TOPIC Pressure

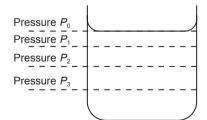
Objectives

Candidates should be able to:

- (a) define the term pressure in terms of force and area
- (b) recall and apply the relationship pressure = force / area to new situations or to solve related problems
- (c) describe and explain the transmission of pressure in hydraulic systems with particular reference to the hydraulic press
- (d) recall and apply the relationship pressure due to a liquid column = height of column × density of the liquid × gravitational field strength to new situations or to solve related problems
- (e) describe how the height of a liquid column may be used to measure the atmospheric pressure
- (f) describe the use of a manometer in the measurement of pressure difference

NOTES

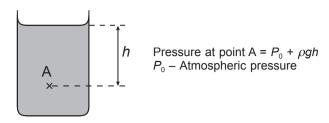
6.1 **Pressure**

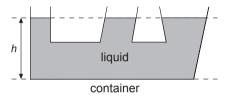

1. Pressure is the force acting per unit area.

Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

2. SI unit: Pascal (Pa) or N m⁻²

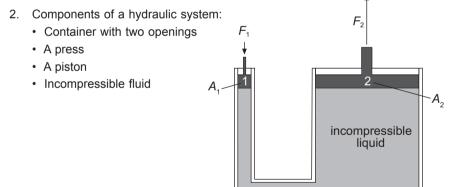
6.2 **Liquid Pressure**


1. An object immersed in a uniform liquid will experience a pressure which depends only on the height of the liquid above the object.


P₀: Atmospheric pressure

Pressure increases with depth: $P_0 < P_1 < P_2 < P_3$

2. Pressure at point A due to the liquid, $P = \rho gh$



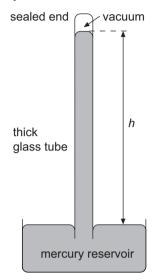
3. When a liquid is at equilibrium, the pressure is the same at any point along the same horizontal surface. Thus the liquid in the container settles at a common height, *h*.

6.3 Transmission of Pressure in Hydraulic System

 Pressure can be transmitted in all directions if it is exerted on an incompressible fluid in a container.

Hydraulic System

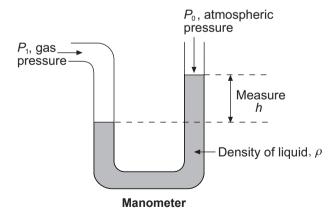
3. In the above figure, if the two pistons at '1' and '2' have the same area, then the force F_1 exerted on one piston will have the same magnitude as F_2 at the other piston.


4. If the area A_1 is smaller than area A_2 , then the force exerted at '1' will produce a larger force at '2'.

Pressure =
$$P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

5. Thus we can use a hydraulic system to lift heavy objects.

6.4 Atmospheric Pressure


- Defined as the force per unit area exerted against a surface by the weight of air above that surface.
- Instrument to measure atmospheric pressure: mercury barometer
- At sea-level, h = 760 mm.
 Atmospheric pressure recorded as 760 mm Hg.
- 4. Even if the tube is tilted, *h* will still remain the same unless it is brought to a different level where the atmospheric pressure is different.

Mercury Barometer

6.5 Manometer

- The manometer is an instrument that is used to measure gas pressure.
- 2. Gas pressure, $P_1 = P_0 + \rho gh$ where h difference in height.

