

DPP No. 7

Total Marks: 32

Max. Time: 35 min.

Topic: General Organic Chemistry

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.4

(3 marks, 3 min.) [12, 12]

Multiple choice objective ('-1' negative marking) Q.5 to Q.6

(4 marks, 4 min.) [8, 8]

Subjective Questions ('-1' negative marking) Q.7

[4, 5]

(4 marks 5 min.)

Match the Following (no negative marking) Q.8

(8 marks, 10 min.) [8, 10]

1. The correct stability order for the following is

$$CH_3$$
- CH_2 - CH_2
 I

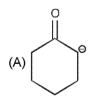
(A) III
$$>$$
 IV $>$ I $>$ II

(B)
$$I > II > III > IV$$

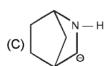
(C)
$$IV > III > I > II$$

(D) III
$$>$$
 IV $>$ II

2. The stability order of:

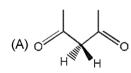


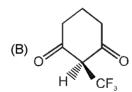
(A)
$$1 > 2 > 3$$


(C)
$$2 > 1 > 3$$

(D)
$$1 > 3 > 2$$

3. Which carbanion is not planer





4. Which of the following do not form planner carbanion on treatment with base.

- **5.*** Which of the following is/are correct relation between given pairs?
 - $(A) \xrightarrow[CH_2]{S} \downarrow \qquad \qquad \longrightarrow \text{Resonating structures}$

 - (C) CH_3 C = CCH = NH CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH
- **6*.** In which of the following Ist is more stable than IInd:
 - $(A) \xrightarrow{\oplus} , \xrightarrow{\oplus} , \qquad (B) \xrightarrow{\bigoplus} , \qquad (B)$
 - (C) $CH_2 = CH$, HC = C (D) $CH_2 = CH$
- 7. How many total enolic forms (including stereoisomers) are possible for CH₂-C-CH₂-CH₂.
- 8. Match the compounds given in column-I with their electronic effect and stereoisomerism in column-II.

 Column-I

 Column-II
 - (A) C CH. (p) Inductive effect
 - (B) $\begin{array}{c} D \\ | \\ Ph-C-CH=CHD \\ | \\ CH_{3} \end{array}$ (q) Resonance
 - (C) $CH_3-CH=CH=CH_2$ (r) Geometrical isomerism
 - (D) H_3C $C=C=C < CH_3$ (s) Optical isomerism (t) Chiral carbon

Answer Key

DPP No. #7

1. (A) 2. (C) 3. (B) 4. (C) 5.* (ABD) 6*. (ABC) 7. 7 8. (A) - (p, q, r); (B) - (p, q, r, s,t); (C) - (p, q, r); (D) - (p, s)

Hints & Solutions

DPP No. #7

- 1. Stability of carbon is increases by electron withdrawing group.
- Stability of aromatic spicies is greatest.
- sp³ hybridised carbanion is not planar specces.
- 5.* In option (A) Conjugation of π-bonds. In option (B) +M effect of –NH₂ group In option (C) Functional isomers.

In option (D) Tautomers.

The charge on more electropositive element is more stable.