Shortcuts and Important Results to Remember

- 1 Every set is a subset of itself.
- 2 Null set is a subset of every set.
- 3 The set {0} is not an empty set as it contains one element 0. The set {φ} is not an empty set as it contains one element φ.
- **4** The order of finite set *A* of *n* elements is denoted by *O* (*A*) or *n* (*A*).
- **5** Number of subsets of a set containing n elements is 2^n .
- **6** Number of proper subsets of a set containing n elements is $2^n 1$.
- 7 If $A = \phi$, then $P(A) = \phi$; $\therefore n(P(A)) = 1$.
- 8 The order of an infinite set is undefined.
- **9** A natural number *p* is a prime number, if *p* is greater than one and its factors are 1 and *p* only.
- 10 Finite sets are equivalent sets only, when they have equal number of elements.
- 11 Equal sets are equivalent sets but equivalent sets may not be equal sets.
- 12 If A is any set, then $A \subseteq A$ is true but $A \subset A$ is false.
- 13 If $A \subseteq B$, then $A \cup B = B$
- **14** $A \subset B \Leftrightarrow A \subseteq B$ and $A \neq B$
- 15 $x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B$
- **16** $x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B$
- 17 If $A_1, A_2, ..., A_n$ is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^{n} A_i \text{ or } A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$.
- 18 If $A_1, A_2, A_3, ..., A_n$ is a finite family of sets, then their intersection is denoted by $\bigcap_{i=1}^{n} A_i$ or $A_1 \cap A_2 \cap A_3 \cap ... \cap A_n$.
- **19** R Q is the set of all irrational numbers.
- **20** Total number of relations from set *A* to set *B* is equal to $2^{n(A)n(B)}$.
- 21 The universal relation on a non-empty set is always reflexive, symmetric and transitive.
- **22** The identity relation on a non-empty set is always anti-symmetric.

- **23** The identity relation on a set is also called the diagonal relation on *A*.
- **24** For two relations *R* and *S*, the composite relations *RoS*, *SoR* may be void relations.
- **25** Every polynomial function $f: R \to R$ of degree odd is ONTO
- **26** Every polynomial function $f: R \to R$ of degree even is INTO.
- 27 (i) The number of onto functions that can be defined from a finite set A containing n elements onto a finite set B containing 2 elements $= 2^n 2$
 - (ii) The number of onto functions that can be defined from a finite set *A* containing *n* elements onto a finite set *B* containing 3 elements = $3^n 3 \cdot 2^n + 3$
- **28** If a set *A* has *n* elements, then the number of binary relations on $A = n^{n^2}$.
- **29** If $f \circ g = g \circ f$, then either $f^{-1} = g \circ r \circ g^{-1} = f$.
- **30** If f and g are bijective functions such that $f: A \to B$ and $g: B \to C$, then $gof: A \to C$ is bijective. Also, $(gof)^{-1} = f^{-1}og^{-1}$.
- **31** Let $f: A \rightarrow B$, $g: B \rightarrow C$ be two functions, then
 - (i) f and g are injective $\Rightarrow gof$ is injective
 - (ii) f and g are surjective $\Rightarrow gof$ is surjective
 - (iii) f and g are bijective $\Rightarrow gof$ is bijective
- **32** Let $f: A \rightarrow B, g: B \rightarrow C$ be two functions, then
 - (i) $gof: A \rightarrow C$ is injective $\Rightarrow f: A \rightarrow B$ is injective
 - (ii) $gof : A \rightarrow C$ is surjective $\Rightarrow g : B \rightarrow C$ is surjective
 - (iii) $gof: A \rightarrow C$ is injective and $g: B \rightarrow C$ is surjective \Rightarrow $g: B \rightarrow C$ is injective
 - (iv) $gof: A \rightarrow C$ is surjective and $g: B \rightarrow C$ is injective \Rightarrow $f: A \rightarrow B$ is surjective
- 33 An injective mapping from a finite set to itself is bijective.