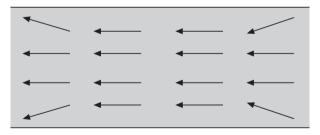
20

Magnetism

Objectives

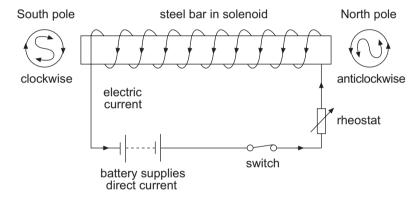

Candidates should be able to:

- (a) state the properties of magnets
- (b) describe induced magnetism
- (c) describe electrical methods of magnetisation and demagnetisation
- (d) draw the magnetic field pattern around a bar magnet and between the poles of two bar magnets
- (e) describe the plotting of magnetic field lines with a compass
- (f) distinguish between the properties and uses of temporary magnets (e.g. iron) and permanent magnets (e.g. steel)

NOTES

20.1 Laws of Magnetism

- 1. Properties of Magnets:
 - (a) A magnet has two poles where the magnetic forces are the strongest: North pole and South pole.
 - (b) Magnets DO NOT exist as monopoles (unlike electric charges).
 - (c) We can use arrows to indicate magnetic dipoles in a magnet. The arrowhead indicates North pole.


The arrows nearer to the edge are not exactly parallel due to repulsion of like poles.

- (d) The law of magnetism states that like poles repel and unlike poles attract.
- (e) Repulsion is the only way to test if an object is a magnet.

- Induced magnetism: A magnetic material becomes an induced magnet when placed in a magnetic field, i.e. near a permanent magnet. The magnetic field from the magnet aligns the randomly arranged dipoles in the material.
- 3. Magnetisation using electricity:

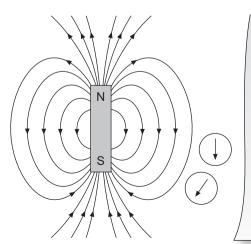
To magnetise a steel bar, one can place it in a solenoid connected to a d.c. source.

- (a) The magnetic field produced by the solenoid magnetises the steel bar.
- (b) The polarities of the magnetised steel bar depend on the direction of the current.
- (c) If the bar is viewed from one end and the current flows in an anticlockwise direction, then that end will be the North-pole; if clockwise, then that end will be the South-pole.

20.2 Magnetic Properties

- 1. Examples of magnetic materials: iron, steel, nickel and cobalt.
- 2. Permanent magnets are magnets that do not lose their magnetism easily. They are made from materials like steel. Steel is an alloy of carbon and iron.
- 3. The differences between the magnetic properties of iron and steel can be summarised in the table below:

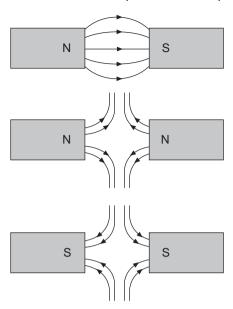
Properties	Iron	Steel
Material	soft	hard
Magnetisation	easy	difficult
Demagnetisation	easy	difficult
Magnetic field strength in solenoid	strong	weak
Magnetism	temporary	permanent


4. Comparison between electromagnet and permanent magnet:

Electromagnet	Permanent magnet	
Made of a coil of wire (often with a soft iron core).	Made of hard magnetic material like steel.	
Magnetism is temporary. Requires a current through the coil to sustain the magnetic field strength.	Magnetism is permanent. Does not require any electric current to retain magnetic field strength.	
Applications: telephone receivers, electric relays, electric bells, circuit breakers and loudspeakers*.	Applications: magnetic doorstops, compasses, motors, dynamos and loudspeakers*	

^{*} A loudspeaker uses both an electromagnet and a permanent magnet.

20.3 Magnetic Field


- A magnetic field is a region in space where magnetic materials experience a force.
- 2. Magnetic field lines: We draw magnetic field lines to help us visualise the direction of the magnetic forces.
- 3. A compass can be used to plot the magnetic field lines around a magnet by marking each end of the compass needle with a dot as it is moved from the North pole to the South pole and linking up the dots together to form a solid line. The arrow on the line indicates the direction the compass needle points.

Important:

- Magnetic field lines always start from North and end at South.
- Each line is always in a complete closed loop (no matter how big the loop is) unlike electric field lines which can point to infinity.
- Strength of a magnetic field depends on how close the lines are spaced together. (Closer ➤ Stronger)

4. The magnetic field lines between like poles and unlike poles are as follows:

