUTION FOR WORKBOOK EXERCISES

EXERCISE 1

Molecules that show Geometrical Isomerism

4, 6, 9, 11, 13, 16, 23, 24, 25, 26, 27, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 44, 47, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 76, 77, 82, 86, 89, 90, 92.

EXERCISE 2

Molecules that show Geometrical Isomerism

6, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 59, 61, 62, 63, 67, 68, 69, 70, 73, 78, 79, 83, 77, 86, 87, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 106, 107, 109, 110, 111, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134.

EXERCISE 3

Molecules that show Geometrical Isomerism

1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46.

Stable Conformer

47(I), 48(I), 49(I), 50(II), 51(II), 52(I = II), 53(I), 54(I), 55(II), 56(I).

EXERCISE 4

Isomeric Relationship between pair of compounds

- 1. Positional Isomers
- 3. Functional Isomers
- 5. Metamers Isomers
- 7. Chain Isomers
- 9. Chain Isomers
- 11. Functional Isomers
- 13. Positional Isomers
- 15. Chain Isomers
- 15. Chair isomers
- 17. Chain Isomers
- 19. Chain Isomers
- 21. Functional Isomers
- 23. Positional Isomers
- 25. Chain Isomers
- 27. Functional Isomers

- 2. Positional Isomers
- 4. Functional Isomers
- 6. Chain Isomers
- 8. Chain Isomers
- 10. Functional Isomers
- 12. Not Isomers
- 14. Metamers Isomers
- 16. Metamers Isomers
- 18. Functional Isomers
- 20. Positional Isomers
- 22. Functional Isomers
- 24. Positional Isomers
- 26. Metamers Isomers

EXERCISE 5

Optically active compounds 4, 7, 8, 10, 12, 14, 15, 22, 23, 24, 25, 27, 28, 30, 34, 36, 37, 38, 39, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 69, 73.